Roger G Pertwee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8725700/publications.pdf

Version: 2024-02-01

187 papers

24,709 citations

9786 73 h-index 149 g-index

214 all docs

214 docs citations

times ranked

214

14844 citing authors

#	Article	IF	CITATIONS
1	CB1 receptor binding sites for NAM and PAM: A first approach for studying, new n‑butyl‑diphenylcarboxamides as allosteric modulators. European Journal of Pharmaceutical Sciences, 2022, 169, 106088.	4.0	2
2	Synthesis and In Vitro Characterization of Selective Cannabinoid CB2 Receptor Agonists: Biological Evaluation against Neuroblastoma Cancer Cells. Molecules, 2022, 27, 3019.	3.8	3
3	Motor-like Tics are Mediated by CB2 Cannabinoid Receptor-dependent and Independent Mechanisms Associated with Age and Sex. Molecular Neurobiology, 2022, 59, 5070-5083.	4.0	1
4	Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. Journal of Medicinal Chemistry, 2022, 65, 9918-9938.	6.4	15
5	Variously substituted 2-oxopyridine derivatives: Extending the structure-activity relationships for allosteric modulation of the cannabinoid CB2 receptor. European Journal of Medicinal Chemistry, 2021, 211, 113116.	5.5	5
6	Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy. Journal of Medicinal Chemistry, 2021, 64, 8104-8126.	6.4	18
7	Therapeutic Potential of Cannabidiol, Cannabidiolic Acid, and Cannabidiolic Acid Methyl Ester as Treatments for Nausea and Vomiting. Cannabis and Cannabinoid Research, 2021, 6, 266-274.	2.9	15
8	Assessing the treatment of cannabidiolic acid methyl ester: a stable synthetic analogue of cannabidiolic acid on c-Fos and NeuN expression in the hypothalamus of rats. Journal of Cannabis Research, 2021, 3, 31.	3.2	2
9	Design, synthesis, and pharmacological profiling of cannabinoid 1 receptor allosteric modulators: Preclinical efficacy of C2-group GAT211 congeners for reducing intraocular pressure. Bioorganic and Medicinal Chemistry, 2021, 50, 116421.	3.0	4
10	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G proteinâ€coupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
11	Anticancer effects of n-3 EPA and DHA and their endocannabinoid derivatives on breast cancer cell growth and invasion. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 156, 102024.	2.2	27
12	Diseaseâ€associated polymorphisms within the conserved ECR1 enhancer differentially regulate the tissueâ€specific activity of the cannabinoidâ€1 receptor gene promoter; implications for cannabinoid pharmacogenetics. Human Mutation, 2020, 41, 291-298.	2.5	9
13	Sleep and neurochemical modulation by cannabidiolic acid methyl ester in rats. Brain Research Bulletin, 2020, 155, 166-173.	3.0	8
14	Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. Journal of Medicinal Chemistry, 2020, 63, 542-568.	6.4	40
15	PSNCBAM-1 analogs: Structural evolutions and allosteric properties at cannabinoid CB1 receptor. European Journal of Medicinal Chemistry, 2020, 203, 112606.	5.5	1
16	The 90th Birthday of Professor Raphael Mechoulam, a Top Cannabinoid Scientist and Pioneer. International Journal of Molecular Sciences, 2020, 21, 7653.	4.1	0
17	Synthetic bioactive olivetol-related amides: The influence of the phenolic group in cannabinoid receptor activity. Bioorganic and Medicinal Chemistry, 2020, 28, 115513.	3.0	3
18	Effects on the post-translational modification of H3K4Me3, H3K9ac, H3K9Me2, H3K27Me3, and H3K36Me2 levels in cerebral cortex, hypothalamus and pons of rats after a systemic administration of cannabidiol: A Preliminary Study. Central Nervous System Agents in Medicinal Chemistry, 2020, 20, 142-147.	1.1	7

#	Article	IF	CITATIONS
19	Identification of the First Synthetic Allosteric Modulator of the CB ₂ Receptors and Evidence of Its Efficacy for Neuropathic Pain Relief. Journal of Medicinal Chemistry, 2019, 62, 276-287.	6.4	47
20	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	5.4	519
21	Indomethacin Enhances Type 1 Cannabinoid Receptor Signaling. Frontiers in Molecular Neuroscience, 2019, 12, 257.	2.9	12
22	Δ 8 â€Tetrahydrocannabivarin has potent antiâ€nicotine effects in several rodent models of nicotine dependence. British Journal of Pharmacology, 2019, 176, 4773-4784.	5.4	11
23	Disruption of an enhancer associated with addictive behaviour within the cannabinoid receptor-1 gene suggests a possible role in alcohol intake, cannabinoid response and anxiety-related behaviour. Psychoneuroendocrinology, 2019, 109, 104407.	2.7	17
24	Pharmacology and potential therapeutic uses of some cannabinoids. Future Neurology, 2019, 14, FNL28.	0.5	0
25	Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury. Pain, 2019, 160, 2724-2742.	4.2	18
26	Cannabinoid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
27	The First Photochromic Affinity Switch for the Human Cannabinoid Receptor 2. Advanced Therapeutics, 2018, 1, 1700032.	3.2	20
28	Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses Pathological Pain Without Producing Tolerance or Dependence. Biological Psychiatry, 2018, 84, 722-733.	1.3	101
29	Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5â∈HT _{1A} receptorâ€mediated suppression of nausea and anxiety in rats. British Journal of Pharmacology, 2018, 175, 100-112.	5.4	53
30	Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor. ACS Chemical Neuroscience, 2017, 8, $1188-1203$.	3.5	78
31	Synthesis, radio-synthesis and in vitro evaluation of terminally fluorinated derivatives of HU-210 and HU-211 as novel candidate PET tracers. Organic and Biomolecular Chemistry, 2017, 15, 2086-2096.	2.8	6
32	The $\langle i \rangle$ In Vivo $\langle i \rangle$ Effects of the CB $\langle sub \rangle$ 1 $\langle sub \rangle$ -Positive Allosteric Modulator GAT229 on Intraocular Pressure in Ocular Normotensive and Hypertensive Mice. Journal of Ocular Pharmacology and Therapeutics, 2017, 33, 582-590.	1.4	21
33	Big conductance calciumâ€activated potassium channel openers control spasticity without sedation. British Journal of Pharmacology, 2017, 174, 2662-2681.	5.4	22
34	Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chemical Neuroscience, 2016, 7, 776-798.	3.5	30
35	Pure \hat{l} " 9 -tetrahydrocannabivarin and a Cannabis sativa extract with high content in \hat{l} " 9 -tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages. Pharmacological Research, 2016, 113, 199-208.	7.1	32
36	Exploring the Benzimidazole Ring as a Substitution for Indole in Cannabinoid Allosteric Modulators. Cannabis and Cannabinoid Research, 2016, 1, 196-201.	2.9	2

#	Article	IF	Citations
37	The Displacement Binding Assay Using Human Cannabinoid CB2 Receptor-Transfected Cells. Methods in Molecular Biology, 2016, 1412, 57-63.	0.9	1
38	The Cyclic AMP Assay Using Human Cannabinoid CB2 Receptor-Transfected Cells. Methods in Molecular Biology, 2016, 1412, 85-93.	0.9	4
39	Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence. Neuroscience and Biobehavioral Reviews, 2016, 64, 359-381.	6.1	117
40	Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s). Journal of Medicinal Chemistry, 2016, 59, 44-60.	6.4	49
41	CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8774-8779.	7.1	50
42	Modulation of food consumption and sleep–wake cycle in mice by the neutral CB1 antagonist ABD459. Behavioural Pharmacology, 2015, 26, 289-303.	1.7	21
43	Tricyclic Fused Pyrazoles with a â€~Click' 1,2,3-Triazole Substituent in Position 3 Are Nanomolar CB1 Receptor Ligands. Synthesis, 2015, 47, 817-826.	2.3	15
44	Endocannabinoids and Their Pharmacological Actions. Handbook of Experimental Pharmacology, 2015, 231, 1-37.	1.8	230
45	Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Experimental Neurology, 2015, 273, 36-44.	4.1	58
46	Are cannabidiol and î" ⁹ â€tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. British Journal of Pharmacology, 2015, 172, 737-753.	5.4	412
47	The phytocannabinoid, î" ⁹ â€tetrahydrocannabivarin, can act through 5â€ <scp>HT</scp> ₁ <scp>_A</scp> receptors to produce antipsychotic effects. British Journal of Pharmacology, 2015, 172, 1305-1318.	5.4	43
48	In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569. Behavioural Pharmacology, 2014, 25, 182-185.	1.7	55
49	Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. Proceedings of the Nutrition Society, 2014, 73, 96-105.	1.0	82
50	Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine, 2014, 21, 631-639.	5.3	88
51	Pyrazoles with a "click―4-[N-(4-fluorobutyl)-1,2,3-triazole] substituent in position 3 are nanomolar CB1 receptor ligands. Journal of Fluorine Chemistry, 2014, 167, 184-191.	1.7	5
52	Early phytocannabinoid chemistry to endocannabinoids and beyond. Nature Reviews Neuroscience, 2014, 15, 757-764.	10.2	278
53	Structure–affinity relationships and pharmacological characterization of new alkyl-resorcinol cannabinoid receptor ligands: Identification of a dual cannabinoid receptor/TRPA1 channel agonist. Bioorganic and Medicinal Chemistry, 2014, 22, 4770-4783.	3.0	13
54	Known Pharmacological Actions of Nine Nonpsychotropic Phytocannabinoids., 2014, , 137-156.		19

#	Article	IF	Citations
55	Known Pharmacological Actions of Delta-9-Tetrahydrocannabinol and of Four Other Chemical Constituents of Cannabis that Activate Cannabinoid Receptors., 2014,, 115-136.		34
56	Motor effects of the non-psychotropic phytocannabinoid cannabidiol that are mediated by 5-HT1A receptors. Neuropharmacology, 2013, 75, 155-163.	4.1	57
57	Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid <scp>CB2</scp> receptors. British Journal of Pharmacology, 2013, 169, 887-899.	5.4	21
58	Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Progress in Lipid Research, 2013, 52, 80-109.	11.6	76
59	CB ₁ Receptor Allosteric Modulators Display Both Agonist and Signaling Pathway Specificity. Molecular Pharmacology, 2013, 83, 322-338.	2.3	107
60	Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid?. British Journal of Clinical Pharmacology, 2013, 75, 323-333.	2.4	254
61	Cannabidiolic acid prevents vomiting in <i><scp>S</scp>uncus murinus</i> and nauseaâ€induced behaviour in rats by enhancing 5â€ <scp>HT_{1A}</scp> receptor activation. British Journal of Pharmacology, 2013, 168, 1456-1470.	5 . 4	128
62	Lipoxin A $\langle sub \rangle 4 \langle sub \rangle$ is an allosteric endocannabinoid that strengthens anandamide-induced CB $\langle sub \rangle 1 \langle sub \rangle$ receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20781-20782.	7.1	19
63	Modulation of l-α-Lysophosphatidylinositol/GPR55 Mitogen-activated Protein Kinase (MAPK) Signaling by Cannabinoids. Journal of Biological Chemistry, 2012, 287, 91-104.	3.4	128
64	Investigations on the 4-quinolone-3-carboxylic acid motif. 6. Synthesis and pharmacological evaluation of 7-substituted quinolone-3-carboxamide derivatives as high affinity ligands for cannabinoid receptors. European Journal of Medicinal Chemistry, 2012, 58, 30-43.	5 . 5	24
65	Sativex-like Combination of Phytocannabinoids is Neuroprotective in Malonate-Lesioned Rats, an Inflammatory Model of Huntington's Disease: Role of CB ₁ and CB ₂ Receptors. ACS Chemical Neuroscience, 2012, 3, 400-406.	3.5	81
66	Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3353-3363.	4.0	289
67	Δ ⁸ â€Tetrahydrocannabivarin prevents hepatic ischaemia/reperfusion injury by decreasing oxidative stress and inflammatory responses through cannabinoid CB ₂ receptors. British Journal of Pharmacology, 2012, 165, 2450-2461.	5.4	38
68	AM630 behaves as a protean ligand at the human cannabinoid CB ₂ receptor. British Journal of Pharmacology, 2012, 165, 2561-2574.	5.4	51
69	Investigations on the 4â€Quinoloneâ€3â€Carboxylic Acid Motif Partâ€5: Modulation of the Physicochemical Profile of a Set of Potent and Selective Cannabinoidâ€2 Receptor Ligands through a Bioisosteric Approach. ChemMedChem, 2012, 7, 920-934.	3.2	27
70	Structural and pharmacological analysis of O-2050, a putative neutral cannabinoid CB1 receptor antagonist. European Journal of Pharmacology, 2011, 651, 96-105.	3 . 5	27
71	Interaction between non-psychotropic cannabinoids in marihuana: effect of cannabigerol (CBG) on the anti-nausea or anti-emetic effects of cannabidiol (CBD) in rats and shrews. Psychopharmacology, 2011, 215, 505-512.	3.1	72
72	Neuroprotective effects of phytocannabinoidâ€based medicines in experimental models of Huntington's disease. Journal of Neuroscience Research, 2011, 89, 1509-1518.	2.9	84

#	Article	IF	CITATIONS
73	Phytocannabinoids beyond the <i>Cannabis</i> plant – do they exist?. British Journal of Pharmacology, 2010, 160, 523-529.	5.4	169
74	The plant cannabinoid î" ⁹ â€tetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. British Journal of Pharmacology, 2010, 160, 677-687.	5.4	112
75	Cannabinoid receptor-dependent and -independent anti-proliferative effects of omega-3 ethanolamides in androgen receptor-positive and -negative prostate cancer cell lines. Carcinogenesis, 2010, 31, 1584-1591.	2.8	130
76	Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists. Current Medicinal Chemistry, 2010, 17, 1360-1381.	2.4	283
77	Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 3. Synthesis, Structureâ^'Affinity Relationships, and Pharmacological Characterization of 6-Substituted 4-Quinolone-3-carboxamides as Highly Selective Cannabinoid-2 Receptor Ligands. Journal of Medicinal Chemistry, 2010, 53, 5915-5928.	6.4	43
78	In vitro and in vivo pharmacological characterization of two novel selective cannabinoid CB2 receptor inverse agonists. Pharmacological Research, 2010, 61, 349-354.	7.1	27
79	WIN55,212-2 induced deficits in spatial learning are mediated by cholinergic hypofunction. Behavioural Brain Research, 2010, 208, 584-592.	2.2	46
80	International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB ₁ and CB ₂ . Pharmacological Reviews, 2010, 62, 588-631.	16.0	1,425
81	Cannabidiol Targets Mitochondria to Regulate Intracellular Ca ²⁺ Levels. Journal of Neuroscience, 2009, 29, 2053-2063.	3.6	206
82	Emerging strategies for exploiting cannabinoid receptor agonists as medicines. British Journal of Pharmacology, 2009, 156, 397-411.	5.4	377
83	Synthetic and plantâ€derived cannabinoid receptor antagonists show hypophagic properties in fasted and nonâ€fasted mice. British Journal of Pharmacology, 2009, 156, 1154-1166.	5.4	120
84	Conformationally Constrained Fatty Acid Ethanolamides as Cannabinoid and Vanilloid Receptor Probes. Journal of Medicinal Chemistry, 2009, 52, 3001-3009.	6.4	17
85	Therapeutic Applications for Agents that Act at CB1 and CB2 Receptors., 2009,, 361-392.		9
86	Hippocampal endocannabinoids inhibit spatial learning and limit spatial memory in rats. Psychopharmacology, 2008, 198, 551-563.	3.1	50
87	The diverse CB ₁ and CB ₂ receptor pharmacology of three plant cannabinoids: Δ ⁹ â€ŧetrahydrocannabinol, cannabidiol and Δ ⁹ â€ŧetrahydrocannabivarin. British Journal of Pharmacology, 2008, 153, 199-215.	5.4	1,463
88	Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addiction Biology, 2008, 13, 147-159.	2.6	276
89	Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. Journal of Neuroimmunology, 2008, 193, 120-129.	2.3	91
90	CB1 and CB2 Receptor Pharmacology. , 2008, , 91-99.		3

#	Article	IF	Citations
91	Inhibition of Human Neutrophil Chemotaxis by Endogenous Cannabinoids and Phytocannabinoids: Evidence for a Site Distinct from CB1 and CB2. Molecular Pharmacology, 2008, 73, 441-450.	2.3	127
92	Neuroprotective Effects of the Nonpsychoactive Cannabinoid Cannabidiol in Hypoxic-Ischemic Newborn Piglets. Pediatric Research, 2008, 64, 653-658.	2.3	125
93	The Therapeutic Potential of Drugs that Target Cannabinoid Receptors or Modulate the Tissue Levels or Actions of Endocannabinoids. , 2008, , 637-686.		5
94	Anti-inflammatory property of the cannabinoid receptor-2-selective agonist JWH-133 in a rodent model of autoimmune uveoretinitis. Journal of Leukocyte Biology, 2007, 82, 532-541.	3.3	96
95	Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nature Medicine, 2007, 13, 492-497.	30.7	326
96	The psychoactive plant cannabinoid, î"9 -tetrahydrocannabinol, is antagonized by î"8 - and î"9 -tetrahydrocannabivarin in mice in vivo. British Journal of Pharmacology, 2007, 150, 586-594.	5.4	83
97	GPR55: a new member of the cannabinoid receptor clan?. British Journal of Pharmacology, 2007, 152, 984-986.	5.4	191
98	Interactions of cannabidiol with endocannabinoid signalling in hippocampal tissue. European Journal of Neuroscience, 2007, 25, 2093-2102.	2.6	28
99	Cannabinoids and Multiple Sclerosis. Molecular Neurobiology, 2007, 36, 45-59.	4.0	78
100	The pharmacology of cannabinoid receptors and their ligands: an overview. International Journal of Obesity, 2006, 30, S13-S18.	3.4	438
101	First "hybrid―ligands of vanilloid TRPV1 and cannabinoid CB2receptors and non-polyunsaturated fatty acid-derived CB2-selective ligands. FEBS Letters, 2006, 580, 568-574.	2.8	26
102	Scopolamine and MK801-induced working memory deficits in rats are not reversed by CBD-rich cannabis extracts. Behavioural Brain Research, 2006, 168, 307-311.	2.2	28
103	Differential effects of cannabis extracts and pure plant cannabinoids on hippocampal neurones and glia. Neuroscience Letters, 2006, 408, 236-241.	2.1	38
104	Cannabidiol-induced intracellular Ca2+ elevations in hippocampal cells. Neuropharmacology, 2006, 50, 621-631.	4.1	114
105	Effect of Sublingual Application of Cannabinoids on Intraocular Pressure: A Pilot Study. Journal of Glaucoma, 2006, 15, 349-353.	1.6	119
106	Cannabinoid pharmacology: the first 66 years. British Journal of Pharmacology, 2006, 147, S163-71.	5.4	578
107	Novel Compounds That Interact with Both Leukotriene B4 Receptors and Vanilloid TRPV1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 955-965.	2.5	27
108	Synthesis of long-chain amide analogs of the cannabinoid CB1 receptor antagonist N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716) with unique binding selectivities and pharmacological activities. Bioorganic and Medicinal Chemistry, 2005, 13, 5463-5474.	3.0	27

#	Article	IF	CITATIONS
109	Evidence that the plant cannabinoid î"9 -tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. British Journal of Pharmacology, 2005, 146, 917-926.	5.4	145
110	Allosteric Modulation of the Cannabinoid CB1 Receptor. Molecular Pharmacology, 2005, 68, 1484-1495.	2.3	409
111	Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sciences, 2005, 76, 1307-1324.	4.3	391
112	Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase. Biochemical and Biophysical Research Communications, 2005, 337, 104-109.	2.1	42
113	Evidence that (â^')-7-hydroxy-4′-dimethylheptyl-cannabidiol activates a non-CB1, non-CB2, non-TRPV1 target in the mouse vas deferens. Neuropharmacology, 2005, 48, 1139-1146.	4.1	25
114	The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS Journal, 2005, 7, E625-E654.	4.4	186
115	Cannabidiol as a potential medicine. , 2005, , 47-65.		11
116	Inhibition of monoacylglycerol lipase and fatty acid amide hydrolase by analogues of 2-arachidonoylglycerol. British Journal of Pharmacology, 2004, 143, 774-784.	5.4	79
117	$6\hat{E}^{\circ}$ -Azidohex- $2\hat{E}^{\circ}$ -yne-cannabidiol: a potential neutral, competitive cannabinoid CB1 receptor antagonist. European Journal of Pharmacology, 2004, 487, 213-221.	3.5	71
118	Pharmacological and therapeutic targets for ?9 tetrahydrocannabinol and cannabidiol. Euphytica, 2004, 140, 73-82.	1.2	53
119	Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats. Neuropharmacology, 2004, 47, 1170-1179.	4.1	98
120	Effects of Δ9-THC and WIN-55,212-2 on place preference in the water maze in rats. Psychopharmacology, 2003, 166, 40-50.	3.1	32
121	Pharmacophoric Requirements for the Cannabinoid Side Chain. Probing the Cannabinoid Receptor Subsite at C1â€~. Journal of Medicinal Chemistry, 2003, 46, 3221-3229.	6.4	50
122	Inverse agonism at cannabinoid receptors. International Congress Series, 2003, 1249, 75-86.	0.2	5
123	Cannabinoids., 2003,,.		0
124	Pharmacological Characterization of the Anandamide Cyclooxygenase Metabolite: Prostaglandin E2 Ethanolamide. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 900-907.	2.5	107
125	New developments in the pharmacology of cannabinoids. Pharmacochemistry Library, 2002, , 249-258.	0.1	0
126	Synthesis and Structurea $^{\circ}$ Activity Relationships of Amide and Hydrazide Analogues of the Cannabinoid CB ₁ Receptor Antagonist $<$ i> $>$ N $<$ (Piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1 <i>$>$H</i> $<$ -pyrazole-3-carboxamide (SR141716). Journal of Medicinal Chemistry, 2002, 45, 2708-2719.	6.4	94

#	Article	IF	CITATIONS
127	(â^')-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. European Journal of Pharmacology, 2002, 456, 99-106.	3.5	130
128	Cannabinoids and multiple sclerosis. , 2002, 95, 165-174.		174
129	Localisation of cannabinoid CB $<$ sub $>$ 1 $<$ /sub $>$ receptor immunoreactivity in the guinea pig and rat myenteric plexus. Journal of Comparative Neurology, 2002, 448, 410-422.	1.6	138
130	Endocannabinoids control spasticity in a multiple sclerosis model. FASEB Journal, 2001, 15, 300-302.	0.5	371
131	Cannabinoid receptors and pain. Progress in Neurobiology, 2001, 63, 569-611.	5.7	680
132	Actions of cannabinoid receptor ligands on rat cultured sensory neurones: implications for antinociception. Neuropharmacology, 2001, 40, 221-232.	4.1	167
133	Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. British Journal of Pharmacology, 2001, 132, 631-640.	5.4	214
134	A possible role of lipoxygenase in the activation of vanilloid receptors by anandamide in the guinea-pig bronchus. British Journal of Pharmacology, 2001, 134, 30-37.	5.4	85
135	Agonist-Induced Internalization and Trafficking of Cannabinoid CB ₁ Receptors in Hippocampal Neurons. Journal of Neuroscience, 2001, 21, 2425-2433.	3.6	154
136	Comparison of novel cannabinoid partial agonists and SR141716A in the guinea-pig small intestine. British Journal of Pharmacology, 2000, 129, 645-652.	5.4	45
137	O-1057, a potent water-soluble cannabinoid receptor agonist with antinociceptive properties. British Journal of Pharmacology, 2000, 129, 1577-1584.	5.4	49
138	Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature, 2000, 404, 84-87.	27.8	522
139	Inhibition of nitric oxide production in RAW264.7 macrophages by cannabinoids and palmitoylethanolamide. European Journal of Pharmacology, 2000, 401, 121-130.	3.5	104
140	Neuropharmacology and therapeutic potential of cannabinoids. Addiction Biology, 2000, 5, 37-46.	2.6	76
141	Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Letters, 2000, 483, 52-56.	2.8	320
142	Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opinion on Investigational Drugs, 2000, 9, 1553-1571.	4.1	187
143	Development of agonists, partial agonists and antagonists in the Î'8-Tetrahydrocannabinol series. Tetrahedron, 1999, 55, 13907-13926.	1.9	20
144	Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656 and AM630. British Journal of Pharmacology, 1999, 126, 665-672.	5.4	353

#	Article	IF	CITATIONS
145	Structural determinants of the partial agonist-inverse agonist properties of 6′-azidohex-2′-yne-î"8 -tetrahydrocannabinol at cannabinoid receptors. British Journal of Pharmacology, 1999, 128, 735-743.	5.4	54
146	Structureâ^'Activity Relationships of Pyrazole Derivatives as Cannabinoid Receptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 769-776.	6.4	428
147	Prescribing Cannabinoids for Multiple Sclerosis. CNS Drugs, 1999, 11, 327-334.	5.9	10
148	Evidence for the presence of CB1 cannabinoid receptors on peripheral neurones and for the existence of neuronal non-CB1 cannabinoid receptors. Life Sciences, 1999, 65, 597-605.	4.3	71
149	Design and synthesis of the CB1 selective cannabinoid antagonist AM281: A potential human SPECT ligand. AAPS PharmSci, 1999, 1, 39-45.	1.3	71
150	Cannabinoid Receptors and Their Ligands in Brain and Other Tissues. , 1999, , 177-185.		4
151	Pharmacology of Cannabinoid Receptor Ligands. Current Medicinal Chemistry, 1999, 6, 635-664.	2.4	431
152	Comparison of cannabinoid binding sites in guinea-pig forebrain and small intestine. British Journal of Pharmacology, 1998, 125, 1345-1351.	5.4	46
153	Correlation between cannabinoid mediated effects on paired pulse depression and induction of long term potentiation in the rat hippocampal slice. Neuropharmacology, 1998, 37, 1123-1130.	4.1	57
154	Interactions between synthetic vanilloids and the endogenous cannabinoid system. FEBS Letters, 1998, 436, 449-454.	2.8	143
155	The Bioactive Conformation of Aminoalkylindoles at the Cannabinoid CB1 and CB2 Receptors:Â Insights Gained from (E)- and (Z)-Naphthylidene Indenes. Journal of Medicinal Chemistry, 1998, 41, 5177-5187.	6.4	60
156	Evidence that cannabinoid-induced inhibition of electrically evoked contractions of the myenteric plexus - longitudinal muscle preparation of guinea-pig small intestine can be modulated by Ca2+ and camp. Canadian Journal of Physiology and Pharmacology, 1998, 76, 340-346.	1.4	30
157	Evidence that cannabinoid-induced inhibition of electrically evoked contractions of the myenteric plexus - longitudinal muscle preparation of guinea-pig small intestine can be modulated by Ca ²⁺ and camp. Canadian Journal of Physiology and Pharmacology, 1998, 76, 340-346.	1.4	11
158	The Perceived Effects of Smoked Cannabis on Patients with Multiple Sclerosis. European Neurology, 1997, 38, 44-48.	1.4	273
159	Importance of the C-1 Substituent in Classical Cannabinoids to CB2Receptor Selectivity: Synthesis and Characterization of a Series of O,2-Propano-Δ8-tetrahydrocannabinol Analogs. Journal of Medicinal Chemistry, 1997, 40, 3312-3318.	6.4	17
160	Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals. European Journal of Pharmacology, 1997, 339, 53-61.	3.5	151
161	Action of $\hat{\Gamma}$ -9-tetrahydrocannabinol on gabaa receptor-mediated responses in a grease-gap recording preparation of the rat hippocampal slice. Neuropharmacology, 1997, 36, 1387-1392.	4.1	20
162	Synthesis and Pharmacological Comparison of Dimethylheptyl and Pentyl Analogs of Anandamide. Journal of Medicinal Chemistry, 1997, 40, 3626-3634.	6.4	63

#	Article	IF	CITATIONS
163	Inhibition by cannabinoid receptor agonists of acetylcholine release from the guinea-pig myenteric plexus. British Journal of Pharmacology, 1997, 121, 1557-1566.	5.4	135
164	Evidence that methyl arachidonyl fluorophosphonate is an irreversible cannabinoid receptor antagonist. British Journal of Pharmacology, 1997, 121, 1716-1720.	5 . 4	48
165	Pharmacology of cannabinoid CB1 and CB2 receptors. , 1997, 74, 129-180.		1,245
166	Evidence for the presence of cannabinoid CB $<$ sub $>$ 1 $<$ /sub $>$ 1 receptors in mouse urinary bladder. British Journal of Pharmacology, 1996, 118, 2053-2058.	5.4	110
167	Further evidence for the presence of cannabinoid CB1 receptors in guinea-pig small intestine. British Journal of Pharmacology, 1996, 118, 2199-2205.	5.4	145
168	Further evidence for the presence of cannabinoid CB1 receptors in mouse vas deferens. European Journal of Pharmacology, 1996, 296, 169-172.	3.5	34
169	Agonist-antagonist characterization of 6′-cyanohex-2′-yne-Δ8-tetrahydrocannabinol in two isolated tissue preparations. European Journal of Pharmacology, 1996, 315, 195-201.	3.5	41
170	Editorial: Central & Peripheral Nervous Systems: Cannabinoid receptor ligands: clinical and neuropharmacological considerations relevant to future drug discovery and development. Expert Opinion on Investigational Drugs, 1996, 5, 1245-1253.	4.1	6
171	Prevention by the cannabinoid antagonist, SR141716A, of cannabinoidâ€mediated blockade of longâ€term potentiation in the rat hippocampal slice. British Journal of Pharmacology, 1995, 115, 869-870.	5. 4	83
172	Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical Pharmacology, 1995, 50, 83-90.	4.4	2,561
173	A preliminary investigation of the mechanisms underlying cannabinoid tolerance in the mouse vas deferens. European Journal of Pharmacology, 1995, 272, 67-72.	3.5	18
174	Effect of phenylmethylsulphonyl fluoride on the potency of anandamide as an inhibitor of electrically evoked contractions in two isolated tissue preparations. European Journal of Pharmacology, 1995, 272, 73-78.	3.5	68
175	Pharmacological characterization of three novel cannabinoid receptor agonists in the mouse isolated vas deferens. European Journal of Pharmacology, 1995, 284, 241-247.	3.5	60
176	Effect of î"9-tetrahydrocannabinol on circling in rats induced by intranigral muscimol administration. European Journal of Pharmacology, 1995, 282, 251-254.	3.5	14
177	AM630, a competitive cannabinoid receptor antagonist. Life Sciences, 1995, 56, 1949-1955.	4.3	130
178	(R)-Methanandamide: A Chiral Novel Anandamide Possessing Higher Potency and Metabolic Stability. Journal of Medicinal Chemistry, 1994, 37, 1889-1893.	6.4	324
179	Effects of two endogenous fatty acid ethanolamides on mouse vasa deferentia. European Journal of Pharmacology, 1994, 259, 115-120.	3.5	50
180	The action of synthetic cannabinoids on the induction of long-term potentiation in the rat hippocampal slice. European Journal of Pharmacology, 1994, 259, R7-R8.	3.5	65

#	Article	IF	CITATIONS
181	The evidence for the existence of cannabinoid receptors. General Pharmacology, 1993, 24, 811-824.	0.7	88
182	î"9-tetrahydrocannabinol and anandamide enhance the ability of muscimol to induce catalepsy in the globus pallidus of rats. European Journal of Pharmacology, 1993, 250, 205-208.	3.5	50
183	Brain levels and relative potency of the 1,2-dimethylheptyl analogue of Δ1-tetrahydrocannabinol in mice. Biochemical Pharmacology, 1974, 23, 3017-3027.	4.4	2
184	Relative pharmacological potency in mice of optical isomers of Δ1-tetrahydrocannabinol. Biochemical Pharmacology, 1974, 23, 439-446.	4.4	33
185	The function of the endocannabinoid system. , 0, , 23-34.		1
186	. ADVANCES IN CANNABINOID RECEPTOR PHARMACOLOGY ., 0, , .		1
187	Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2. ELife, 0, 11 , .	6.0	6