
Roger G Pertwee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8725700/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochemical Pharmacology, 1995, 50, 83-90.	2.0	2,561
2	The diverse CB ₁ and CB ₂ receptor pharmacology of three plant cannabinoids: Δ ⁹ â€ŧetrahydrocannabinol, cannabidiol and Δ ⁹ â€ŧetrahydrocannabivarin. British Journal of Pharmacology, 2008, 153, 199-215.	2.7	1,463
3	International Union of Basic and Clinical Pharmacology. LXXIX. Cannabinoid Receptors and Their Ligands: Beyond CB ₁ and CB ₂ . Pharmacological Reviews, 2010, 62, 588-631.	7.1	1,425
4	Pharmacology of cannabinoid CB1 and CB2 receptors. , 1997, 74, 129-180.		1,245
5	Cannabinoid receptors and pain. Progress in Neurobiology, 2001, 63, 569-611.	2.8	680
6	Cannabinoid pharmacology: the first 66 years. British Journal of Pharmacology, 2006, 147, S163-S171.	2.7	578
7	Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature, 2000, 404, 84-87.	13.7	522
8	THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G proteinâ€coupled receptors. British Journal of Pharmacology, 2019, 176, S21-S141.	2.7	519
9	The pharmacology of cannabinoid receptors and their ligands: an overview. International Journal of Obesity, 2006, 30, S13-S18.	1.6	438
10	Pharmacology of Cannabinoid Receptor Ligands. Current Medicinal Chemistry, 1999, 6, 635-664.	1.2	431
11	Structureâ^'Activity Relationships of Pyrazole Derivatives as Cannabinoid Receptor Antagonists. Journal of Medicinal Chemistry, 1999, 42, 769-776.	2.9	428
12	Are cannabidiol and Δ ⁹ â€ŧetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. British Journal of Pharmacology, 2015, 172, 737-753.	2.7	412
13	Allosteric Modulation of the Cannabinoid CB1 Receptor. Molecular Pharmacology, 2005, 68, 1484-1495.	1.0	409
14	Inverse agonism and neutral antagonism at cannabinoid CB1 receptors. Life Sciences, 2005, 76, 1307-1324.	2.0	391
15	Emerging strategies for exploiting cannabinoid receptor agonists as medicines. British Journal of Pharmacology, 2009, 156, 397-411.	2.7	377
16	Endocannabinoids control spasticity in a multiple sclerosis model. FASEB Journal, 2001, 15, 300-302.	0.2	371
17	Agonist-inverse agonist characterization at CB1 and CB2 cannabinoid receptors of L759633, L759656 and AM630. British Journal of Pharmacology, 1999, 126, 665-672.	2.7	353
18	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	2.7	337

#	Article	IF	CITATIONS
19	Direct suppression of CNS autoimmune inflammation via the cannabinoid receptor CB1 on neurons and CB2 on autoreactive T cells. Nature Medicine, 2007, 13, 492-497.	15.2	326
20	(R)-Methanandamide: A Chiral Novel Anandamide Possessing Higher Potency and Metabolic Stability. Journal of Medicinal Chemistry, 1994, 37, 1889-1893.	2.9	324
21	Overlap between the ligand recognition properties of the anandamide transporter and the VR1 vanilloid receptor: inhibitors of anandamide uptake with negligible capsaicin-like activity. FEBS Letters, 2000, 483, 52-56.	1.3	320
22	Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3353-3363.	1.8	289
23	Receptors and Channels Targeted by Synthetic Cannabinoid Receptor Agonists and Antagonists. Current Medicinal Chemistry, 2010, 17, 1360-1381.	1.2	283
24	Early phytocannabinoid chemistry to endocannabinoids and beyond. Nature Reviews Neuroscience, 2014, 15, 757-764.	4.9	278
25	Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond. Addiction Biology, 2008, 13, 147-159.	1.4	276
26	The Perceived Effects of Smoked Cannabis on Patients with Multiple Sclerosis. European Neurology, 1997, 38, 44-48.	0.6	273
27	Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid?. British Journal of Clinical Pharmacology, 2013, 75, 323-333.	1.1	254
28	Endocannabinoids and Their Pharmacological Actions. Handbook of Experimental Pharmacology, 2015, 231, 1-37.	0.9	230
29	Structure-activity relationship for the endogenous cannabinoid, anandamide, and certain of its analogues at vanilloid receptors in transfected cells and vas deferens. British Journal of Pharmacology, 2001, 132, 631-640.	2.7	214
30	Cannabidiol Targets Mitochondria to Regulate Intracellular Ca ²⁺ Levels. Journal of Neuroscience, 2009, 29, 2053-2063.	1.7	206
31	GPR55: a new member of the cannabinoid receptor clan?. British Journal of Pharmacology, 2007, 152, 984-986.	2.7	191
32	Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Expert Opinion on Investigational Drugs, 2000, 9, 1553-1571.	1.9	187
33	The therapeutic potential of drugs that target cannabinoid receptors or modulate the tissue levels or actions of endocannabinoids. AAPS Journal, 2005, 7, E625-E654.	2.2	186
34	Cannabinoids and multiple sclerosis. , 2002, 95, 165-174.		174
35	Phytocannabinoids beyond the <i>Cannabis</i> plant – do they exist?. British Journal of Pharmacology, 2010, 160, 523-529.	2.7	169
36	Actions of cannabinoid receptor ligands on rat cultured sensory neurones: implications for antinociception. Neuropharmacology, 2001, 40, 221-232.	2.0	167

#	Article	IF	CITATIONS
37	Agonist-Induced Internalization and Trafficking of Cannabinoid CB ₁ Receptors in Hippocampal Neurons. Journal of Neuroscience, 2001, 21, 2425-2433.	1.7	154
38	Evidence for the presence of CB2-like cannabinoid receptors on peripheral nerve terminals. European Journal of Pharmacology, 1997, 339, 53-61.	1.7	151
39	Further evidence for the presence of cannabinoid CB1 receptors in guinea-pig small intestine. British Journal of Pharmacology, 1996, 118, 2199-2205.	2.7	145
40	Evidence that the plant cannabinoid Δ9 -tetrahydrocannabivarin is a cannabinoid CB1 and CB2 receptor antagonist. British Journal of Pharmacology, 2005, 146, 917-926.	2.7	145
41	Interactions between synthetic vanilloids and the endogenous cannabinoid system. FEBS Letters, 1998, 436, 449-454.	1.3	143
42	Localisation of cannabinoid CB1 receptor immunoreactivity in the guinea pig and rat myenteric plexus. Journal of Comparative Neurology, 2002, 448, 410-422.	0.9	138
43	Inhibition by cannabinoid receptor agonists of acetylcholine release from the guinea-pig myenteric plexus. British Journal of Pharmacology, 1997, 121, 1557-1566.	2.7	135
44	AM630, a competitive cannabinoid receptor antagonist. Life Sciences, 1995, 56, 1949-1955.	2.0	130
45	(â^')-Cannabidiol antagonizes cannabinoid receptor agonists and noradrenaline in the mouse vas deferens. European Journal of Pharmacology, 2002, 456, 99-106.	1.7	130
46	Cannabinoid receptor-dependent and -independent anti-proliferative effects of omega-3 ethanolamides in androgen receptor-positive and -negative prostate cancer cell lines. Carcinogenesis, 2010, 31, 1584-1591.	1.3	130
47	Modulation of l-α-Lysophosphatidylinositol/GPR55 Mitogen-activated Protein Kinase (MAPK) Signaling by Cannabinoids. Journal of Biological Chemistry, 2012, 287, 91-104.	1.6	128
48	Cannabidiolic acid prevents vomiting in <i><scp>S</scp>uncus murinus</i> and nauseaâ€induced behaviour in rats by enhancing 5â€ <scp>HT_{1A}</scp> receptor activation. British Journal of Pharmacology, 2013, 168, 1456-1470.	2.7	128
49	Inhibition of Human Neutrophil Chemotaxis by Endogenous Cannabinoids and Phytocannabinoids: Evidence for a Site Distinct from CB1and CB2. Molecular Pharmacology, 2008, 73, 441-450.	1.0	127
50	Neuroprotective Effects of the Nonpsychoactive Cannabinoid Cannabidiol in Hypoxic-Ischemic Newborn Piglets. Pediatric Research, 2008, 64, 653-658.	1.1	125
51	Synthetic and plantâ€derived cannabinoid receptor antagonists show hypophagic properties in fasted and nonâ€fasted mice. British Journal of Pharmacology, 2009, 156, 1154-1166.	2.7	120
52	Effect of Sublingual Application of Cannabinoids on Intraocular Pressure: A Pilot Study. Journal of Glaucoma, 2006, 15, 349-353.	0.8	119
53	Effect of cannabis on glutamate signalling in the brain: A systematic review of human and animal evidence. Neuroscience and Biobehavioral Reviews, 2016, 64, 359-381.	2.9	117
54	Cannabidiol-induced intracellular Ca2+ elevations in hippocampal cells. Neuropharmacology, 2006, 50, 621-631.	2.0	114

#	Article	IF	CITATIONS
55	The plant cannabinoid Δ ⁹ â€ŧetrahydrocannabivarin can decrease signs of inflammation and inflammatory pain in mice. British Journal of Pharmacology, 2010, 160, 677-687.	2.7	112
56	Evidence for the presence of cannabinoid CB ₁ receptors in mouse urinary bladder. British Journal of Pharmacology, 1996, 118, 2053-2058.	2.7	110
57	Pharmacological Characterization of the Anandamide Cyclooxygenase Metabolite: Prostaglandin E2 Ethanolamide. Journal of Pharmacology and Experimental Therapeutics, 2002, 301, 900-907.	1.3	107
58	CB ₁ Receptor Allosteric Modulators Display Both Agonist and Signaling Pathway Specificity. Molecular Pharmacology, 2013, 83, 322-338.	1.0	107
59	Inhibition of nitric oxide production in RAW264.7 macrophages by cannabinoids and palmitoylethanolamide. European Journal of Pharmacology, 2000, 401, 121-130.	1.7	104
60	Positive Allosteric Modulation of Cannabinoid Receptor Type 1 Suppresses Pathological Pain Without Producing Tolerance or Dependence. Biological Psychiatry, 2018, 84, 722-733.	0.7	101
61	Differential effects of THC- or CBD-rich cannabis extracts on working memory in rats. Neuropharmacology, 2004, 47, 1170-1179.	2.0	98
62	Anti-inflammatory property of the cannabinoid receptor-2-selective agonist JWH-133 in a rodent model of autoimmune uveoretinitis. Journal of Leukocyte Biology, 2007, 82, 532-541.	1.5	96
63	Synthesis and Structureâ [~] Activity Relationships of Amide and Hydrazide Analogues of the Cannabinoid CB1 Receptor Antagonist N-(Piperidinyl)- 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716). Journal of Medicinal Chemistry, 2002, 45, 2708-2719.	2.9	94
64	Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. Journal of Neuroimmunology, 2008, 193, 120-129.	1.1	91
65	The evidence for the existence of cannabinoid receptors. General Pharmacology, 1993, 24, 811-824.	0.7	88
66	Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine, 2014, 21, 631-639.	2.3	88
67	A possible role of lipoxygenase in the activation of vanilloid receptors by anandamide in the guinea-pig bronchus. British Journal of Pharmacology, 2001, 134, 30-37.	2.7	85
68	Neuroprotective effects of phytocannabinoidâ€based medicines in experimental models of Huntington's disease. Journal of Neuroscience Research, 2011, 89, 1509-1518.	1.3	84
69	Prevention by the cannabinoid antagonist, SR141716A, of cannabinoidâ€mediated blockade of longâ€ŧerm potentiation in the rat hippocampal slice. British Journal of Pharmacology, 1995, 115, 869-870.	2.7	83
70	The psychoactive plant cannabinoid, Δ9 -tetrahydrocannabinol, is antagonized by Δ8 - and Δ9 -tetrahydrocannabivarin in mice in vivo. British Journal of Pharmacology, 2007, 150, 586-594.	2.7	83
71	Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. Proceedings of the Nutrition Society, 2014, 73, 96-105.	0.4	82
72	Sativex-like Combination of Phytocannabinoids is Neuroprotective in Malonate-Lesioned Rats, an Inflammatory Model of Huntington's Disease: Role of CB ₁ and CB ₂ Receptors. ACS Chemical Neuroscience, 2012, 3, 400-406.	1.7	81

Roger G Pertwee

#	Article	IF	CITATIONS
73	Inhibition of monoacylglycerol lipase and fatty acid amide hydrolase by analogues of 2-arachidonoylglycerol. British Journal of Pharmacology, 2004, 143, 774-784.	2.7	79
74	Cannabinoids and Multiple Sclerosis. Molecular Neurobiology, 2007, 36, 45-59.	1.9	78
75	Enantiospecific Allosteric Modulation of Cannabinoid 1 Receptor. ACS Chemical Neuroscience, 2017, 8, 1188-1203.	1.7	78
76	Neuropharmacology and therapeutic potential of cannabinoids. Addiction Biology, 2000, 5, 37-46.	1.4	76
77	Cannabinoids and omega-3/6 endocannabinoids as cell death and anticancer modulators. Progress in Lipid Research, 2013, 52, 80-109.	5.3	76
78	Interaction between non-psychotropic cannabinoids in marihuana: effect of cannabigerol (CBG) on the anti-nausea or anti-emetic effects of cannabidiol (CBD) in rats and shrews. Psychopharmacology, 2011, 215, 505-512.	1.5	72
79	Evidence for the presence of CB1 cannabinoid receptors on peripheral neurones and for the existence of neuronal non-CB1 cannabinoid receptors. Life Sciences, 1999, 65, 597-605.	2.0	71
80	Design and synthesis of the CB1 selective cannabinoid antagonist AM281: A potential human SPECT ligand. AAPS PharmSci, 1999, 1, 39-45.	1.3	71
81	6ʺ-Azidohex-2ʺ-yne-cannabidiol: a potential neutral, competitive cannabinoid CB1 receptor antagonist. European Journal of Pharmacology, 2004, 487, 213-221.	1.7	71
82	Effect of phenylmethylsulphonyl fluoride on the potency of anandamide as an inhibitor of electrically evoked contractions in two isolated tissue preparations. European Journal of Pharmacology, 1995, 272, 73-78.	1.7	68
83	The action of synthetic cannabinoids on the induction of long-term potentiation in the rat hippocampal slice. European Journal of Pharmacology, 1994, 259, R7-R8.	1.7	65
84	Synthesis and Pharmacological Comparison of Dimethylheptyl and Pentyl Analogs of Anandamide. Journal of Medicinal Chemistry, 1997, 40, 3626-3634.	2.9	63
85	Pharmacological characterization of three novel cannabinoid receptor agonists in the mouse isolated vas deferens. European Journal of Pharmacology, 1995, 284, 241-247.	1.7	60
86	The Bioactive Conformation of Aminoalkylindoles at the Cannabinoid CB1 and CB2 Receptors:Â Insights Gained from (E)- and (Z)-Naphthylidene Indenes. Journal of Medicinal Chemistry, 1998, 41, 5177-5187.	2.9	60
87	Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease. Experimental Neurology, 2015, 273, 36-44.	2.0	58
88	Correlation between cannabinoid mediated effects on paired pulse depression and induction of long term potentiation in the rat hippocampal slice. Neuropharmacology, 1998, 37, 1123-1130.	2.0	57
89	Motor effects of the non-psychotropic phytocannabinoid cannabidiol that are mediated by 5-HT1A receptors. Neuropharmacology, 2013, 75, 155-163.	2.0	57
90	In-vivo pharmacological evaluation of the CB1-receptor allosteric modulator Org-27569. Behavioural Pharmacology, 2014, 25, 182-185.	0.8	55

#	Article	IF	CITATIONS
91	Structural determinants of the partial agonist-inverse agonist properties of 6′-azidohex-2′-yne-Δ8 -tetrahydrocannabinol at cannabinoid receptors. British Journal of Pharmacology, 1999, 128, 735-743.	2.7	54
92	Pharmacological and therapeutic targets for ?9 tetrahydrocannabinol and cannabidiol. Euphytica, 2004, 140, 73-82.	0.6	53
93	Cannabidiolic acid methyl ester, a stable synthetic analogue of cannabidiolic acid, can produce 5â€HT _{1A} receptorâ€mediated suppression of nausea and anxiety in rats. British Journal of Pharmacology, 2018, 175, 100-112.	2.7	53
94	AM630 behaves as a protean ligand at the human cannabinoid CB ₂ receptor. British Journal of Pharmacology, 2012, 165, 2561-2574.	2.7	51
95	Δ9-tetrahydrocannabinol and anandamide enhance the ability of muscimol to induce catalepsy in the globus pallidus of rats. European Journal of Pharmacology, 1993, 250, 205-208.	1.7	50
96	Effects of two endogenous fatty acid ethanolamides on mouse vasa deferentia. European Journal of Pharmacology, 1994, 259, 115-120.	1.7	50
97	Pharmacophoric Requirements for the Cannabinoid Side Chain. Probing the Cannabinoid Receptor Subsite at C1â€~. Journal of Medicinal Chemistry, 2003, 46, 3221-3229.	2.9	50
98	Hippocampal endocannabinoids inhibit spatial learning and limit spatial memory in rats. Psychopharmacology, 2008, 198, 551-563.	1.5	50
99	CB2 cannabinoid receptor agonist enantiomers HU-433 and HU-308: An inverse relationship between binding affinity and biological potency. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8774-8779.	3.3	50
100	O-1057, a potent water-soluble cannabinoid receptor agonist with antinociceptive properties. British Journal of Pharmacology, 2000, 129, 1577-1584.	2.7	49
101	Novel Electrophilic and Photoaffinity Covalent Probes for Mapping the Cannabinoid 1 Receptor Allosteric Site(s). Journal of Medicinal Chemistry, 2016, 59, 44-60.	2.9	49
102	Evidence that methyl arachidonyl fluorophosphonate is an irreversible cannabinoid receptor antagonist. British Journal of Pharmacology, 1997, 121, 1716-1720.	2.7	48
103	Identification of the First Synthetic Allosteric Modulator of the CB ₂ Receptors and Evidence of Its Efficacy for Neuropathic Pain Relief. Journal of Medicinal Chemistry, 2019, 62, 276-287.	2.9	47
104	Comparison of cannabinoid binding sites in guinea-pig forebrain and small intestine. British Journal of Pharmacology, 1998, 125, 1345-1351.	2.7	46
105	WIN55,212-2 induced deficits in spatial learning are mediated by cholinergic hypofunction. Behavioural Brain Research, 2010, 208, 584-592.	1.2	46
106	Comparison of novel cannabinoid partial agonists and SR141716A in the guinea-pig small intestine. British Journal of Pharmacology, 2000, 129, 645-652.	2.7	45
107	Investigations on the 4-Quinolone-3-carboxylic Acid Motif. 3. Synthesis, Structureâ^'Affinity Relationships, and Pharmacological Characterization of 6-Substituted 4-Quinolone-3-carboxamides as Highly Selective Cannabinoid-2 Receptor Ligands. Journal of Medicinal Chemistry, 2010, 53, 5915-5928.	2.9	43
108	The phytocannabinoid, Δ ⁹ â€ŧetrahydrocannabivarin, can act through 5â€ <scp>HT</scp> ₁ <scp>_A</scp> receptors to produce antipsychotic effects. British Journal of Pharmacology, 2015, 172, 1305-1318.	2.7	43

#	Article	IF	CITATIONS
109	Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase. Biochemical and Biophysical Research Communications, 2005, 337, 104-109.	1.0	42
110	Agonist-antagonist characterization of 6′-cyanohex-2′-yne-Δ8-tetrahydrocannabinol in two isolated tissue preparations. European Journal of Pharmacology, 1996, 315, 195-201.	1.7	41
111	Application of Fluorine- and Nitrogen-Walk Approaches: Defining the Structural and Functional Diversity of 2-Phenylindole Class of Cannabinoid 1 Receptor Positive Allosteric Modulators. Journal of Medicinal Chemistry, 2020, 63, 542-568.	2.9	40
112	Differential effects of cannabis extracts and pure plant cannabinoids on hippocampal neurones and glia. Neuroscience Letters, 2006, 408, 236-241.	1.0	38
113	Δ ⁸ â€Tetrahydrocannabivarin prevents hepatic ischaemia/reperfusion injury by decreasing oxidative stress and inflammatory responses through cannabinoid CB ₂ receptors. British Journal of Pharmacology, 2012, 165, 2450-2461.	2.7	38
114	Further evidence for the presence of cannabinoid CB1 receptors in mouse vas deferens. European Journal of Pharmacology, 1996, 296, 169-172.	1.7	34
115	Known Pharmacological Actions of Delta-9-Tetrahydrocannabinol and of Four Other Chemical Constituents of Cannabis that Activate Cannabinoid Receptors. , 2014, , 115-136.		34
116	Relative pharmacological potency in mice of optical isomers of Δ1-tetrahydrocannabinol. Biochemical Pharmacology, 1974, 23, 439-446.	2.0	33
117	Effects of Δ9-THC and WIN-55,212-2 on place preference in the water maze in rats. Psychopharmacology, 2003, 166, 40-50.	1.5	32
118	Pure Δ 9 -tetrahydrocannabivarin and a Cannabis sativa extract with high content in Δ 9 -tetrahydrocannabivarin inhibit nitrite production in murine peritoneal macrophages. Pharmacological Research, 2016, 113, 199-208.	3.1	32
119	Evidence that cannabinoid-induced inhibition of electrically evoked contractions of the myenteric plexus - longitudinal muscle preparation of guinea-pig small intestine can be modulated by Ca2+ and camp. Canadian Journal of Physiology and Pharmacology, 1998, 76, 340-346.	0.7	30
120	Mapping Cannabinoid 1 Receptor Allosteric Site(s): Critical Molecular Determinant and Signaling Profile of GAT100, a Novel, Potent, and Irreversibly Binding Probe. ACS Chemical Neuroscience, 2016, 7, 776-798.	1.7	30
121	Scopolamine and MK801-induced working memory deficits in rats are not reversed by CBD-rich cannabis extracts. Behavioural Brain Research, 2006, 168, 307-311.	1.2	28
122	Interactions of cannabidiol with endocannabinoid signalling in hippocampal tissue. European Journal of Neuroscience, 2007, 25, 2093-2102.	1.2	28
123	Synthesis of long-chain amide analogs of the cannabinoid CB1 receptor antagonist N-(piperidinyl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (SR141716) with unique binding selectivities and pharmacological activities. Bioorganic and Medicinal Chemistry, 2005, 13, 5463-5474.	1.4	27
124	Novel Compounds That Interact with Both Leukotriene B4 Receptors and Vanilloid TRPV1 Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 316, 955-965.	1.3	27
125	In vitro and in vivo pharmacological characterization of two novel selective cannabinoid CB2 receptor inverse agonists. Pharmacological Research, 2010, 61, 349-354.	3.1	27
126	Structural and pharmacological analysis of O-2050, a putative neutral cannabinoid CB1 receptor antagonist. European Journal of Pharmacology, 2011, 651, 96-105.	1.7	27

#	Article	IF	CITATIONS
127	Investigations on the 4â€Quinoloneâ€3â€Carboxylic Acid Motif Partâ€5: Modulation of the Physicochemical Profile of a Set of Potent and Selective Cannabinoidâ€2 Receptor Ligands through a Bioisosteric Approach. ChemMedChem, 2012, 7, 920-934.	1.6	27
128	Anticancer effects of n-3 EPA and DHA and their endocannabinoid derivatives on breast cancer cell growth and invasion. Prostaglandins Leukotrienes and Essential Fatty Acids, 2020, 156, 102024.	1.0	27
129	First "hybrid―ligands of vanilloid TRPV1 and cannabinoid CB2receptors and non-polyunsaturated fatty acid-derived CB2-selective ligands. FEBS Letters, 2006, 580, 568-574.	1.3	26
130	Evidence that (â^')-7-hydroxy-4′-dimethylheptyl-cannabidiol activates a non-CB1, non-CB2, non-TRPV1 target in the mouse vas deferens. Neuropharmacology, 2005, 48, 1139-1146.	2.0	25
131	Investigations on the 4-quinolone-3-carboxylic acid motif. 6. Synthesis and pharmacological evaluation of 7-substituted quinolone-3-carboxamide derivatives as high affinity ligands for cannabinoid receptors. European Journal of Medicinal Chemistry, 2012, 58, 30-43.	2.6	24
132	Big conductance calciumâ€activated potassium channel openers control spasticity without sedation. British Journal of Pharmacology, 2017, 174, 2662-2681.	2.7	22
133	Characterization of cannabinoid receptor ligands in tissues natively expressing cannabinoid <scp>CB2</scp> receptors. British Journal of Pharmacology, 2013, 169, 887-899.	2.7	21
134	Modulation of food consumption and sleep–wake cycle in mice by the neutral CB1 antagonist ABD459. Behavioural Pharmacology, 2015, 26, 289-303.	0.8	21
135	The <i>In Vivo</i> Effects of the CB ₁ -Positive Allosteric Modulator GAT229 on Intraocular Pressure in Ocular Normotensive and Hypertensive Mice. Journal of Ocular Pharmacology and Therapeutics, 2017, 33, 582-590.	0.6	21
136	Action of δ-9-tetrahydrocannabinol on gabaa receptor-mediated responses in a grease-gap recording preparation of the rat hippocampal slice. Neuropharmacology, 1997, 36, 1387-1392.	2.0	20
137	Development of agonists, partial agonists and antagonists in the î"8-Tetrahydrocannabinol series. Tetrahedron, 1999, 55, 13907-13926.	1.0	20
138	The First Photochromic Affinity Switch for the Human Cannabinoid Receptor 2. Advanced Therapeutics, 2018, 1, 1700032.	1.6	20
139	Lipoxin A ₄ is an allosteric endocannabinoid that strengthens anandamide-induced CB ₁ receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20781-20782.	3.3	19
140	Known Pharmacological Actions of Nine Nonpsychotropic Phytocannabinoids. , 2014, , 137-156.		19
141	A preliminary investigation of the mechanisms underlying cannabinoid tolerance in the mouse vas deferens. European Journal of Pharmacology, 1995, 272, 67-72.	1.7	18
142	Fatty acid suppression of glial activation prevents central neuropathic pain after spinal cord injury. Pain, 2019, 160, 2724-2742.	2.0	18
143	Discovery of a Biased Allosteric Modulator for Cannabinoid 1 Receptor: Preclinical Anti-Glaucoma Efficacy. Journal of Medicinal Chemistry, 2021, 64, 8104-8126.	2.9	18
144	Importance of the C-1 Substituent in Classical Cannabinoids to CB2Receptor Selectivity:Â Synthesis and Characterization of a Series ofO,2-Propano-Δ8-tetrahydrocannabinol Analogs. Journal of Medicinal Chemistry, 1997, 40, 3312-3318.	2.9	17

#	Article	IF	CITATIONS
145	Conformationally Constrained Fatty Acid Ethanolamides as Cannabinoid and Vanilloid Receptor Probes. Journal of Medicinal Chemistry, 2009, 52, 3001-3009.	2.9	17
146	Disruption of an enhancer associated with addictive behaviour within the cannabinoid receptor-1 gene suggests a possible role in alcohol intake, cannabinoid response and anxiety-related behaviour. Psychoneuroendocrinology, 2019, 109, 104407.	1.3	17
147	Tricyclic Fused Pyrazoles with a â€~Click' 1,2,3-Triazole Substituent in Position 3 Are Nanomolar CB1 Receptor Ligands. Synthesis, 2015, 47, 817-826.	1.2	15
148	Therapeutic Potential of Cannabidiol, Cannabidiolic Acid, and Cannabidiolic Acid Methyl Ester as Treatments for Nausea and Vomiting. Cannabis and Cannabinoid Research, 2021, 6, 266-274.	1.5	15
149	Design, Synthesis, and Biological Activity of New CB2 Receptor Ligands: from Orthosteric and Allosteric Modulators to Dualsteric/Bitopic Ligands. Journal of Medicinal Chemistry, 2022, 65, 9918-9938.	2.9	15
150	Effect of Δ9-tetrahydrocannabinol on circling in rats induced by intranigral muscimol administration. European Journal of Pharmacology, 1995, 282, 251-254.	1.7	14
151	Structure–affinity relationships and pharmacological characterization of new alkyl-resorcinol cannabinoid receptor ligands: Identification of a dual cannabinoid receptor/TRPA1 channel agonist. Bioorganic and Medicinal Chemistry, 2014, 22, 4770-4783.	1.4	13
152	Indomethacin Enhances Type 1 Cannabinoid Receptor Signaling. Frontiers in Molecular Neuroscience, 2019, 12, 257.	1.4	12
153	Δ 8 â€Tetrahydrocannabivarin has potent antiâ€nicotine effects in several rodent models of nicotine dependence. British Journal of Pharmacology, 2019, 176, 4773-4784.	2.7	11
154	Cannabidiol as a potential medicine. , 2005, , 47-65.		11
155	Evidence that cannabinoid-induced inhibition of electrically evoked contractions of the myenteric plexus - longitudinal muscle preparation of guinea-pig small intestine can be modulated by Ca ²⁺ and camp. Canadian Journal of Physiology and Pharmacology, 1998, 76, 340-346.	0.7	11
156	Prescribing Cannabinoids for Multiple Sclerosis. CNS Drugs, 1999, 11, 327-334.	2.7	10
157	Therapeutic Applications for Agents that Act at CB1 and CB2 Receptors. , 2009, , 361-392.		9
158	Diseaseâ€associated polymorphisms within the conserved ECR1 enhancer differentially regulate the tissueâ€specific activity of the cannabinoidâ€1 receptor gene promoter; implications for cannabinoid pharmacogenetics. Human Mutation, 2020, 41, 291-298.	1.1	9
159	Sleep and neurochemical modulation by cannabidiolic acid methyl ester in rats. Brain Research Bulletin, 2020, 155, 166-173.	1.4	8
160	Cannabinoid receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	8
161	Effects on the post-translational modification of H3K4Me3, H3K9ac, H3K9Me2, H3K27Me3, and H3K36Me2 levels in cerebral cortex, hypothalamus and pons of rats after a systemic administration of cannabidiol: A Preliminary Study. Central Nervous System Agents in Medicinal Chemistry, 2020, 20, 142-147.	0.5	7
162	Editorial: Central & Peripheral Nervous Systems: Cannabinoid receptor ligands: clinical and neuropharmacological considerations relevant to future drug discovery and development. Expert Opinion on Investigational Drugs, 1996, 5, 1245-1253.	1.9	6

#	Article	IF	CITATIONS
163	Synthesis, radio-synthesis and in vitro evaluation of terminally fluorinated derivatives of HU-210 and HU-211 as novel candidate PET tracers. Organic and Biomolecular Chemistry, 2017, 15, 2086-2096.	1.5	6
164	Osteogenic growth peptide is a potent anti-inflammatory and bone preserving hormone via cannabinoid receptor type 2. ELife, 0, 11, .	2.8	6
165	Inverse agonism at cannabinoid receptors. International Congress Series, 2003, 1249, 75-86.	0.2	5
166	Pyrazoles with a "click―4-[N-(4-fluorobutyl)-1,2,3-triazole] substituent in position 3 are nanomolar CB1 receptor ligands. Journal of Fluorine Chemistry, 2014, 167, 184-191.	0.9	5
167	Variously substituted 2-oxopyridine derivatives: Extending the structure-activity relationships for allosteric modulation of the cannabinoid CB2 receptor. European Journal of Medicinal Chemistry, 2021, 211, 113116.	2.6	5
168	The Therapeutic Potential of Drugs that Target Cannabinoid Receptors or Modulate the Tissue Levels or Actions of Endocannabinoids. , 2008, , 637-686.		5
169	The Cyclic AMP Assay Using Human Cannabinoid CB2 Receptor-Transfected Cells. Methods in Molecular Biology, 2016, 1412, 85-93.	0.4	4
170	Design, synthesis, and pharmacological profiling of cannabinoid 1 receptor allosteric modulators: Preclinical efficacy of C2-group GAT211 congeners for reducing intraocular pressure. Bioorganic and Medicinal Chemistry, 2021, 50, 116421.	1.4	4
171	Cannabinoid Receptors and Their Ligands in Brain and Other Tissues. , 1999, , 177-185.		4
172	CB1 and CB2 Receptor Pharmacology. , 2008, , 91-99.		3
173	Synthetic bioactive olivetol-related amides: The influence of the phenolic group in cannabinoid receptor activity. Bioorganic and Medicinal Chemistry, 2020, 28, 115513.	1.4	3
174	Synthesis and In Vitro Characterization of Selective Cannabinoid CB2 Receptor Agonists: Biological Evaluation against Neuroblastoma Cancer Cells. Molecules, 2022, 27, 3019.	1.7	3
175	Brain levels and relative potency of the 1,2-dimethylheptyl analogue of Δ1-tetrahydrocannabinol in mice. Biochemical Pharmacology, 1974, 23, 3017-3027.	2.0	2
176	Exploring the Benzimidazole Ring as a Substitution for Indole in Cannabinoid Allosteric Modulators. Cannabis and Cannabinoid Research, 2016, 1, 196-201.	1.5	2
177	Assessing the treatment of cannabidiolic acid methyl ester: a stable synthetic analogue of cannabidiolic acid on c-Fos and NeuN expression in the hypothalamus of rats. Journal of Cannabis Research, 2021, 3, 31.	1.5	2
178	CB1 receptor binding sites for NAM and PAM: A first approach for studying, new n‑butyl‑diphenylcarboxamides as allosteric modulators. European Journal of Pharmaceutical Sciences, 2022, 169, 106088.	1.9	2
179	The function of the endocannabinoid system. , 0, , 23-34.		1
180	The Displacement Binding Assay Using Human Cannabinoid CB2 Receptor-Transfected Cells. Methods in Molecular Biology, 2016, 1412, 57-63.	0.4	1

#	Article	IF	CITATIONS
181	PSNCBAM-1 analogs: Structural evolutions and allosteric properties at cannabinoid CB1 receptor. European Journal of Medicinal Chemistry, 2020, 203, 112606.	2.6	1
182	. ADVANCES IN CANNABINOID RECEPTOR PHARMACOLOGY .,0,,.		1
183	Motor-like Tics are Mediated by CB2 Cannabinoid Receptor-dependent and Independent Mechanisms Associated with Age and Sex. Molecular Neurobiology, 2022, 59, 5070-5083.	1.9	1
184	New developments in the pharmacology of cannabinoids. Pharmacochemistry Library, 2002, , 249-258.	0.1	0
185	Pharmacology and potential therapeutic uses of some cannabinoids. Future Neurology, 2019, 14, FNL28.	0.9	0
186	The 90th Birthday of Professor Raphael Mechoulam, a Top Cannabinoid Scientist and Pioneer. International Journal of Molecular Sciences, 2020, 21, 7653.	1.8	0
187	Cannabinoids. , 2003, , .		0