
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8725974/publications.pdf Version: 2024-02-01

SHUN ΗΙΡΟΤΛ

#	Article	IF	CITATIONS
1	Activation Process of [NiFe] Hydrogenase Elucidated by High-Resolution X-Ray Analyses: Conversion of the Ready to the Unready State. Structure, 2005, 13, 1635-1642.	3.3	248
2	Structural Studies of the Carbon Monoxide Complex of [NiFe]hydrogenase from Desulfovibrio vulgaris Miyazaki F:  Suggestion for the Initial Activation Site for Dihydrogen. Journal of the American Chemical Society, 2002, 124, 11628-11635.	13.7	235
3	Cytochrome <i>c</i> polymerization by successive domain swapping at the C-terminal helix. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12854-12859.	7.1	148
4	Crystal Structure and Reversible O2-Binding of a Room Temperature Stable μ-η2:η2-Peroxodicopper(II) Complex of a Sterically Hindered Hexapyridine Dinucleating Ligand. Journal of the American Chemical Society, 1999, 121, 11006-11007.	13.7	145
5	Time-resolved resonance Raman elucidation of the pathway for dioxygen reduction by cytochrome c oxidase. Journal of the American Chemical Society, 1993, 115, 8527-8536.	13.7	124
6	"Click Peptide―Based on the "O-Acyl Isopeptide Method― Control of Aβ1â^'42 Production from a Photo-Triggered Aβ1â^'42 Analogue. Journal of the American Chemical Society, 2006, 128, 696-697.	13.7	110
7	Role of Copper Ion in Bacterial Copper Amine Oxidase:Â Spectroscopic and Crystallographic Studies of Metal-Substituted Enzymes. Journal of the American Chemical Society, 2003, 125, 1041-1055.	13.7	106
8	Ligand Binding Properties of Myoglobin Reconstituted with Iron Porphycene:Â Unusual O2Binding Selectivity against CO Binding1. Journal of the American Chemical Society, 2004, 126, 16007-16017.	13.7	94
9	Time-Resolved Resonance Raman Evidence for Tight Coupling between Electron Transfer and Proton Pumping of CytochromecOxidase upon the Change from the FeVOxidation Level to the FeIVOxidation Level. Journal of the American Chemical Society, 1996, 118, 5443-5449.	13.7	93
10	Hydroperoxoâ^'Copper(II) Complex Stabilized by N3S-Type Ligand Having a Phenyl Thioether. Journal of the American Chemical Society, 2001, 123, 7715-7716.	13.7	85
11	Thermodynamics of apoplastocyanin folding: Comparison between experimental and theoretical results. Journal of Chemical Physics, 2008, 128, 225104.	3.0	85
12	Iron Porphyrinâ^'Cyclodextrin Supramolecular Complex as a Functional Model of Myoglobin in Aqueous Solution. Inorganic Chemistry, 2006, 45, 4448-4460.	4.0	84
13	Resonance Raman Investigation of Feâ^'Nâ^'O Structure of Nitrosylheme in Myoglobin and Its Mutants. Journal of Physical Chemistry B, 1999, 103, 7044-7054.	2.6	82
14	Dioxygen Binding to a Simple Myoglobin Model in Aqueous Solution. Angewandte Chemie - International Edition, 2005, 44, 435-438.	13.8	80
15	Perturbation of the Feâ d2 Bond by Nearby Residues in Heme Pocket:  Observation of νFe-O2 Raman Bands for Oxymyoglobin Mutants. Journal of the American Chemical Society, 1996, 118, 7845-7846.	^S 13.7	78
16	Observation of a New Oxygen-Isotope-Sensitive Raman Band for Oxyhemoproteins and Its Implications in Heme Pocket Structures. Journal of the American Chemical Society, 1994, 116, 10564-10570.	13.7	76
17	Creation of an artificial metalloprotein with a Hoveyda–Grubbs catalyst moiety through the intrinsic inhibition mechanism of α-chymotrypsin. Chemical Communications, 2012, 48, 1662.	4.1	75
18	Peroxidase activity enhancement of horse cytochrome c by dimerization. Organic and Biomolecular Chemistry, 2011, 9, 4766.	2.8	72

#	Article	IF	CITATIONS
19	Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chemical Reviews, 2022, 122, 11900-11973.	47.7	70
20	Metal Ion-Assisted Weak Interactions Involving Biological Molecules. From Small Complexes to Metalloproteins. Bulletin of the Chemical Society of Japan, 2001, 74, 1525-1545.	3.2	69
21	Development of novel water-soluble photocleavable protective group and its application for design of photoresponsive paclitaxel prodrugs. Bioorganic and Medicinal Chemistry, 2008, 16, 5389-5397.	3.0	67
22	A new class of rhodamine luminophores: design, syntheses and aggregation-induced emission enhancement. Chemical Communications, 2010, 46, 9013.	4.1	67
23	Synthesis, Structure, and Greatly Improved Reversible O2 Binding in a Structurally Modulatedî¼-î•2:Ε2-Peroxodicopper(II) Complex with Room-Temperature Stability. Angewandte Chemie - International Edition, 2004, 43, 334-337.	13.8	66
24	Four-electron Reduction of Dioxygen by a Multicopper Oxidase, CueO, and Roles of Asp112 and Glu506 Located Adjacent to the Trinuclear Copper Center. Journal of Biological Chemistry, 2009, 284, 14405-14413.	3.4	66
25	Near-IR FT-Raman Spectroscopy of Methyl-B12 and Other Cobalamins and of Imidazole and Imidazolate Methylcobinamide Derivatives in Aqueous Solution. Inorganic Chemistry, 1996, 35, 4656-4662.	4.0	62
26	Studies on galactose oxidase active site model complexes: effects of ring substituents on Cu(II)-phenoxyl radical formation. Inorganica Chimica Acta, 2002, 331, 168-177.	2.4	58
27	Two-Dimensional NMR Study on the Structures of Micelles of Sodium Taurocholate. Journal of Physical Chemistry B, 2004, 108, 438-443.	2.6	57
28	Chemical Approach to the Cu(II)-Phenoxyl Radical Site in Galactose Oxidase: Dependence of the Radical Stability on N-Donor Properties. Bulletin of the Chemical Society of Japan, 2000, 73, 1187-1195.	3.2	56
29	Development of first photoresponsive prodrug of paclitaxel. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 4492-4496.	2.2	55
30	DNA Cleavage by the Photocontrolled Cooperation of Zn ^{II} Centers in an Azobenzene-Linked Dizinc Complex. Inorganic Chemistry, 2011, 50, 11437-11445.	4.0	54
31	Efficient Oxidative Cycloreversion Reaction of Photochromic Dithiazolythiazole. Journal of the American Chemical Society, 2012, 134, 19877-19883.	13.7	54
32	Nickel(II)â^'Phenoxyl Radical Complexes:Â Structureâ^'Radical Stability Relationship. Inorganic Chemistry, 2004, 43, 7816-7822.	4.0	53
33	Vibrational Assignments of the FeCO Unit of CO-Bound Heme Proteins Revisited: Observation of a New CO-Isotope-Sensitive Raman Band Assignable to the FeCO Bending Fundamental. The Journal of Physical Chemistry, 1994, 98, 6652-6660.	2.9	51
34	Kinetic and Structural Studies on the Catalytic Role of the Aspartic Acid Residue Conserved in Copper Amine Oxidaseâ€,‡. Biochemistry, 2006, 45, 4105-4120.	2.5	50
35	Observation of Multiple CN-Isotope-Sensitive Raman Bands for CN-Adducts of Hemoglobin, Myoglobin, and CytochromecOxidase:Â Evidence for Vibrational Coupling between the Feâ [~] Câ [~] N Bending and Porphyrin In-Plane Modes. The Journal of Physical Chemistry, 1996, 100, 15274-15279.	2.9	49
36	Structural and oxygen binding properties of dimeric horse myoglobin. Dalton Transactions, 2012, 41, 11378.	3.3	47

#	Article	IF	CITATIONS
37	Oxoferryl Porphyrin/Hydrogen Peroxide System Whose Behavior is Equivalent to Hydroperoxoferric Porphyrin. Journal of the American Chemical Society, 2010, 132, 16730-16732.	13.7	46
38	Structural basis of the redox switches in the NAD ⁺ -reducing soluble [NiFe]-hydrogenase. Science, 2017, 357, 928-932.	12.6	46
39	A Supramolecular Receptor of Diatomic Molecules (O ₂ , CO, NO) in Aqueous Solution. Journal of the American Chemical Society, 2008, 130, 8006-8015.	13.7	45
40	Artificial enzymes with protein scaffolds: Structural design and modification. Bioorganic and Medicinal Chemistry, 2014, 22, 5638-5656.	3.0	45
41	A Role of the Heme-7-Propionate Side Chain in Cytochrome P450cam as a Gate for Regulating the Access of Water Molecules to the Substrate-Binding Site. Journal of the American Chemical Society, 2009, 131, 1398-1400.	13.7	44
42	Synthesis, Characterization, and Activation of Thermally Stable μ-1,2-Peroxodiiron(III) Complex. Inorganic Chemistry, 2001, 40, 4821-4822.	4.0	43
43	Structure and Ligand Binding Properties of Myoglobins Reconstituted with Monodepropionated Heme: Functional Role of Each Heme Propionate Side Chain,. Biochemistry, 2007, 46, 9406-9416.	2.5	42
44	Photocontrol of Spatial Orientation and DNA Cleavage Activity of Copper(II)-Bound Dipeptides Linked by an Azobenzene Derivative. Inorganic Chemistry, 2008, 47, 5045-5047.	4.0	41
45	Effect of Heme Modification on Oxygen Affinity of Myoglobin and Equilibrium of the Acidâ~'Alkaline Transition in Metmyoglobin. Journal of the American Chemical Society, 2010, 132, 6091-6098.	13.7	41
46	Domain Swapping of the Heme and N-Terminal α-Helix in <i>Hydrogenobacter thermophilus</i> Cytochrome <i>c</i> ₅₅₂ Dimer. Biochemistry, 2012, 51, 8608-8616.	2.5	41
47	Control of the Transition between Ni and Niâ€6I _a States by the Redox State of the Proximal FeS Cluster in the Catalytic Cycle of [NiFe] Hydrogenase. Angewandte Chemie - International Edition, 2014, 53, 13817-13820.	13.8	41
48	Micelle formation of bile salts and zwitterionic derivative as studied by two-dimensional NMR spectroscopy. Chemistry and Physics of Lipids, 2006, 142, 43-57.	3.2	40
49	Formation of a Bridged Butterfly-Type μ-η ² :η ² -Peroxo Dicopper Core Structure with a Carboxylate Group. Journal of the American Chemical Society, 2008, 130, 16444-16445.	13.7	40
50	Formation of Oligomeric Cytochrome <i>c</i> during Folding by Intermolecular Hydrophobic Interaction between N- and C-Terminal α-Helices. Biochemistry, 2013, 52, 8732-8744.	2.5	40
51	Self-oxidation of cytochrome c at methionine80 with molecular oxygen induced by cleavage of the Met–heme iron bond. Molecular BioSystems, 2014, 10, 3130-3137.	2.9	40
52	Trapping of a Dopaquinone Intermediate in the TPQ Cofactor Biogenesis in a Copper-Containing Amine Oxidase from <i>Arthrobacterglobiformis</i> . Journal of the American Chemical Society, 2007, 129, 11524-11534.	13.7	39
53	Proton Transfer Mechanisms in Bimetallic Hydrogenases. Accounts of Chemical Research, 2021, 54, 232-241.	15.6	39
54	The Coâ^'CH3Bond in Imine/Oxime B12Models. Influence of the Orientation and Donor Properties of the transLigand As Assessed by FT-Raman Spectroscopy. Inorganic Chemistry, 1996, 35, 5646-5653.	4.0	38

#	Article	IF	CITATIONS
55	Interactions of Cytochromecand Cytochromefwith Aspartic Acid Peptides. Journal of the American Chemical Society, 1999, 121, 849-855.	13.7	38
56	Controlled Production of Amyloid β Peptide from a Photoâ€Triggered, Waterâ€Soluble Precursor "Click Peptide". ChemBioChem, 2008, 9, 3055-3065.	2.6	38
57	Effect of Added Salt on Ring-Closing Metathesis Catalyzed by a Water-Soluble Hoveyda–Grubbs Type Complex To Form N-Containing Heterocycles in Aqueous Media. Organometallics, 2013, 32, 5313-5319.	2.3	38
58	Domain-swapped cytochrome cb ₅₆₂ dimer and its nanocage encapsulating a Zn–SO ₄ cluster in the internal cavity. Chemical Science, 2015, 6, 7336-7342.	7.4	37
59	Observation of the Fe-O2and FelV=O stretching Raman bands for dioxygen reduction intermediates of cytochromeboisolated fromEscherichia coli. FEBS Letters, 1994, 352, 67-70.	2.8	36
60	Design of artificial metalloproteins/metalloenzymes by tuning noncovalent interactions. Journal of Biological Inorganic Chemistry, 2018, 23, 7-25.	2.6	36
61	H-atom abstraction reaction for organic substrates via mononuclear copper(ii)-superoxo species as a model for DβM and PHM. Dalton Transactions, 2008, , 164-170.	3.3	35
62	Conformational Changes during Apoplastocyanin Folding Observed by Photocleavable Modification and Transient Grating. Journal of the American Chemical Society, 2006, 128, 7551-7558.	13.7	34
63	Excimer Emission Properties on Pyrene-Labeled Protein Surface: Correlation between Emission Spectra, Ring Stacking Modes, and Flexibilities of Pyrene Probes. Bioconjugate Chemistry, 2015, 26, 537-548.	3.6	34
64	Characterization of the Cytochromeâ€ <i>c</i> Membraneâ€Binding Site Using Cardiolipin ontaining Bicelles with NMR. Angewandte Chemie - International Edition, 2016, 55, 14019-14022.	13.8	34
65	Comprehensive reaction mechanisms at and near the Ni–Fe active sites of [NiFe] hydrogenases. Dalton Transactions, 2018, 47, 4408-4423.	3.3	34
66	Enhancement of Laccase Activity through the Construction and Breakdown of a Hydrogen Bond at the Type I Copper Center in <i>Escherichia coli</i> CueO and the Deletion Mutant Δα5â~7 CueO. Biochemistry, 2011, 50, 558-565.	2.5	33
67	Analysis of the active sites of copper/topa quinone-containing amine oxidases fromLathyrus odoratus andL. sativus seedlings. Phytochemical Analysis, 1998, 9, 211-222.	2.4	31
68	Tetrahedral Distortion in Copper(II) Complexes of (â^')-Sparteine and Its Effect on the Oxygen Adduct Formation. Chemistry Letters, 2000, 29, 1172-1173.	1.3	31
69	Thermodynamical properties of reaction intermediates during apoplastocyanin folding in time domain. Journal of Chemical Physics, 2007, 127, 175103.	3.0	31
70	Rational Design of Heterodimeric Protein using Domain Swapping for Myoglobin. Angewandte Chemie - International Edition, 2015, 54, 511-515.	13.8	31
71	Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy. Angewandte Chemie - International Edition, 2019, 58, 13285-13290.	13.8	31
72	Roles of Four Iron Centers inParacoccus halodenitrificansNitric Oxide Reductase. Biochemical and Biophysical Research Communications, 1998, 251, 248-251.	2.1	30

#	Article	IF	CITATIONS
73	â€~Click peptide': a novel â€~O-acyl isopeptide method' for peptide synthesis and chemical biology-orient synthesis of amyloid β peptide analogues. Journal of Peptide Science, 2006, 12, 823-828.	ed 1.4	30
74	Post-Translational His-Cys Cross-Linkage Formation in Tyrosinase Induced by Copper(II)â^Peroxo Species. Journal of the American Chemical Society, 2011, 133, 1180-1183.	13.7	30
75	Spectroscopic Observation of Intermediates Formed during the Oxidative Half-Reaction of Copper/Topa Quinone-Containing Phenylethylamine Oxidase. Biochemistry, 2001, 40, 15789-15796.	2.5	29
76	Masking Mechanisms of Bitter Taste of Drugs Studied with Ion Selective Electrodes. Chemical and Pharmaceutical Bulletin, 2006, 54, 1155-1161.	1.3	29
77	The Coî—,CH3 bond in Shiff base B12 models: influence of the trans and equatorial ligands as assessed by Fourier transform Raman spectroscopy. Inorganica Chimica Acta, 1998, 275-276, 90-97.	2.4	28
78	Plastocyaninâ^'Peptide Interactions. Effects of Lysine Peptides on Protein Structure and Electron-Transfer Character. Journal of the American Chemical Society, 1998, 120, 8177-8183.	13.7	28
79	Coherent dynamics and ultrafast excited state relaxation of blue copper protein; plastocyanin. Physical Chemistry Chemical Physics, 2010, 12, 6067.	2.8	28
80	Supramolecular Organization of Lightâ€Harvesting Porphyrin Macrorings. Chemistry - A European Journal, 2011, 17, 855-865.	3.3	28
81	FT-IR Characterization of the Light-Induced Ni-L2 and Ni-L3 States of [NiFe] Hydrogenase from <i>Desulfovibrio vulgaris</i> Miyazaki F. Journal of Physical Chemistry B, 2015, 119, 13668-13674.	2.6	28
82	Molecular structure of redox metal centers of the cytochrome bo complex from Escherichia coli. Spectroscopic characterizations of the subunit I histidine mutant oxidases Journal of Biological Chemistry, 1994, 269, 30861-30868.	3.4	27
83	Construction of Giant Porphyrin Macrorings Selfâ€Assembled from Thiophenyleneâ€Linked Bisporphyrins for Lightâ€Harvesting Antennae. Chemistry - A European Journal, 2008, 14, 10735-10744.	3.3	26
84	Reduction of Bis(dithiolene)oxo(disulfido)tungsten(VI) Complex with Dihydrogen Related to the Chemical Function of the Fourth Tungsten-Containing Enzyme (WOR4) from <i>Pyrococcus furiosus</i> . Journal of the American Chemical Society, 2010, 132, 8-9.	13.7	26
85	Reinvestigation of Metal Ion Specificity for Quinone Cofactor Biogenesis in Bacterial Copper Amine Oxidase,. Biochemistry, 2005, 44, 12041-12048.	2.5	25
86	Nature of Cysteine-Based Re(V)O(N2S2) Radiopharmaceuticals at Physiological pH Ascertained by Investigation of a New Complex with aMesoN2S2Ligand Having Carboxyl Groups Anti to the Oxo Group. Inorganic Chemistry, 2000, 39, 5731-5740.	4.0	24
87	Formation of Domain-Swapped Oligomer of Cytochrome <i>c</i> from Its Molten Globule State Oligomer. Biochemistry, 2014, 53, 4696-4703.	2.5	24
88	Spectroscopic Characterization of Carbon Monoxide Complexes Generated for Copper/Topa Quinone-Containing Amine Oxidasesâ€. Biochemistry, 1999, 38, 14256-14263.	2.5	23
89	Oligomerization of cytochrome c, myoglobin, and related heme proteins by 3D domain swapping. Journal of Inorganic Biochemistry, 2019, 194, 170-179.	3.5	23
90	A Myoglobin Functional Model Composed of a Ferrous Porphyrin and a Cyclodextrin Dimer with an Imidazole Linker. Chemistry - an Asian Journal, 2006, 1, 358-366.	3.3	22

#	Article	IF	CITATIONS
91	A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angewandte Chemie - International Edition, 2017, 56, 6739-6743.	13.8	22
92	Resonance raman study on axial ligands of heme irons in cytochrome <i>bd</i> â€ŧype ubiquinol oxidase from <i>Escherichia coli</i> . Biospectroscopy, 1995, 1, 305-311.	0.6	21
93	Relationship between Oxygen Affinity and Autoxidation of Myoglobin. Inorganic Chemistry, 2012, 51, 11955-11960.	4.0	21
94	Chemical Rescue of a Site-Specific Mutant of Bacterial Copper Amine Oxidase for Generation of the Topa Quinone Cofactorâ€. Biochemistry, 2004, 43, 2178-2187.	2.5	20
95	Evaluation of the Functional Role of the Heme-6-propionate Side Chain in Cytochrome P450cam. Journal of the American Chemical Society, 2008, 130, 432-433.	13.7	20
96	Molecular mode of interaction of plant amine oxidase with the mechanism-based inhibitor 2-butyne-1,4-diamine. FEBS Journal, 2000, 267, 1423-1433.	0.2	19
97	Domain-Swapped Dimer of Pseudomonas aeruginosa Cytochrome c551: Structural Insights into Domain Swapping of Cytochrome c Family Proteins. PLoS ONE, 2015, 10, e0123653.	2.5	19
98	Determination of proton concentration at cardiolipin-containing membrane interfaces and its relation with the peroxidase activity of cytochrome <i>c</i> . Chemical Science, 2019, 10, 9140-9151.	7.4	19
99	Recent developments on creation of artificial metalloenzymes. Tetrahedron Letters, 2019, 60, 151226.	1.4	19
100	Folding Character of CytochromecStudied byo-Nitrobenzyl Modification of Methionine 65 and Subsequent Ultraviolet Light Irradiationâ€. Biochemistry, 2000, 39, 7538-7545.	2.5	18
101	Oxygen Binding to Tyrosinase from Streptomyces antibioticus Studied by Laser Flash Photolysis. Journal of the American Chemical Society, 2005, 127, 17966-17967.	13.7	18
102	Electron transfer from cytochrome c to cupredoxins. Journal of Biological Inorganic Chemistry, 2009, 14, 821-828.	2.6	18
103	Change in structure and ligand binding properties of hyperstable cytochrome <i>c</i> ₅₅₅ from <scp><i>A</i> </scp> <i>quifex aeolicus</i> by domain swapping. Protein Science, 2015, 24, 366-375.	7.6	18
104	A Superoxodicopper(II) Complex Oxidatively Generated by a Reaction of Di-μ-hydroxodicopper(II) Complex with Hydrogen Peroxide. Chemistry Letters, 1998, 27, 389-390.	1.3	17
105	Heme Reduction by Intramolecular Electron Transfer in Cysteine Mutant Myoglobin under Carbon Monoxide Atmosphere. Biochemistry, 2005, 44, 10322-10327.	2.5	17
106	Molecular structure of redox metal centers of the cytochrome bo complex from Escherichia coli. Spectroscopic characterizations of the subunit I histidine mutant oxidases. Journal of Biological Chemistry, 1994, 269, 30861-8.	3.4	17
107	Observation of Nonfundamental Fe-O2 and Fe-CO Vibrations and Potential Anharmonicities for Oxyhemoglobin and Carbonmonoxyhemoglobin. Evidence Supporting a New Assignment of the Fe-C-O Bending Fundamental. Journal of the American Chemical Society, 1995, 117, 821-822.	13.7	16
108	Factors Influencing the pKaof Ligated Amines and the Syn/Anti Isomerization in Cysteine-Based Re(V)O(N2S2) Radiopharmaceutical Analogues As Revealed by a Novel Dominant Tautomer in the Solid State. Inorganic Chemistry, 1999, 38, 5351-5358.	4.0	16

#	Article	IF	CITATIONS
109	Regulating Copperâ€Binding Affinity with Photoisomerizable Azobenzene Ligand by Construction of a Selfâ€Assembled Monolayer. Angewandte Chemie - International Edition, 2009, 48, 6065-6068.	13.8	16
110	Dimer domain swapping versus monomer folding in apo-myoglobin studied by molecular simulations. Physical Chemistry Chemical Physics, 2015, 17, 5006-5013.	2.8	16
111	Photoactivation of the Ni-SI _r state to the Ni-SI _a state in [NiFe] hydrogenase: FT-IR study on the light reactivity of the ready Ni-SI _r state and as-isolated enzyme revisited. Physical Chemistry Chemical Physics, 2016, 18, 22025-22030.	2.8	16
112	Relationship between the Electron Density of the Heme Fe Atom and the Vibrational Frequencies of the Fe-Bound Carbon Monoxide in Myoglobin. Inorganic Chemistry, 2013, 52, 3349-3355.	4.0	15
113	Morphological Change of Cell Membrane by Interaction with Domainâ€Swapped Cytochrome <i>c</i> Oligomers. ChemBioChem, 2014, 15, 517-521.	2.6	15
114	Oligomerization enhancement and two domain swapping mode detection for thermostable cytochrome c ₅₅₂ via the elongation of the major hinge loop. Molecular BioSystems, 2015, 11, 3218-3221.	2.9	15
115	Resonance Raman, Infrared, and EPR Investigation on the Binuclear Site Structure of the Heme-Copper Ubiquinol Oxidases from Acetobacter aceti:  Effect of the Heme Peripheral Formyl Group Substitution. Biochemistry, 1997, 36, 13034-13042.	2.5	14
116	Spectroscopic and Electrochemical Studies on Structural Change of Plastocyanin and Its Tyrosine 83 Mutants Induced by Interaction with Lysine Peptidesâ€. Biochemistry, 2000, 39, 6357-6364.	2.5	14
117	Stable supramolecular complex of porphyrin macroring with pyridyl and fullerenyl ligands. Tetrahedron Letters, 2008, 49, 5484-5487.	1.4	14
118	Oxidative modification of methionine80 in cytochrome c by reaction with peroxides. Journal of Inorganic Biochemistry, 2018, 182, 200-207.	3.5	14
119	Redox-dependent conformational changes of a proximal [4Fe–4S] cluster in Hyb-type [NiFe]-hydrogenase to protect the active site from O ₂ . Chemical Communications, 2018, 54, 12385-12388.	4.1	14
120	Effects of charged peptides on electron transfer from [Fe(CN)6]4– to cytochrome c or plastocyanin. Journal of Biological Inorganic Chemistry, 1998, 3, 563-569.	2.6	13
121	Observation of Cu–Nâ^'3Stretching and Nâ^'3Asymmetric Stretching Bands formono-Azide Adduct ofRhus verniciferaLaccase. Biochemical and Biophysical Research Communications, 1998, 243, 435-437.	2.1	13
122	Molecular Basis of the Bohr Effect in Arthropod Hemocyanin. Journal of Biological Chemistry, 2008, 283, 31941-31948.	3.4	13
123	Reversible Switching of Fluorophore Property Based on Intrinsic Conformational Transition of Adenylate Kinase during Its Catalytic Cycle. Bioconjugate Chemistry, 2013, 24, 1218-1225.	3.6	13
124	DNA cleavage by oxymyoglobin and cysteine-introduced metmyoglobin. Chemical Communications, 2014, 50, 15034-15036.	4.1	13
125	Electronic Control of Discrimination between O2 and CO in Myoglobin Lacking the Distal Histidine Residue. Inorganic Chemistry, 2014, 53, 1091-1099.	4.0	13
126	Domain swapping oligomerization of thermostable c-type cytochrome in E. coli cells. Scientific Reports, 2016, 6, 19334.	3.3	13

#	Article	IF	CITATIONS
127	Formation and carbon monoxideâ€dependent dissociation of <i>Allochromatium vinosum</i> cytochrome <i>c</i> ′ oligomers using domainâ€swapped dimers. Protein Science, 2017, 26, 464-474.	7.6	13
128	Two amine oxidases from Aspergillus niger AKU 3302 contain topa quinone as the cofactor: unusual cofactor link to the glutamyl residue occurs only at one of the enzymes. BBA - Proteins and Proteomics, 1996, 1295, 59-72.	2.1	12
129	A New Class of Sulfido/Oxo(dithiolene)â^'Molybdenum(IV) Complexes Derived from Sulfido/Oxo-Bis(tetrasulfido)molybdenum(IV) Anions. Inorganic Chemistry, 2008, 47, 10150-10157.	4.0	12
130	A simple interfacial pH detection method for cationic amphiphilic self-assemblies utilizing a Schiff-base molecule. Analyst, The, 2016, 141, 2030-2039.	3.5	12
131	Effect of methionine80 heme coordination on domain swapping of cytochrome c. Journal of Biological Inorganic Chemistry, 2017, 22, 705-712.	2.6	12
132	Activation Mechanism of the <i>Streptomyces</i> Tyrosinase Assisted by the Caddie Protein. Biochemistry, 2017, 56, 5593-5603.	2.5	12
133	New Aspects of Cytochrome <i>c</i> : 3D Domain Swapping, Membrane Interaction, Peroxidase Activity, and Met80 Sulfoxide Modification. Bulletin of the Chemical Society of Japan, 2021, 94, 170-182.	3.2	12
134	Reply to the Comment on "Two-Dimensional NMR Study on the Structures of Micelles of Sodium Taurocholate― Journal of Physical Chemistry B, 2005, 109, 9851-9852.	2.6	11
135	Maintenance of the secondary structure of horse cytochrome c during the conversion process of monomers to oligomers by addition of ethanol. Journal of Biochemistry, 2012, 152, 521-529.	1.7	11
136	Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light. Biochemical and Biophysical Research Communications, 2013, 430, 284-288.	2.1	11
137	Electronic Control of Ligand-Binding Preference of a Myoglobin Mutant. Inorganic Chemistry, 2014, 53, 9156-9165.	4.0	11
138	Equilibrium between inactive ready Ni-SI _r and active Ni-SI _a states of [NiFe] hydrogenase studied by utilizing Ni-SI _r -to-Ni-SI _a photoactivation. Chemical Communications, 2017, 53, 10444-10447.	4.1	11
139	Rational Design of Domainâ€6wappingâ€Based <i>c</i> â€Type Cytochrome Heterodimers by Using Chimeric Proteins. ChemBioChem, 2017, 18, 1712-1715.	2.6	11
140	Cysteine SH and Glutamate COOH Contributions to [NiFe] Hydrogenase Proton Transfer Revealed by Highly Sensitive FTIR Spectroscopy. Angewandte Chemie, 2019, 131, 13419-13424.	2.0	11
141	Mechanism and Application of the Catalytic Reaction of [NiFe] Hydrogenase: Recent Developments. ChemBioChem, 2020, 21, 1573-1581.	2.6	11
142	Interaction of dimeric horse cytochrome c with cyanide ion. Journal of Biological Inorganic Chemistry, 2013, 18, 383-390.	2.6	10
143	Crystal Structure, Exogenous Ligand Binding, and Redox Properties of an Engineered Diiron Active Site in a Bacterial Hemerythrin. Inorganic Chemistry, 2013, 52, 13014-13020.	4.0	10
144	Efficient reduction of Cys110 thiyl radical by glutathione in human myoglobin. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 480-486.	2.3	9

#	Article	IF	CITATIONS
145	H ₂ O ₂ -dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin. Chemical Communications, 2014, 50, 3421-3423.	4.1	9
146	Interactions in Plastocyaninâ^'Lysine Peptide and Related Systems. European Journal of Inorganic Chemistry, 2002, 2002, 17-25.	2.0	8
147	Structural Basis of the Lactate-dependent Allosteric Regulation of Oxygen Binding in Arthropod Hemocyanin. Journal of Biological Chemistry, 2010, 285, 19338-19345.	3.4	8
148	Effects of Heme Electronic Structure and Distal Polar Interaction on Functional and Vibrational Properties of Myoglobin. Inorganic Chemistry, 2016, 55, 1613-1622.	4.0	8
149	Construction of a Triangleâ€Shaped Trimer and a Tetrahedron Using an αâ€Helixâ€Inserted Circular Permutant of Cytochrome <i>c</i> ₅₅₅ . Chemistry - an Asian Journal, 2018, 13, 964-967.	3.3	8
150	Regioselective Chemical Modification of Cysteine Residues on Protein Surfaces Focusing on Local Environment around the Conjugation Site. Bioconjugate Chemistry, 2020, 31, 794-802.	3.6	8
151	Confirmation of the presence of a Cu(II)/topa quinone active site in the amine oxidase from fenugreek seedlings. Journal of Experimental Botany, 1997, 48, 1897-1907.	4.8	8
152	Observation of an isotope-sensitive low-frequency Raman band specific to metmyoglobin. Journal of Biological Inorganic Chemistry, 2002, 7, 217-221.	2.6	7
153	Carbon monoxide binding properties of domain-swapped dimeric myoglobin. Journal of Biological Inorganic Chemistry, 2015, 20, 523-530.	2.6	7
154	Theoretical analysis of the domain-swapped dimerization of cytochrome <i>c</i> : An MD and 3D-RISM approach. Journal of Chemical Physics, 2018, 148, 025102.	3.0	7
155	Protein surface charge effect on 3D domain swapping in cells for c-type cytochromes. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2019, 1867, 140265.	2.3	7
156	Domainâ€ S wapping Design by Polyproline Rod Insertion. ChemBioChem, 2019, 20, 2454-2457.	2.6	7
157	Construction of a Quadrangular Tetramer and a Cage-Like Hexamer from Three-Helix Bundle-Linked Fusion Proteins. ACS Synthetic Biology, 2019, 8, 1112-1120.	3.8	7
158	A flash-photolysis study of the reactions of acaa 3-ttype cytochrome oxidase with dioxygen and carbon monoxide. Journal of Bioenergetics and Biomembranes, 1996, 28, 495-501.	2.3	6
159	Interactions of Cytochrome c Peroxidase with Lysine Peptides. Biochemical and Biophysical Research Communications, 2000, 268, 395-397.	2.1	6
160	Weak interactions and molecular recognition in systems involving electron transfer proteins. Chemical Record, 2001, 1, 290-299.	5.8	6
161	Modulation of protein–ligand interactions by photocleavage of a cyclic peptide using phosphatidylinositol 3â€kinase SH3 domain as model system. Journal of Peptide Science, 2009, 15, 411-416.	1.4	6
162	Second-coordination sphere effects on the reactivities of Hoveyda–Grubbs-type catalysts: a ligand exchange study using phenolic moiety-functionalized ligands. Dalton Transactions, 2020, 49, 11618-11627.	3.3	6

#	Article	IF	CITATIONS
163	Carbon Monoxide Complex of Cytochrome b5 at Acidic pH. Biochemical and Biophysical Research Communications, 2001, 282, 351-355.	2.1	5
164	Gene Organization and Molecular Modeling of Copper Amine Oxidase from Aspergillus niger: Re-Evaluation of the Cofactor Structure. Biological Chemistry, 2003, 384, 1451-61.	2.5	5
165	Dioxygen Binding to a Cobalt(II) Porphycene Complex and Its Auto-Oxidized Cobalt(III) Complex. Bulletin of the Chemical Society of Japan, 2005, 78, 1619-1623.	3.2	5
166	Molecular Motions of .ALPHACyclodextrin on a Dodecyl Chain Studied by Molecular Dynamics Simulations. Chemical and Pharmaceutical Bulletin, 2006, 54, 528-534.	1.3	5
167	Characterization of the Cytochromeâ€ <i>c</i> Membraneâ€Binding Site Using Cardiolipinâ€Containing Bicelles with NMR. Angewandte Chemie, 2016, 128, 14225-14228.	2.0	5
168	Synergistic Effect of Distal Polar Interactions in Myoglobin and Their Structural Consequences. Inorganic Chemistry, 2018, 57, 14269-14279.	4.0	5
169	3D domain swapping of azurin from <i>Alcaligenes xylosoxidans</i> . Metallomics, 2020, 12, 337-345.	2.4	5
170	Thermodynamic Control of Domain Swapping by Modulating the Helical Propensity in the Hinge Region of Myoglobin. Chemistry - an Asian Journal, 2020, 15, 1743-1749.	3.3	5
171	Use of 3D domain swapping in constructing supramolecular metalloproteins. Chemical Communications, 2021, 57, 12074-12086.	4.1	5
172	Syntheses, Characterization, and Reactivities of (μâ€Ĥ ² :Î ² â€Disulfido)dicopper(II) Complexes with <i>N</i> â€Alkylated <i>cis</i> , <i>cis</i> â€1,3,5â€Triaminocyclohexane Derivatives. European Journal of Inorganic Chemistry, 2008, 2008, 3977-3986.	2.0	4
173	Global Structural Flexibility of Metalloproteins Regulates Reactivity of Transition Metal Ion in the Protein Core: An Experimental Study Using Thiolâ€subtilisin as a Model Protein. Chemistry - A European Journal, 2018, 24, 2767-2775.	3.3	4
174	Rational design of metal-binding sites in domain-swapped myoglobin dimers. Journal of Inorganic Biochemistry, 2021, 217, 111374.	3.5	4
175	Ligand Exchange Strategy for Delivery of Ruthenium Complex Unit to Biomolecules Based on Ruthenium–Olefin Specific Interactions. Chemistry Letters, 2020, 49, 1490-1493.	1.3	4
176	Lysine peptide binding to plastocyanin and negative patch mutants and its effect on electron transfer. Journal of Inorganic Biochemistry, 1997, 67, 402.	3.5	3
177	Folding Properties of CytochromecStudied by Photocleavableo-Nitrobenzyl Modification of Methionine 65 and 80. Chemistry Letters, 2000, 29, 290-291.	1.3	3
178	Hydrophobic effect of trityrosine on heme ligand exchange during folding of cytochrome c. Biochemical and Biophysical Research Communications, 2004, 314, 452-458.	2.1	3
179	Structure and Ethanol Complexation of Cyclic Tetrasaccharide in Aqueous Solution Studied by NMR and Molecular Mechanics. Chemical and Pharmaceutical Bulletin, 2004, 52, 708-713.	1.3	3
180	Improved stoppedâ€flow timeâ€resolved resonance Raman spectroscopy device for studying enzymatic reactions. Journal of Raman Spectroscopy, 2017, 48, 680-685.	2.5	3

#	Article	IF	CITATIONS
181	A Single Spherical Assembly of Protein Amyloid Fibrils Formed by Laser Trapping. Angewandte Chemie, 2017, 129, 6843-6847.	2.0	3
182	Conferment of CO-Controlled Dimer–Monomer Transition Property to Thermostable Cytochrome <i>c</i> ′ by Mutation in the Subunit–Subunit Interface. Bulletin of the Chemical Society of Japan, 2019, 92, 702-709.	3.2	3
183	Heme-bound tyrosine vibrations in hemoglobin M: Resonance Raman, crystallography, and DFT calculation. Biophysical Journal, 2022, 121, 2767-2780.	0.5	3
184	Kinetic studies on the oxidation of cytochrome b 5 Phe35 mutants with cytochrome c, plastocyanin and inorganic complexes. Journal of Biological Inorganic Chemistry, 2002, 7, 375-383.	2.6	2
185	Effect of a Procaspase-Activating Compound on the Catalytic Activity of Mature Caspase-3. Bulletin of the Chemical Society of Japan, 2015, 88, 1221-1229.	3.2	2
186	Experimental and theoretical study on converting myoglobin into a stable domain-swapped dimer by utilizing a tight hydrogen bond network at the hinge region. RSC Advances, 2021, 11, 37604-37611.	3.6	2
187	Interaction of plastocyanin with oligopeptides: effect of lysine distribution within the peptide. Journal of Inorganic Biochemistry, 2004, 98, 849-855.	3.5	1
188	Reduction of ferricytochrome c by tyrosyltyrosylphenylalanine. Journal of Biological Inorganic Chemistry, 2005, 10, 355-363.	2.6	1
189	Efficient Photochemical Reduction of Quinone into Hydroquinone Promoted by Imidazolyl <i>N</i> -H Proton. Chemistry Letters, 2018, 47, 1343-1345.	1.3	1
190	Construction of ferritin hydrogels utilizing subunit–subunit interactions. PLoS ONE, 2021, 16, e0259052.	2.5	1
191	Reduction of plastocyanin by tyrosine-containing oligopeptides. Journal of Inorganic Biochemistry, 2006, 100, 1871-1878.	3.5	0
192	2P-054 Allosteric effect of arthropod hemocyanin studied by laser flash photolysis(The 46th Annual) Tj ETQq0 0	O rgBT ∕Ov 9.1	erlock 10 Tf
193	3P023 Cytochrome c polymerization by successive domain swapping at the C-terminal helix(Protein:) Tj ETQq1 1 S149.	0.784314 0.1	l rgBT /Overl O
194	Crystallization and preliminary X-ray analysis of dimeric and trimeric cytochromescfrom horse heart. Acta Crystallographica Section F: Structural Biology Communications, 2010, 66, 1477-1479.	0.7	0
195	2SJ-03 Cytochrome c polymerization by domain swapping(2SJ New developments in protein complex) Tj ETQq1	l 0.78431 0.1	4 rgBT /Over O
196	Self-Assembled Dimerization of Bis(crown ether)-2,2′-bibenzimidazoles. Bulletin of the Chemical Society of Japan, 2014, 87, 88-97.	3.2	0
197	Molten Globule State and Assembly Formation of Cytochrome <i>c</i> . Seibutsu Butsuri, 2015, 55, 087-088.	0.1	0
198	Elucidation of Protein Folding with the Use of a Photo-Cleavable Modification Group. Seibutsu Butsuri, 2005, 45, 207-210.	0.1	0

#	Article	IF	CITATIONS
199	Role of the non-protein ligand at the Ni-Fe active site of [NiFe] hydrogenase. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c216-c216.	0.3	0

200 2P055 Domain-Swapped Oligomerization and Molten Globule State of Cytochrome c(01C. Protein:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

201	Time-Resolved Resonance Raman Study of Dioxygen Reduction by Cytochrome c Oxidase. , 1998, , 57-71.		0
202	Supramolecular Assemblies of C-Type Cytochromes Based on 3D Domain Swapping. ECS Meeting Abstracts, 2018, , .	0.0	0
203	Theoretical Study on Oligomerization of Cytochrome <i>c</i> . Journal of Computer Chemistry Japan, 2018, 17, 8-13.	0.1	0
204	Structural and spectroscopic characterization of CO inhibition of [NiFe]-hydrogenase from <i>Citrobacter</i> sp. S-77. Acta Crystallographica Section F, Structural Biology Communications, 2022, 78, 66-74.	0.8	0