
Bryan T Grenfell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8725856/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enterovirus D68: a test case for the use of immunological surveillance to develop tools to mitigate the pandemic potential of emerging pathogens. Lancet Microbe, The, 2022, 3, e83-e85.	7.3	10
2	Modelling vaccination strategies for COVID-19. Nature Reviews Immunology, 2022, 22, 139-141.	22.7	41
3	A global system for the next generation of vaccines. Science, 2022, 376, 462-464.	12.6	1
4	Immuno-epidemiology and the predictability of viral evolution. Science, 2022, 376, 1161-1162.	12.6	13
5	The importance of the generation interval in investigating dynamics and control of new SARS-CoV-2 variants. Journal of the Royal Society Interface, 2022, 19, .	3.4	15
6	Assessing the Effects of Measles Virus Infections on Childhood Infectious Disease Mortality in Brazil. Journal of Infectious Diseases, 2022, 227, 133-140.	4.0	4
7	Preparing for uncertainty: endemic paediatric viral illnesses after COVID-19 pandemic disruption. Lancet, The, 2022, 400, 1663-1665.	13.7	43
8	Superinfection and the evolution of an initial asymptomatic stage. Royal Society Open Science, 2021, 8, 202212.	2.4	4
9	Variation in SARS-CoV-2 outbreaks across sub-Saharan Africa. Nature Medicine, 2021, 27, 447-453.	30.7	77
10	Trajectory of individual immunity and vaccination required for SARS-CoV-2 community immunity: a conceptual investigation. Journal of the Royal Society Interface, 2021, 18, 20200683.	3.4	15
11	Assessing the influence of climate on wintertime SARS-CoV-2 outbreaks. Nature Communications, 2021, 12, 846.	12.8	35
12	Epidemiological dynamics of enterovirus D68 in the United States and implications for acute flaccid myelitis. Science Translational Medicine, 2021, 13, .	12.4	41
13	Partial immunity and SARS-CoV-2 mutations—Response. Science, 2021, 372, 354-355.	12.6	2
14	Epidemiological and evolutionary considerations of SARS-CoV-2 vaccine dosing regimes. Science, 2021, 372, 363-370.	12.6	185
15	Evolution of an asymptomatic first stage of infection in a heterogeneous population. Journal of the Royal Society Interface, 2021, 18, 20210175.	3.4	2
16	Trip duration drives shift in travel network structure with implications for the predictability of spatial disease spread. PLoS Computational Biology, 2021, 17, e1009127.	3.2	4
17	Vaccine nationalism and the dynamics and control of SARS-CoV-2. Science, 2021, 373, eabj7364.	12.6	80
18	Why are there so few (or so many) circulating coronaviruses?. Trends in Immunology, 2021, 42, 751-763.	6.8	7

#	Article	IF	CITATIONS
19	Forward-looking serial intervals correctly link epidemic growth to reproduction numbers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	54
20	Biphasic pattern in the effect of severe measles infection; the difference between additive and multiplicative scale. BMC Infectious Diseases, 2021, 21, 1249.	2.9	4
21	Factors Associated With Measles Transmission in the United States During the Postelimination Era. JAMA Pediatrics, 2020, 174, 56.	6.2	25
22	Potential Role of Social Distancing in Mitigating Spread of Coronavirus Disease, South Korea. Emerging Infectious Diseases, 2020, 26, 2697-2700.	4.3	42
23	The use of mobile phone data to inform analysis of COVID-19 pandemic epidemiology. Nature Communications, 2020, 11, 4961.	12.8	246
24	The impact of COVID-19 nonpharmaceutical interventions on the future dynamics of endemic infections. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30547-30553.	7.1	325
25	Structure, space and size: competing drivers of variation in urban and rural measles transmission. Journal of the Royal Society Interface, 2020, 17, 20200010.	3.4	3
26	Climatological, virological and sociological drivers of current and projected dengue fever outbreak dynamics in Sri Lanka. Journal of the Royal Society Interface, 2020, 17, 20200075.	3.4	8
27	Reconciling early-outbreak estimates of the basic reproductive number and its uncertainty: framework and applications to the novel coronavirus (SARS-CoV-2) outbreak. Journal of the Royal Society Interface, 2020, 17, 20200144.	3.4	103
28	Cyclic epidemics and extreme outbreaks induced by hydro-climatic variability and memory. Journal of the Royal Society Interface, 2020, 17, 20200521.	3.4	3
29	Symbolic transfer entropy reveals the age structure of pandemic influenza transmission from high-volume influenza-like illness data. Journal of the Royal Society Interface, 2020, 17, 20190628.	3.4	11
30	Tensor decomposition for infectious disease incidence data. Methods in Ecology and Evolution, 2020, 11, 1690-1700.	5.2	7
31	Immune life history, vaccination, and the dynamics of SARS-CoV-2 over the next 5 years. Science, 2020, 370, 811-818.	12.6	210
32	Characterizing superspreading events and age-specific infectiousness of SARS-CoV-2 transmission in Georgia, USA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22430-22435.	7.1	178
33	Seroepidemiologic Study Designs for Determining SARS-COV-2 Transmission and Immunity. Emerging Infectious Diseases, 2020, 26, 1978-1986.	4.3	71
34	Economic and Behavioral Influencers of Vaccination and Antimicrobial Use. Frontiers in Public Health, 2020, 8, 614113.	2.7	33
35	Susceptible supply limits the role of climate in the early SARS-CoV-2 pandemic. Science, 2020, 369, 315-319.	12.6	253
36	Dynamics in a simple evolutionary-epidemiological model for the evolution of an initial asymptomatic infection stage. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11541-11550.	7.1	28

#	Article	IF	CITATIONS
37	Disease and healthcare burden of COVID-19 in the United States. Nature Medicine, 2020, 26, 1212-1217.	30.7	358
38	Changes in historical typhoid transmission across 16 U.S. cities, 1889-1931: Quantifying the impact of investments in water and sewer infrastructures. PLoS Neglected Tropical Diseases, 2020, 14, e0008048.	3.0	12
39	An investigation of transmission control measures during the first 50 days of the COVID-19 epidemic in China. Science, 2020, 368, 638-642.	12.6	1,554
40	Waning immunity and re-emergence of measles and mumps in the vaccine era. Current Opinion in Virology, 2020, 40, 48-54.	5.4	26
41	Implications of localized charge for human influenza A H1N1 hemagglutinin evolution: Insights from deep mutational scans. PLoS Computational Biology, 2020, 16, e1007892.	3.2	3
42	Using Serology with Models to Clarify the Trajectory of the SARS-CoV-2 Emerging Outbreak. Trends in Immunology, 2020, 41, 849-851.	6.8	7
43	Surveillance data confirm multiyear predictions of rotavirus dynamics in New York City. Science Advances, 2020, 6, eaax0586.	10.3	7
44	A competing-risks model explains hierarchical spatial coupling of measles epidemics en route to national elimination. Nature Ecology and Evolution, 2020, 4, 934-939.	7.8	12
45	Coexisting attractors in the context of cross-scale population dynamics: measles in London as a case study. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20191510.	2.6	3
46	Disentangling the dynamical underpinnings of differences in SARS-CoV-2 pathology using within-host ecological models. PLoS Pathogens, 2020, 16, e1009105.	4.7	14
47	Accelerated viral dynamics in bat cell lines, with implications for zoonotic emergence. ELife, 2020, 9, .	6.0	91
48	A Global Immunological Observatory to meet a time of pandemics. ELife, 2020, 9, .	6.0	52
49	Asynchrony between virus diversity and antibody selection limits influenza virus evolution. ELife, 2020, 9, .	6.0	25
50	Title is missing!. , 2020, 14, e0008048.		0
51	Title is missing!. , 2020, 14, e0008048.		0
52	Title is missing!. , 2020, 14, e0008048.		0
53	Title is missing!. , 2020, 14, e0008048.		0

#	Article	IF	CITATIONS
55	Measles vaccine immune escape: Should we be concerned?. European Journal of Epidemiology, 2019, 34, 893-896.	5.7	10
56	Pareto rules for malaria super-spreaders and super-spreading. Nature Communications, 2019, 10, 3939.	12.8	47
57	Long-term dynamics of measles in London: Titrating the impact of wars, the 1918 pandemic, and vaccination. PLoS Computational Biology, 2019, 15, e1007305.	3.2	12
58	Dynamic Perspectives on the Search for a Universal Influenza Vaccine. Journal of Infectious Diseases, 2019, 219, S46-S56.	4.0	18
59	Model diagnostics and refinement for phylodynamic models. PLoS Computational Biology, 2019, 15, e1006955.	3.2	3
60	Measles and the canonical path to elimination. Science, 2019, 364, 584-587.	12.6	35
61	Incentivizing hospital infection control. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 6221-6225.	7.1	22
62	Epidemic dynamics of respiratory syncytial virus in current and future climates. Nature Communications, 2019, 10, 5512.	12.8	78
63	Fogarty International Center collaborative networks in infectious disease modeling: Lessons learnt in research and capacity building. Epidemics, 2019, 26, 116-127.	3.0	16
64	Geographic transmission hubs of the 2009 influenza pandemic in the United States. Epidemics, 2019, 26, 86-94.	3.0	26
65	Response to Comment on "Long-term measles-induced immunomodulation increases overall childhood infectious disease mortalityâ€: Science, 2019, 365, .	12.6	7
66	The seasonality of nonpolio enteroviruses in the United States: Patterns and drivers. Proceedings of the United States of America, 2018, 115, 3078-3083.	7.1	81
67	Impact of Public Health Responses During a Measles Outbreak in an Amish Community in Ohio: Modeling the Dynamics of Transmission. American Journal of Epidemiology, 2018, 187, 2002-2010.	3.4	22
68	Predictive Modeling of Influenza Shows the Promise of Applied Evolutionary Biology. Trends in Microbiology, 2018, 26, 102-118.	7.7	95
69	Impact and longevity of measles-associated immune suppression: a matched cohort study using data from the THIN general practice database in the UK. BMJ Open, 2018, 8, e021465.	1.9	38
70	Modeling the measles paradox reveals the importance of cellular immunity in regulating viral clearance. PLoS Pathogens, 2018, 14, e1007493.	4.7	11
71	Urbanization and humidity shape the intensity of influenza epidemics in U.S. cities. Science, 2018, 362, 75-79.	12.6	272
72	Epidemic dynamics, interactions and predictability of enteroviruses associated with hand, foot and mouth disease in Japan. Journal of the Royal Society Interface, 2018, 15, 20180507.	3.4	27

#	Article	lF	CITATIONS
73	The decline of malaria in Vietnam, 1991–2014. Malaria Journal, 2018, 17, 226.	2.3	24
74	Vaccination under uncertainty. Nature Ecology and Evolution, 2018, 2, 1350-1351.	7.8	0
75	Analysis of multi-level spatial data reveals strong synchrony in seasonal influenza epidemics across Norway, Sweden, and Denmark. PLoS ONE, 2018, 13, e0197519.	2.5	17
76	Deploying digital health data to optimize influenza surveillance at national and local scales. PLoS Computational Biology, 2018, 14, e1006020.	3.2	29
77	Unreported cases in the 2014-2016 Ebola epidemic: Spatiotemporal variation, and implications for estimating transmission. PLoS Neglected Tropical Diseases, 2018, 12, e0006161.	3.0	30
78	Spatial and temporal dynamics of superspreading events in the 2014–2015 West Africa Ebola epidemic. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2337-2342.	7.1	151
79	Opportunities and challenges of a World Serum Bank – Authors' reply. Lancet, The, 2017, 389, 252.	13.7	12
80	Reducing antimicrobial use in food animals. Science, 2017, 357, 1350-1352.	12.6	448
81	tsiR: An R package for time-series Susceptible-Infected-Recovered models of epidemics. PLoS ONE, 2017, 12, e0185528.	2.5	40
82	The impact of migration and antimicrobial resistance on the transmission dynamics of typhoid fever in Kathmandu, Nepal: A mathematical modelling study. PLoS Neglected Tropical Diseases, 2017, 11, e0005547.	3.0	11
83	Human mobility and the spatial transmission of influenza in the United States. PLoS Computational Biology, 2017, 13, e1005382.	3.2	174
84	A mechanistic spatio-temporal framework for modelling individual-to-individual transmission—With an application to the 2014-2015 West Africa Ebola outbreak. PLoS Computational Biology, 2017, 13, e1005798.	3.2	26
85	The impact of HCV therapy in a high HIV-HCV prevalence population: A modeling study on people who inject drugs in Ho Chi Minh City, Vietnam. PLoS ONE, 2017, 12, e0177195.	2.5	9
86	Self-enforcing regional vaccination agreements. Journal of the Royal Society Interface, 2016, 13, 20150907.	3.4	16
87	Hand, Foot, and Mouth Disease in China: Modeling Epidemic Dynamics of Enterovirus Serotypes and Implications for Vaccination. PLoS Medicine, 2016, 13, e1001958.	8.4	106
88	Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns. PLoS Computational Biology, 2016, 12, e1004655.	3.2	49
89	Routine Pediatric Enterovirus 71 Vaccination in China: a Cost-Effectiveness Analysis. PLoS Medicine, 2016, 13, e1001975.	8.4	39
90	Impact on Epidemic Measles of Vaccination Campaigns Triggered by Disease Outbreaks or Serosurveys: A Modeling Study. PLoS Medicine, 2016, 13, e1002144.	8.4	29

#	Article	IF	CITATIONS
91	High turnover drives prolonged persistence of influenza in managed pig herds. Journal of the Royal Society Interface, 2016, 13, 20160138.	3.4	33
92	Integrating immune mechanisms to model nematode worm burden: an example in sheep. Parasitology, 2016, 143, 894-904.	1.5	5
93	Use of serological surveys to generate key insights into the changing global landscape of infectious disease. Lancet, The, 2016, 388, 728-730.	13.7	213
94	Seasonal dynamics of bacterial meningitis: a time-series analysis. The Lancet Clobal Health, 2016, 4, e370-e377.	6.3	57
95	Forecasting Epidemiological and Evolutionary Dynamics of Infectious Diseases. Trends in Ecology and Evolution, 2016, 31, 776-788.	8.7	66
96	Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 14595-14600.	7.1	17
97	Immunogenicity of a Meningococcal B Vaccine during a University Outbreak. New England Journal of Medicine, 2016, 375, 220-228.	27.0	67
98	Hand, Foot, and Mouth Disease in China: Critical Community Size and Spatial Vaccination Strategies. Scientific Reports, 2016, 6, 25248.	3.3	15
99	Beyond Ebola. Science, 2016, 351, 815-816.	12.6	19
100	Identifying Hotspots of Multidrug-Resistant Tuberculosis Transmission Using Spatial and Molecular Genetic Data. Journal of Infectious Diseases, 2016, 213, 287-294.	4.0	62
101	Universal or Specific? A Modeling-Based Comparison of Broad-Spectrum Influenza Vaccines against Conventional, Strain-Matched Vaccines. PLoS Computational Biology, 2016, 12, e1005204.	3.2	27
102	Partially observed epidemics in wildlife hosts: modelling an outbreak of dolphin morbillivirus in the northwestern Atlantic, June 2013–2014. Journal of the Royal Society Interface, 2015, 12, 20150676.	3.4	40
103	The impact of environmental and climatic variation on the spatiotemporal trends of hospitalized pediatric diarrhea in Ho Chi Minh City, Vietnam. Health and Place, 2015, 35, 147-154.	3.3	32
104	Avian influenza H5N1 viral and bird migration networks in Asia. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 172-177.	7.1	169
105	Demographic buffering: titrating the effects of birth rate and imperfect immunity on epidemic dynamics. Journal of the Royal Society Interface, 2015, 12, 20141245.	3.4	26
106	Reduced vaccination and the risk of measles and other childhood infections post-Ebola. Science, 2015, 347, 1240-1242.	12.6	169
107	The potential impact of coinfection on antimicrobial chemotherapy and drug resistance. Trends in Microbiology, 2015, 23, 537-544.	7.7	36
108	Changes in Rodent Abundance and Weather Conditions Potentially Drive Hemorrhagic Fever with Renal Syndrome Outbreaks in Xi'an, China, 2005–2012. PLoS Neglected Tropical Diseases, 2015, 9, e0003530.	3.0	53

#	Article	IF	CITATIONS
109	Environmental Drivers of the Spatiotemporal Dynamics of Respiratory Syncytial Virus in the United States. PLoS Pathogens, 2015, 11, e1004591.	4.7	119
110	Climate change suggests a shift of H5N1 risk in migratory birds. Ecological Modelling, 2015, 306, 6-15.	2.5	23
111	Long-term measles-induced immunomodulation increases overall childhood infectious disease mortality. Science, 2015, 348, 694-699.	12.6	319
112	Clobal trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 5649-5654.	7.1	2,521
113	Modeling the effect of HIV coinfection on clearance and sustained virologic response during treatment for hepatitis C virus. Epidemics, 2015, 12, 1-10.	3.0	15
114	Phylodynamics of Enterovirus A71-Associated Hand, Foot, and Mouth Disease in Viet Nam. Journal of Virology, 2015, 89, 8871-8879.	3.4	51
115	Quantifying seasonal population fluxes driving rubella transmission dynamics using mobile phone data. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11114-11119.	7.1	124
116	Assessing Drivers of Full Adoption of Test and Treat Policy for Malaria in Senegal. American Journal of Tropical Medicine and Hygiene, 2015, 93, 159-167.	1.4	11
117	Quantifying the risk of pandemic influenza virus evolution by mutation and re-assortment. Vaccine, 2015, 33, 6955-6966.	3.8	24
118	Estimating Drivers of Autochthonous Transmission of Chikungunya Virus in its Invasion of the Americas. PLOS Currents, 2015, 7, .	1.4	62
119	Demonstrating the Use of High-Volume Electronic Medical Claims Data to Monitor Local and Regional Influenza Activity in the US. PLoS ONE, 2014, 9, e102429.	2.5	59
120	The path of least resistance: aggressive or moderate treatment?. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140566.	2.6	79
121	Contact Heterogeneity, Rather Than Transmission Efficiency, Limits the Emergence and Spread of Canine Influenza Virus. PLoS Pathogens, 2014, 10, e1004455.	4.7	43
122	Spatial Transmission of 2009 Pandemic Influenza in the US. PLoS Computational Biology, 2014, 10, e1003635.	3.2	139
123	Phocine Distemper Virus: Current Knowledge and Future Directions. Viruses, 2014, 6, 5093-5134.	3.3	114
124	Modeling the Impact of Interventions Along the HIV Continuum of Care in Newark, New Jersey. Clinical Infectious Diseases, 2014, 58, 274-284.	5.8	25
125	Cetacean Morbillivirus: Current Knowledge and Future Directions. Viruses, 2014, 6, 5145-5181.	3.3	195
126	Animal Reservoir, Natural and Socioeconomic Variations and the Transmission of Hemorrhagic Fever with Renal Syndrome in Chenzhou, China, 2006–2010. PLoS Neglected Tropical Diseases, 2014, 8, e2615.	3.0	47

#	Article	IF	CITATIONS
127	Predicting the Impact of Vaccination on the Transmission Dynamics of Typhoid in South Asia: A Mathematical Modeling Study. PLoS Neglected Tropical Diseases, 2014, 8, e2642.	3.0	88
128	Bacillus Calmette-Guérin and Isoniazid Preventive Therapy Protect Contacts of Patients with Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 853-859.	5.6	30
129	Age-Specific Risks of Tuberculosis Infection From Household and Community Exposures and Opportunities for Interventions in a High-Burden Setting. American Journal of Epidemiology, 2014, 180, 853-861.	3.4	39
130	Multiannual forecasting of seasonal influenza dynamics reveals climatic and evolutionary drivers. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9538-9542.	7.1	98
131	Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infectious Diseases, The, 2014, 14, 742-750.	9.1	1,719
132	The immune response and within-host emergence of pandemic influenza virus. Lancet, The, 2014, 384, 2077-2081.	13.7	30
133	Evolution of Equine Influenza Virus in Vaccinated Horses. Journal of Virology, 2013, 87, 4768-4771.	3.4	34
134	Hospital-Community Interactions Foster Coexistence between Methicillin-Resistant Strains of Staphylococcus aureus. PLoS Pathogens, 2013, 9, e1003134.	4.7	61
135	Characterizing the dynamics of rubella relative to measles: the role of stochasticity. Journal of the Royal Society Interface, 2013, 10, 20130643.	3.4	12
136	Inferring population-level contact heterogeneity from common epidemic data. Journal of the Royal Society Interface, 2013, 10, 20120578.	3.4	19
137	Inferring the inter-host transmission of influenza A virus using patterns of intra-host genetic variation. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20122173.	2.6	45
138	Linking Time-Varying Symptomatology and Intensity of Infectiousness to Patterns of Norovirus Transmission. PLoS ONE, 2013, 8, e68413.	2.5	19
139	Persistence in Epidemic Metapopulations: Quantifying the Rescue Effects for Measles, Mumps, Rubella and Whooping Cough. PLoS ONE, 2013, 8, e74696.	2.5	35
140	Impact of Birth Seasonality on Dynamics of Acute Immunizing Infections in Sub-Saharan Africa. PLoS ONE, 2013, 8, e75806.	2.5	22
141	Urban Cholera Transmission Hotspots and Their Implications for Reactive Vaccination: Evidence from Bissau City, Guinea Bissau. PLoS Neglected Tropical Diseases, 2012, 6, e1901.	3.0	51
142	Evolution of an Eurasian Avian-like Influenza Virus in NaÃ ⁻ ve and Vaccinated Pigs. PLoS Pathogens, 2012, 8, e1002730.	4.7	79
143	Impact of cross-protective vaccines on epidemiological and evolutionary dynamics of influenza. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3173-3177.	7.1	60
144	Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14989-14994.	7.1	99

#	Article	IF	CITATIONS
145	Self-boosting vaccines and their implications for herd immunity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20154-20159.	7.1	18
146	Measurement of vaccine-derived immunity: how do we use all the data?. Expert Review of Vaccines, 2012, 11, 747-749.	4.4	5
147	Boosting understanding of pertussis outbreaks. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7279-7280.	7.1	12
148	Modeling rotavirus strain dynamics in developed countries to understand the potential impact of vaccination on genotype distributions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19353-19358.	7.1	74
149	Synthesizing epidemiological and economic optima for control of immunizing infections. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14366-14370.	7.1	57
150	Influence of birth rates and transmission rates on the global seasonality of rotavirus incidence. Journal of the Royal Society Interface, 2011, 8, 1584-1593.	3.4	73
151	Measuring the Performance of Vaccination Programs Using Cross-Sectional Surveys: A Likelihood Framework and Retrospective Analysis. PLoS Medicine, 2011, 8, e1001110.	8.4	54
152	Disease dynamics in a dynamic social network. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 2663-2674.	2.6	31
153	Dynamics of Glycoprotein Charge in the Evolutionary History of Human Influenza. PLoS ONE, 2010, 5, e15674.	2.5	37
154	Intra- and Interhost Evolutionary Dynamics of Equine Influenza Virus. Journal of Virology, 2010, 84, 6943-6954.	3.4	97
155	Rural–urban gradient in seasonal forcing of measles transmission in Niger. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2775-2782.	2.6	45
156	Synthesizing within-host and population-level selective pressures on viral populations: the impact of adaptive immunity on viral immune escape. Journal of the Royal Society Interface, 2010, 7, 1311-1318.	3.4	23
157	Protocols for sampling viral sequences to study epidemic dynamics. Journal of the Royal Society Interface, 2010, 7, 1119-1127.	3.4	40
158	Resolving the impact of waiting time distributions on the persistence of measles. Journal of the Royal Society Interface, 2010, 7, 623-640.	3.4	48
159	Dynamics of Influenza Virus Infection and Pathology. Journal of Virology, 2010, 84, 3974-3983.	3.4	172
160	Absolute Humidity and the Seasonal Onset of Influenza in the Continental United States. PLoS Biology, 2010, 8, e1000316.	5.6	513
161	The Shifting Demographic Landscape of Pandemic Influenza. PLoS ONE, 2010, 5, e9360.	2.5	76
162	INFERENCE FOR INDIVIDUAL-LEVEL MODELS OF INFECTIOUS DISEASES IN LARGE POPULATIONS. Statistica Sinica, 2010, 20, 239-261.	0.3	57

#	Article	IF	CITATIONS
163	Quantifying the Impact of Immune Escape on Transmission Dynamics of Influenza. Science, 2009, 326, 726-728.	12.6	96
164	Discovering the Phylodynamics of RNA Viruses. PLoS Computational Biology, 2009, 5, e1000505.	3.2	100
165	Demographic Variability, Vaccination, and the Spatiotemporal Dynamics of Rotavirus Epidemics. Science, 2009, 325, 290-294.	12.6	210
166	Seasonality and comparative dynamics of six childhood infections in pre-vaccination Copenhagen. Proceedings of the Royal Society B: Biological Sciences, 2009, 276, 4111-4118.	2.6	90
167	Epidemic Dynamics at the Human-Animal Interface. Science, 2009, 326, 1362-1367.	12.6	554
168	Hazards, spatial transmission and timing of outbreaks in epidemic metapopulations. Environmental and Ecological Statistics, 2008, 15, 265-277.	3.5	33
169	The dynamics of measles in sub-Saharan Africa. Nature, 2008, 451, 679-684.	27.8	305
170	Directly transmitted viral diseases: modeling the dynamics of transmission. Trends in Microbiology, 2008, 16, 165-172.	7.7	14
171	Accuracy of models for the 2001 foot-and-mouth epidemic. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1459-1468.	2.6	68
172	HIV-1/parasite co-infection and the emergence of new parasite strains. Parasitology, 2008, 135, 795-806.	1.5	37
173	Measles on the Edge: Coastal Heterogeneities and Infection Dynamics. PLoS ONE, 2008, 3, e1941.	2.5	30
174	Seasonality and the persistence and invasion of measles. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 1133-1141.	2.6	69
175	The Genesis and Spread of Reassortment Human Influenza A/H3N2 Viruses Conferring Adamantane Resistance. Molecular Biology and Evolution, 2007, 24, 1811-1820.	8.9	174
176	Global Patterns in Seasonal Activity of Influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral Coexistence and Latitudinal Gradients. PLoS ONE, 2007, 2, e1296.	2.5	176
177	Vaccination and the dynamics of immune evasion. Journal of the Royal Society Interface, 2007, 4, 143-153.	3.4	60
178	Effect of data quality on estimates of farm infectiousness trends in the UK 2001 foot-and-mouth disease epidemic. Journal of the Royal Society Interface, 2007, 4, 235-241.	3.4	17
179	When individual behaviour matters: homogeneous and network models in epidemiology. Journal of the Royal Society Interface, 2007, 4, 879-891.	3.4	557
180	Vaccination strategies for foot-and-mouth disease (reply). Nature, 2007, 445, E12-E13.	27.8	6

#	Article	IF	CITATIONS
181	Modelling dynamics of the type I interferon response to in vitro viral infection. Journal of the Royal Society Interface, 2006, 3, 699-709.	3.4	43
182	Host Species Barriers to Influenza Virus Infections. Science, 2006, 312, 394-397.	12.6	413
183	Optimal reactive vaccination strategies for a foot-and-mouth outbreak in the UK. Nature, 2006, 440, 83-86.	27.8	216
184	Epochal Evolution Shapes the Phylodynamics of Interpandemic Influenza A (H3N2) in Humans. Science, 2006, 314, 1898-1903.	12.6	423
185	Synchrony, Waves, and Spatial Hierarchies in the Spread of Influenza. Science, 2006, 312, 447-451.	12.6	726
186	Stochastic Processes Are Key Determinants of Short-Term Evolution in Influenza A Virus. PLoS Pathogens, 2006, 2, e125.	4.7	173
187	Intracellular Demography and the Dynamics of Salmonella enterica Infections. PLoS Biology, 2006, 4, e349.	5.6	68
188	FMD control strategies. Veterinary Record, 2006, 158, 707-708.	0.3	1
189	Integrating life history and cross-immunity into the evolutionary dynamics of pathogens. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 409-416.	2.6	36
190	Epidemiological impact of vaccination on the dynamics of two childhood diseases in rural Senegal. Microbes and Infection, 2005, 7, 593-599.	1.9	30
191	Epidemic cycling and immunity. Nature, 2005, 433, 366-367.	27.8	32
192	Whole-Genome Analysis of Human Influenza A Virus Reveals Multiple Persistent Lineages and Reassortment among Recent H3N2 Viruses. PLoS Biology, 2005, 3, e300.	5.6	340
193	Heading Off an Influenza Pandemic. Science, 2005, 309, 989-989.	12.6	19
194	Host isolation and patterns of genetic variability in three populations of Teladorsagia from sheep. International Journal for Parasitology, 2004, 34, 1197-1204.	3.1	40
195	Unifying the Epidemiological and Evolutionary Dynamics of Pathogens. Science, 2004, 303, 327-332.	12.6	1,159
196	A spatial stochastic model simulating a scabies epidemic and coyote population dynamics. Ecological Modelling, 2003, 166, 41-52.	2.5	17
197	Planning for smallpox outbreaks. Nature, 2003, 425, 681-685.	27.8	324
198	Population dynamics of rapid fixation in cytotoxic T lymphocyte escape mutants of influenza A. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 11143-11147.	7.1	103

#	Article	IF	CITATIONS
199	Mathematical Tools for Planning Effective Intervention Scenarios for Sexually Transmitted Diseases. Sexually Transmitted Diseases, 2003, 30, 388-394.	1.7	8
200	Dynamics and selection of many-strain pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 17209-17214.	7.1	255
201	Rivers dam waves of rabies: Figure 1. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 3365-3367.	7.1	8
202	A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks. Biostatistics, 2002, 3, 493-510.	1.5	76
203	DYNAMICS OF MEASLES EPIDEMICS: SCALING NOISE, DETERMINISM, AND PREDICTABILITY WITH THE TSIR MODEL. Ecological Monographs, 2002, 72, 185-202.	5.4	225
204	DYNAMICS OF MEASLES EPIDEMICS: ESTIMATING SCALING OF TRANSMISSION RATES USING A TIME SERIES SIR MODEL. Ecological Monographs, 2002, 72, 169-184.	5.4	382
205	Does multiple infection select for raised virulence?. Trends in Microbiology, 2002, 10, 401-405.	7.7	233
206	Noisy Clockwork: Time Series Analysis of Population Fluctuations in Animals. Science, 2001, 293, 638-643.	12.6	507
207	Population viability analyses on a cycling population: a cautionary tale. Biological Conservation, 2001, 97, 61-69.	4.1	36
208	Dynamics and epidemiological impact of microparasites. , 2001, , 33-52.		9
209	Seasonally forced disease dynamics explored as switching between attractors. Physica D: Nonlinear Phenomena, 2001, 148, 317-335.	2.8	217
210	Foot-and-mouth disease under control in the UK. Nature, 2001, 411, 258-259.	27.8	125
211	Dynamics of the 2001 UK Foot and Mouth Epidemic: Stochastic Dispersal in a Heterogeneous Landscape. Science, 2001, 294, 813-817.	12.6	765
212	An unlikely partnership: parasites, concomitant immunity and host defence. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 2543-2549.	2.6	87
213	Individual-based Perspectives on RO. Journal of Theoretical Biology, 2000, 203, 51-61.	1.7	174
214	Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus. Animal Conservation, 2000, 3, 277-285.	2.9	105
215	Drug-resistant parasites and aggregated infection - early-season dynamics. Journal of Mathematical Biology, 2000, 41, 341-360.	1.9	16
216	Impact of immunisation on pertussis transmission in England and Wales. Lancet, The, 2000, 355, 285-286.	13.7	107

#	Article	IF	CITATIONS
217	A Simple Model for Complex Dynamical Transitions in Epidemics. Science, 2000, 287, 667-670.	12.6	584
218	Multipack dynamics and the Allee effect in the African wild dog, Lycaon pictus. Animal Conservation, 2000, 3, 277-285.	2.9	66
219	Mean-field-type equations for spread of epidemics: the â€~small world' model. Physica A: Statistical Mechanics and Its Applications, 1999, 274, 355-360.	2.6	63
220	Opposite Patterns of Synchrony in Sympatric Disease Metapopulations. Science, 1999, 286, 968-971.	12.6	282
221	Inverse density dependence and the Allee effect. Trends in Ecology and Evolution, 1999, 14, 405-410.	8.7	1,429
222	Stochastic dynamics and a power law for measles variability. Philosophical Transactions of the Royal Society B: Biological Sciences, 1999, 354, 769-776.	4.0	64
223	Anthelmintic resistance revisited: under-dosing, chemoprophylactic strategies, and mating probabilities. International Journal for Parasitology, 1999, 29, 77-91.	3.1	105
224	Seasonality, stochasticity and population cycles. Researches on Population Ecology, 1998, 40, 141-143.	0.9	8
225	Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 1283-1289.	2.6	451
226	Persistence, chaos and synchrony in ecology and epidemiology. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 7-10.	2.6	211
227	Empirical determinants of measles metapopulation dynamics in England and Wales. Proceedings of the Royal Society B: Biological Sciences, 1998, 265, 211-220.	2.6	59
228	A few dollars more. Trends in Ecology and Evolution, 1994, 9, 31-32.	8.7	5
229	Age Specific Patterns of Change in the Dynamics of Wuchereria bancrofti Infection in Papua New Guinea. American Journal of Tropical Medicine and Hygiene, 1991, 44, 518-527.	1.4	55
230	Long term risks of recurrent seal plagues. Marine Pollution Bulletin, 1990, 21, 284-287.	5.0	18