
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8724390/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-21 Is an Antiapoptotic Factor in Human Glioblastoma Cells. Cancer Research, 2005, 65, 6029-6033.	0.4	2,315
2	MicroRNA-145 Regulates OCT4, SOX2, and KLF4 and Represses Pluripotency in Human Embryonic Stem Cells. Cell, 2009, 137, 647-658.	13.5	1,061
3	A microRNA array reveals extensive regulation of microRNAs during brain development. Rna, 2003, 9, 1274-1281.	1.6	927
4	The neuronal microRNA system. Nature Reviews Neuroscience, 2006, 7, 911-920.	4.9	766
5	MicroRNA-21 Targets a Network of Key Tumor-Suppressive Pathways in Glioblastoma Cells. Cancer Research, 2008, 68, 8164-8172.	0.4	664
6	Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature, 1990, 343, 461-463.	13.7	617
7	Specific MicroRNAs Modulate Embryonic Stem Cell-Derived Neurogenesis. Stem Cells, 2006, 24, 857-864.	1.4	611
8	Developmentally regulated expression of specific tau sequences. Neuron, 1989, 2, 1389-1397.	3.8	581
9	Structure and novel exons of the human .tau. gene. Biochemistry, 1992, 31, 10626-10633.	1.2	579
10	Identification of many microRNAs that copurify with polyribosomes in mammalian neurons. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 360-365.	3.3	528
11	The E280A presenilin 1 Alzheimer mutation produces increased Aβ42 deposition and severe cerebellar pathology. Nature Medicine, 1996, 2, 1146-1150.	15.2	489
12	Neuronal RNA Granules. Neuron, 2001, 32, 683-696.	3.8	484
13	Synaptic dysregulation in a human iPS cell model of mental disorders. Nature, 2014, 515, 414-418.	13.7	471
14	The microtubule binding domain of tau protein. Neuron, 1989, 2, 1615-1624.	3.8	454
15	Sorting of β-Actin mRNA and Protein to Neurites and Growth Cones in Culture. Journal of Neuroscience, 1998, 18, 251-265.	1.7	435
16	Identification of cDNA clones for the human microtubule-associated protein tau and chromosomal localization of the genes for tau and microtubule-associated protein 2. Molecular Brain Research, 1986, 1, 271-280.	2.5	423
17	Translocation of RNA Granules in Living Neurons. Journal of Neuroscience, 1996, 16, 7812-7820.	1.7	418
18	A detergent-insoluble membrance compartment contains Aβ in vivo. Nature Medicine, 1998, 4, 730-734.	15.2	410

#	Article	IF	CITATIONS
19	MicroRNA profiling of the murine hematopoietic system. Genome Biology, 2005, 6, R71.	13.9	388
20	Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer's Disease. Cell, 2020, 183, 1699-1713.e13.	13.5	354
21	Axonal disruption and aberrant localization of tau protein characterize the neuropil pathology of Alzheimer's disease. Annals of Neurology, 1987, 22, 639-643.	2.8	345
22	Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report. Nature Medicine, 2019, 25, 1680-1683.	15.2	328
23	LRP1 is a master regulator of tau uptake and spread. Nature, 2020, 580, 381-385.	13.7	326
24	MicroRNAs Potentiate Neural Development. Neuron, 2009, 64, 303-309.	3.8	319
25	Alzheimer's Prevention Initiative: A Plan to Accelerate the Evaluation of Presymptomatic Treatments. Journal of Alzheimer's Disease, 2011, 26, 321-329.	1.2	309
26	The Outer Subventricular Zone and Primate-Specific Cortical Complexification. Neuron, 2015, 85, 683-694.	3.8	266
27	Presenilin 1 interaction in the brain with a novel member of the Armadillo family. NeuroReport, 1997, 8, 2085-2090.	0.6	258
28	CaMKIIα 3′ Untranslated Region-Directed mRNA Translocation in Living Neurons: Visualization by GFP Linkage. Journal of Neuroscience, 2000, 20, 6385-6393.	1.7	250
29	Suppression of MAP2 in cultured cerebeller macroneurons inhibits minor neurite formation. Neuron, 1992, 9, 607-618.	3.8	249
30	Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics, 2008, 9, 153-161.	0.7	245
31	RNA stores tau reversibly in complex coacervates. PLoS Biology, 2017, 15, e2002183.	2.6	235
32	A Coordinated Local Translational Control Point at the Synapse Involving Relief from Silencing and MOV10 Degradation. Neuron, 2009, 64, 871-884.	3.8	216
33	A Post-Synaptic Scaffold at the Origin of the Animal Kingdom. PLoS ONE, 2007, 2, e506.	1.1	215
34	Florbetapir PET analysis of amyloid-β deposition in the presenilin 1 E280A autosomal dominant Alzheimer's disease kindred: a cross-sectional study. Lancet Neurology, The, 2012, 11, 1057-1065.	4.9	209
35	Synaptic tagging — who's it?. Nature Reviews Neuroscience, 2002, 3, 813-820.	4.9	204
36	MicroRNA Regulation of Neural Stem Cells and Neurogenesis: Figure 1 Journal of Neuroscience, 2010, 30, 14931-14936.	1.7	197

#	Article	IF	CITATIONS
37	δ-catenin, an Adhesive Junction–associated Protein Which Promotes Cell Scattering. Journal of Cell Biology, 1999, 144, 519-532.	2.3	185
38	A Quantitative Framework to Evaluate Modeling of Cortical Development by Neural Stem Cells. Neuron, 2014, 83, 69-86.	3.8	184
39	Hemizygosity of δ-Catenin (CTNND2) Is Associated with Severe Mental Retardation in Cri-du-Chat Syndrome. Genomics, 2000, 63, 157-164.	1.3	168
40	Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. Rna, 2007, 13, 1224-1234.	1.6	166
41	Microtubular reorganization and dendritic growth response in alzheimer's disease. Annals of Neurology, 1989, 26, 652-659.	2.8	163
42	Tau Internalization is Regulated by 6-O Sulfation on Heparan Sulfate Proteoglycans (HSPGs). Scientific Reports, 2018, 8, 6382.	1.6	162
43	The Cochaperone BAG2 Sweeps Paired Helical Filament- Insoluble Tau from the Microtubule. Journal of Neuroscience, 2009, 29, 2151-2161.	1.7	156
44	The Elegance of the MicroRNAs: A Neuronal Perspective. Neuron, 2005, 47, 779-782.	3.8	150
45	Nrf2, a Regulator of the Proteasome, Controls Self-Renewal and Pluripotency in Human Embryonic Stem Cells. Stem Cells, 2014, 32, 2616-2625.	1.4	150
46	The Erbin PDZ Domain Binds with High Affinity and Specificity to the Carboxyl Termini of δ-Catenin and ARVCF. Journal of Biological Chemistry, 2002, 277, 12906-12914.	1.6	139
47	Deletion of the Neuron-Specific Protein Delta-Catenin Leads to Severe Cognitive and Synaptic Dysfunction. Current Biology, 2004, 14, 1657-1663.	1.8	137
48	SMN regulates axonal local translation via miR-183/mTOR pathway. Human Molecular Genetics, 2014, 23, 6318-6331.	1.4	125
49	Regulation of cell-type-specific transcriptomes by microRNA networks during human brain development. Nature Neuroscience, 2018, 21, 1784-1792.	7.1	121
50	Tau antisera recognize neurofibrillary tangles in a range of neurodegenerative disorders. Annals of Neurology, 1987, 22, 514-520.	2.8	117
51	Noncoding RNAs in Long-Term Memory Formation. Neuroscientist, 2008, 14, 434-445.	2.6	116
52	Phosphorylated tau and the neurodegenerative foldopathies. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2005, 1739, 298-310.	1.8	115
53	A Primate IncRNA Mediates Notch Signaling during Neuronal Development by Sequestering miRNA. Neuron, 2016, 90, 1174-1188.	3.8	115
54	Narrow equilibrium window for complex coacervation of tau and RNA under cellular conditions. ELife, 2019, 8, .	2.8	111

#	Article	IF	CITATIONS
55	MicroRNAs and Cellular Phenotypy. Cell, 2010, 143, 21-26.	13.5	110
56	The Molecular and Cellular Biology of Tau. Brain Pathology, 1993, 3, 39-43.	2.1	108
57	Dual regulation of neuronal morphogenesis by a δ-catenin–cortactin complex and Rho. Journal of Cell Biology, 2003, 162, 99-111.	2.3	108
58	Competition for Microtubule-binding with Dual Expression of Tau Missense and Splice Isoforms. Molecular Biology of the Cell, 2001, 12, 171-184.	0.9	107
59	Human neural tube morphogenesis in vitro by geometric constraints. Nature, 2021, 599, 268-272.	13.7	107
60	Hippocampal Neurons Predisposed to Neurofibrillary Tangle Formation Are Enriched in Type II Calcium/Calmodulin-Dependent Protein Kinase. Journal of Neuropathology and Experimental Neurology, 1990, 49, 49-63.	0.9	103
61	FLEXITau: Quantifying Post-translational Modifications of Tau Protein <i>in Vitro</i> and in Human Disease. Analytical Chemistry, 2016, 88, 3704-3714.	3.2	103
62	A molecular signature for anastasis, recovery from the brink of apoptotic cell death. Journal of Cell Biology, 2017, 216, 3355-3368.	2.3	103
63	Genomic DISC1 Disruption in hiPSCs Alters Wnt Signaling and Neural Cell Fate. Cell Reports, 2015, 12, 1414-1429.	2.9	101
64	MOV10 and FMRP Regulate AGO2 Association with MicroRNA Recognition Elements. Cell Reports, 2014, 9, 1729-1741.	2.9	99
65	Neuropsychological Profile of a Large Kindred with Familial Alzheimer's Disease Caused by the E280A Single Presenilin-1 Mutation. Archives of Clinical Neuropsychology, 2000, 15, 515-528.	0.3	98
66	Pathogenic Tau Impairs Axon Initial Segment Plasticity and Excitability Homeostasis. Neuron, 2019, 104, 458-470.e5.	3.8	98
67	The monoclonal antibody, Alz 50, recognizes tau proteins in Alzheimer's disease brain. Neuroscience Letters, 1988, 87, 240-246.	1.0	95
68	Immunocytochemical characterization of neurofibrillary tangles in amyotrophic lateral sclerosis and parkinsonism-dementia of guam. Annals of Neurology, 1989, 25, 146-151.	2.8	95
69	Human iPSC-Derived Neuronal Model of Tau-A152T Frontotemporal Dementia Reveals Tau-Mediated Mechanisms of Neuronal Vulnerability. Stem Cell Reports, 2016, 7, 325-340.	2.3	92
70	A Scalable, Easy-to-Deploy Protocol for Cas13-Based Detection of SARS-CoV-2 Genetic Material. Journal of Clinical Microbiology, 2021, 59, .	1.8	91
71	Robust Axonal Regeneration Occurs in the Injured CAST/Ei Mouse CNS. Neuron, 2015, 86, 1215-1227.	3.8	87
72	Primary Cilium-Autophagy-Nrf2 (PAN) Axis Activation Commits Human Embryonic Stem Cells to a Neuroectoderm Fate. Cell, 2016, 165, 410-420.	13.5	86

#	Article	IF	CITATIONS
73	Tau in situ hybridization in normal and alzheimer brain: Localization in the somatodendritic compartment. Annals of Neurology, 1989, 26, 352-361.	2.8	84
74	Cofactors are essential constituents of stable and seeding-active tau fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 13234-13239.	3.3	84
75	Deep annotation of mouse iso-miR and iso-moR variation. Nucleic Acids Research, 2012, 40, 5864-5875.	6.5	82
76	Microglial microRNAs mediate sex-specific responses to tau pathology. Nature Neuroscience, 2020, 23, 167-171.	7.1	79
77	E280A PS-1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. , 1997, 10, 186-195.		77
78	Novel Primate miRNAs Coevolved with Ancient Target Genes in Germinal Zone-Specific Expression Patterns. Neuron, 2014, 81, 1255-1262.	3.8	77
79	A farnesyltransferase inhibitor activates lysosomes and reduces tau pathology in mice with tauopathy. Science Translational Medicine, 2019, 11, .	5.8	75
80	Liquid-Liquid Phase Separation of Tau Driven by Hydrophobic Interaction Facilitates Fibrillization of Tau. Journal of Molecular Biology, 2021, 433, 166731.	2.0	75
81	?-catenin is a nervous system-specific adherens junction protein which undergoes dynamic relocalization during development. Journal of Comparative Neurology, 2000, 420, 261-276.	0.9	68
82	Dementia in Latin America: Paving the way toward a regional action plan. Alzheimer's and Dementia, 2021, 17, 295-313.	0.4	68
83	Haploinsufficiency of BAZ1B contributes to Williams syndrome through transcriptional dysregulation of neurodevelopmental pathways. Human Molecular Genetics, 2016, 25, 1294-1306.	1.4	67
84	δ-Catenin at the synaptic–adherens junction. Trends in Cell Biology, 2005, 15, 172-178.	3.6	63
85	A Comprehensive Resource for Induced Pluripotent Stem Cells from Patients with Primary Tauopathies. Stem Cell Reports, 2019, 13, 939-955.	2.3	62
86	Detection of a MicroRNA Signal in an In Vivo Expression Set of mRNAs. PLoS ONE, 2007, 2, e804.	1.1	61
87	The proline-rich domain promotes Tau liquid–liquid phase separation in cells. Journal of Cell Biology, 2020, 219, .	2.3	58
88	Mechanisms of Age-Related Cognitive Change and Targets for Intervention: Epigenetics. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 741-746.	1.7	56
89	Partial Sequence of MAP2 in the Region of a Shared Epitope with Alzheimer Neuronbrillary Tangles. Journal of Neurochemistry, 1988, 51, 587-598.	2.1	55
90	NMDA Mediated Contextual Conditioning Changes miRNA Expression. PLoS ONE, 2011, 6, e24682.	1.1	53

#	Article	IF	CITATIONS
91	MCPâ€1 and eotaxinâ€1 selectively and negatively associate with memory in MCI and Alzheimer's disease dementia phenotypes. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2016, 3, 91-97.	1.2	53
92	Presenilin Affects Arm/β-Catenin Localization and Function in Drosophila. Developmental Biology, 2000, 227, 450-464.	0.9	51
93	The Multi-Partner Consortium to Expand Dementia Research in Latin America (ReDLat): Driving Multicentric Research and Implementation Science. Frontiers in Neurology, 2021, 12, 631722.	1.1	51
94	MicroRNAs tell an evo–devo story. Nature Reviews Neuroscience, 2009, 10, 754-759.	4.9	49
95	Life at Low Copy Number: How Dendrites Manage with So Few mRNAs. Neuron, 2016, 92, 1168-1180.	3.8	46
96	A Ï,, Promoter Region Without Neuronal Specificity. Journal of Neurochemistry, 1996, 66, 2257-2263.	2.1	44
97	Parallel Discovery of Alzheimer's Therapeutics. Science Translational Medicine, 2014, 6, 241cm5.	5.8	43
98	Diaminothiazoles Modify Tau Phosphorylation and Improve the Tauopathy in Mouse Models*. Journal of Biological Chemistry, 2013, 288, 22042-22056.	1.6	41
99	Inhibition of Kinesin Synthesis In Vivo Inhibits the Rapid Transport of Representative Proteins for Three Transport Vesicle Classes into the Axon. Journal of Neurochemistry, 1995, 64, 2374-2376.	2.1	40
100	Microtubule-associated protein function: Lessons from expression inspodoptera frugiperda cells. Cytoskeleton, 1994, 28, 195-198.	4.4	39
101	Origin of the <i>PSEN1</i> E280A mutation causing earlyâ€onset Alzheimer's disease. Alzheimer's and Dementia, 2014, 10, S277-S283.e10.	0.4	39
102	Tau protein and the establishment of an axonal morphology. Journal of Cell Science, 1991, 1991, 69-74.	1.2	36
103	Liquid–liquid phase separation of Tau by self and complex coacervation. Protein Science, 2021, 30, 1393-1407.	3.1	34
104	Organization of actin and microtubules during process formation in tau-expressing sf9 cells. Cytoskeleton, 1994, 28, 256-264.	4.4	33
105	Tamoxifen Inhibits CDK5 Kinase Activity by Interacting with p35/p25 and Modulates the Pattern of Tau Phosphorylation. Chemistry and Biology, 2015, 22, 472-482.	6.2	33
106	Long- and short-term CDK5 knockdown prevents spatial memory dysfunction and tau pathology of triple transgenic Alzheimerââ,¬â,,¢s mice. Frontiers in Aging Neuroscience, 2014, 6, 243.	1.7	32
107	Along the Way to a Neurofibrillary Tangle: A Look at the Structure of Tau. Annals of Medicine, 1989, 21, 109-112.	1.5	31
108	Tau immunization: a cautionary tale?. Neurobiology of Aging, 2015, 36, 1316-1332.	1.5	28

#	Article	IF	CITATIONS
109	Evolution of New miRNAs and Cerebro-Cortical Development. Annual Review of Neuroscience, 2018, 41, 119-137.	5.0	27
110	Exploring the early origins of the synapse by comparative genomics. Biology Letters, 2009, 5, 108-111.	1.0	26
111	Enhanced Neuronal Regeneration in the CAST/Ei Mouse Strain Is Linked to Expression of Differentiation Markers after Injury. Cell Reports, 2017, 20, 1136-1147.	2.9	26
112	The Message and the Messenger: Delivering RNA in Neurons. Science Signaling, 2002, 2002, pe16-pe16.	1.6	25
113	iPhemap: an atlas of phenotype to genotype relationships of human iPSC models of neurological diseases. EMBO Molecular Medicine, 2017, 9, 1742-1762.	3.3	24
114	Genetic origin of a large family with a novel <i>PSEN1</i> mutation (Ile416Thr). Alzheimer's and Dementia, 2019, 15, 709-719.	0.4	23
115	COVID-19 in older people with cognitive impairment in Latin America. Lancet Neurology, The, 2020, 19, 719-721.	4.9	23
116	Stress routes clients to the proteasome via a BAG2 ubiquitin-independent degradation condensate. Nature Communications, 2022, 13, .	5.8	23
117	The Molecular and Cellular Pathology of Alzheimer Neurofibrillary Lesions. Journal of Gerontology, 1989, 44, B55-B58.	2.0	22
118	Dynamic assembly of the mRNA m6A methyltransferase complex is regulated by METTL3 phase separation. PLoS Biology, 2022, 20, e3001535.	2.6	22
119	Characterization of Postmortem Human Brain Proteins by Two-Dimensional Gel Electrophoresis. Journal of Neurochemistry, 1982, 39, 1529-1538.	2.1	21
120	Regulation of AMPA receptor trafficking by δ-catenin. Molecular and Cellular Neurosciences, 2008, 39, 499-507.	1.0	21
121	Developmental attenuation of N-methyl-D-aspartate receptor subunit expression by microRNAs. Neural Development, 2015, 10, 20.	1.1	21
122	β-Secretase 1's Targeting Reduces Hyperphosphorilated Tau, Implying Autophagy Actors in 3xTg-AD Mice. Frontiers in Cellular Neuroscience, 2015, 9, 498.	1.8	19
123	Exploratory data from complete genomes of familial alzheimer disease age-at-onset outliers. Human Mutation, 2012, 33, 1630-1634.	1.1	18
124	Homozygosity of the autosomal dominant Alzheimer disease presenilin 1 E280A mutation. Neurology, 2015, 84, 206-208.	1.5	18
125	The Role of Chromatin Density in Cell Population Heterogeneity during Stem Cell Differentiation. Scientific Reports, 2017, 7, 13307.	1.6	18
126	Detection of Prokaryotic Genes in the Amphimedon queenslandica Genome. PLoS ONE, 2016, 11, e0151092.	1.1	18

#	Article	IF	CITATIONS
127	Personalized Medicine for Effective Alzheimer Disease Treatment. JAMA Neurology, 2015, 72, 497.	4.5	17
128	A Fast and Accessible Method for the Isolation of RNA, DNA, and Protein To Facilitate the Detection of SARS-CoV-2. Journal of Clinical Microbiology, 2021, 59, .	1.8	17
129	Reconstructing ancestral genome content based on symmetrical best alignments and Dollo parsimony. Bioinformatics, 2008, 24, 606-612.	1.8	16
130	A microRNA-mRNA expression network during oral siphon regeneration in Ciona. Development (Cambridge), 2017, 144, 1787-1797.	1.2	16
131	MEA Viewer: A high-performance interactive application for visualizing electrophysiological data. PLoS ONE, 2018, 13, e0192477.	1.1	16
132	A neurodegenerative disease landscape of rare mutations in Colombia due to founder effects. Genome Medicine, 2022, 14, 27.	3.6	16
133	Control over single-cell distribution of G1 lengths by WNT governs pluripotency. PLoS Biology, 2019, 17, e3000453.	2.6	14
134	Discovery of Compounds That Will Prevent Tau Pathology. Journal of Molecular Neuroscience, 2002, 19, 261-266.	1.1	13
135	Staged miRNA re-regulation patterns during reprogramming. Genome Biology, 2013, 14, R149.	13.9	13
136	Action potential propagation recorded from single axonal arbors using multielectrode arrays. Journal of Neurophysiology, 2018, 120, 306-320.	0.9	13
137	Development of an Assay to Screen for Inhibitors of Tau Phosphorylation by Cdk5. Journal of Biomolecular Screening, 2004, 9, 122-131.	2.6	12
138	Comparison of Severe Acute Respiratory Syndrome Coronavirus 2 Screening Using Reverse Transcriptase–Quantitative Polymerase Chain Reaction or CRISPR-Based Assays in Asymptomatic College Students. JAMA Network Open, 2021, 4, e2037129.	2.8	12
139	iPSCs-derived nerve-like cells from familial Alzheimer's disease PSEN 1 E280A reveal increased amyloid-beta levels and loss of the Y chromosome. Neuroscience Letters, 2019, 703, 111-118.	1.0	11
140	E280A PSâ€1 mutation causes Alzheimer's disease but age of onset is not modified by ApoE alleles. Human Mutation, 1997, 10, 186-195.	1.1	11
141	Tau Condensates. Advances in Experimental Medicine and Biology, 2019, 1184, 327-339.	0.8	11
142	Fast motif discovery in short sequences. , 2016, , .		9
143	High-content image-based analysis and proteomic profiling identifies Tau phosphorylation inhibitors in a human iPSC-derived glutamatergic neuronal model of tauopathy. Scientific Reports, 2021, 11, 17029.	1.6	8
144	Presenilin Interactions and Alzheimer's Disease. Science, 1998, 279, 459h-459.	6.0	8

#	Article	IF	CITATIONS
145	Traveling the tau pathway: A personal account. Journal of Alzheimer's Disease, 2006, 9, 251-256.	1.2	6
146	Patterns of neuronal Rhes as a novel hallmark of tauopathies. Acta Neuropathologica, 2021, 141, 651-666.	3.9	6
147	A Model for Local Regulation of Translation Near Active Synapses. Science Signaling, 2005, 2005, tr25-tr25.	1.6	6
148	<i>miR-142-3p</i> regulates cortical oligodendrocyte gene co-expression networks associated with tauopathy. Human Molecular Genetics, 2021, 30, 103-118.	1.4	5
149	Extracellular detection of neuronal coupling. Scientific Reports, 2021, 11, 14733.	1.6	5
150	CREST, a Cas13â€Based, Rugged, Equitable, Scalable Testing (CREST) for SARSâ€CoVâ€2 Detection in Patient Samples. Current Protocols, 2022, 2, e385.	1.3	3
151	Tracking Down Mutations Cell by Cell. Neuron, 2016, 89, 1126-1127.	3.8	2
152	The Long Reach of Evolution and Development: Effects on the Alzheimer Brain. Annals of the New York Academy of Sciences, 2000, 924, 76-80.	1.8	1
153	The miRNA System: Bifurcation Points of Cancer and Neurodegeneration. Research and Perspectives in Alzheimer's Disease, 2011, , 133-142.	0.1	1
154	Better read than dread. Nature, 1992, 359, 446-446.	13.7	0
155	miRNAs in the brain and the application of RNAi to neurons. , 2005, , 84-100.		0
156	Frontispiece: Particle Display: A Quantitative Screening Method for Generating High-Affinity Aptamers. Angewandte Chemie - International Edition, 2014, 53, n/a-n/a.	7.2	0
157	In vitro validation of in silico identified inhibitory interactions. Journal of Neuroscience Methods, 2019, 321, 39-48.	1.3	0
158	Cell biology in support of neurological research: 2018 highlights. Lancet Neurology, The, 2019, 18, 19-20.	4.9	0
159	Profiling the microRNAs. Research and Perspectives in Neurosciences, 2010, , 1-8.	0.4	ο