
## Piero Visconti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/872362/publications.pdf Version: 2024-02-01



DIEDO VISCONTI

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Conservation needs to integrate knowledge across scales. Nature Ecology and Evolution, 2022, 6, 118-119.                                                                   | 3.4  | 40        |
| 2  | Toward resilient food systems after COVID-19. Current Research in Environmental Sustainability, 2022, 4, 100110.                                                           | 1.7  | 3         |
| 3  | Bridging the research-implementation gap in IUCN Red List assessments. Trends in Ecology and Evolution, 2022, 37, 359-370.                                                 | 4.2  | 58        |
| 4  | Include biodiversity representation indicators in area-based conservation targets. Nature Ecology and Evolution, 2022, 6, 123-126.                                         | 3.4  | 29        |
| 5  | Global forest management data for 2015 at a 100 m resolution. Scientific Data, 2022, 9, 199.                                                                               | 2.4  | 30        |
| 6  | The global exposure of species ranges and protected areas to forest management. Diversity and Distributions, 2022, 28, 1487-1496.                                          | 1.9  | 6         |
| 7  | Achieving global biodiversity goals by 2050 requires urgent and integrated actions. One Earth, 2022, 5, 597-603.                                                           | 3.6  | 57        |
| 8  | Reply to: Restoration prioritization must be informed by marginalized people. Nature, 2022, 607, E7-E9.                                                                    | 13.7 | 5         |
| 9  | Biases of Odonata in Habitats Directive: Trends, trend drivers, and conservation status of European threatened Odonata. Insect Conservation and Diversity, 2021, 14, 1-14. | 1.4  | 5         |
| 10 | How many bird and mammal extinctions has recent conservation action prevented?. Conservation Letters, 2021, 14, e12762.                                                    | 2.8  | 113       |
| 11 | Indicators keep progress honest: A call to track both the quantity and quality of protected areas. One<br>Earth, 2021, 4, 901-906.                                         | 3.6  | 15        |
| 12 | Detecting ecological thresholds for biodiversity in tropical forests: Knowledge gaps and future directions. Biotropica, 2021, 53, 1276-1289.                               | 0.8  | 6         |
| 13 | Mammal assemblage composition predicts global patterns in emerging infectious disease risk. Global<br>Change Biology, 2021, 27, 4995-5007.                                 | 4.2  | 5         |
| 14 | Using the IUCN Red List to map threats to terrestrial vertebrates at global scale. Nature Ecology and Evolution, 2021, 5, 1510-1519.                                       | 3.4  | 75        |
| 15 | Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.                                    | 3.4  | 147       |
| 16 | The mismeasure of conservation. Trends in Ecology and Evolution, 2021, 36, 808-821.                                                                                        | 4.2  | 47        |
| 17 | Integrated spatial planning for biodiversity conservation and food production. One Earth, 2021, 4, 1635-1644.                                                              | 3.6  | 14        |
| 18 | Set ambitious goals for biodiversity and sustainability. Science, 2020, 370, 411-413.                                                                                      | 6.0  | 225       |

PIERO VISCONTI

| #  | Article                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Global priority areas for ecosystem restoration. Nature, 2020, 586, 724-729.                                                                                                           | 13.7 | 489       |
| 20 | Area-based conservation in the twenty-first century. Nature, 2020, 586, 217-227.                                                                                                       | 13.7 | 438       |
| 21 | A global map of terrestrial habitat types. Scientific Data, 2020, 7, 256.                                                                                                              | 2.4  | 85        |
| 22 | Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature, 2020, 585, 551-556.                                                                                | 13.7 | 413       |
| 23 | Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nature Communications, 2020, 11, 5978.                                        | 5.8  | 188       |
| 24 | A practical approach to measuring the biodiversity impacts of land conversion. Methods in Ecology and Evolution, 2020, 11, 910-921.                                                    | 2.2  | 13        |
| 25 | Projected Global Loss of Mammal Habitat Due to Land-Use and Climate Change. One Earth, 2020, 2, 578-585.                                                                               | 3.6  | 46        |
| 26 | The global cropland-sparing potential of high-yield farming. Nature Sustainability, 2020, 3, 281-289.                                                                                  | 11.5 | 121       |
| 27 | Synergies between the key biodiversity area and systematic conservation planning approaches.<br>Conservation Letters, 2019, 12, e12625.                                                | 2.8  | 46        |
| 28 | A bold successor to Aichi Target 11—Response. Science, 2019, 365, 650-651.                                                                                                             | 6.0  | 10        |
| 29 | Sixty years of tracking conservation progress using the World Database on Protected Areas. Nature<br>Ecology and Evolution, 2019, 3, 737-743.                                          | 3.4  | 58        |
| 30 | Protected area targets post-2020. Science, 2019, 364, 239-241.                                                                                                                         | 6.0  | 269       |
| 31 | Protecting half of the planet could directly affect over one billion people. Nature Sustainability, 2019, 2, 1094-1096.                                                                | 11.5 | 121       |
| 32 | Climate change vulnerability assessment of species. Wiley Interdisciplinary Reviews: Climate Change,<br>2019, 10, e551.                                                                | 3.6  | 255       |
| 33 | A framework for the identification of hotspots of climate change risk for mammals. Global Change<br>Biology, 2018, 24, 1626-1636.                                                      | 4.2  | 45        |
| 34 | A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562. | 1.3  | 61        |
| 35 | Species' traits influenced their response to recent climate change. Nature Climate Change, 2017, 7, 205-208.                                                                           | 8.1  | 272       |
| 36 | Setting population targets for mammals using body mass as a predictor of population persistence.<br>Conservation Biology, 2017, 31, 385-393.                                           | 2.4  | 25        |

PIERO VISCONTI

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Assessing the suitability of diversity metrics to detect biodiversity change. Biological Conservation, 2017, 213, 341-350.                                                                                                         | 1.9 | 92        |
| 38 | Contrasting changes in the abundance and diversity of North American bird assemblages from 1971 to 2010. Global Change Biology, 2016, 22, 3948-3959.                                                                               | 4.2 | 79        |
| 39 | Quantifying the relative irreplaceability of important bird and biodiversity areas. Conservation Biology, 2016, 30, 392-402.                                                                                                       | 2.4 | 24        |
| 40 | Filling in biodiversity threat gaps. Science, 2016, 352, 416-418.                                                                                                                                                                  | 6.0 | 194       |
| 41 | Synergies and tradeâ€offs in achieving global biodiversity targets. Conservation Biology, 2016, 30, 189-195.                                                                                                                       | 2.4 | 36        |
| 42 | Projecting Global Biodiversity Indicators under Future Development Scenarios. Conservation Letters, 2016, 9, 5-13.                                                                                                                 | 2.8 | 182       |
| 43 | Making parks make a difference: poor alignment of policy, planning and management with<br>protected-area impact, and ways forward. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2015, 370, 20140280. | 1.8 | 133       |
| 44 | Scenarios of large mammal loss in Europe for the 21 <sup>st</sup> century. Conservation Biology, 2015, 29, 1028-1036.                                                                                                              | 2.4 | 23        |
| 45 | Climate change modifies risk of global biodiversity loss due to land-cover change. Biological<br>Conservation, 2015, 187, 103-111.                                                                                                 | 1.9 | 189       |
| 46 | High-Resolution Assessment of Land Use Impacts on Biodiversity in Life Cycle Assessment Using Species<br>Habitat Suitability Models. Environmental Science & Technology, 2015, 49, 2237-2244.                                      | 4.6 | 47        |
| 47 | Shortfalls and Solutions for Meeting National and Global Conservation Area Targets. Conservation Letters, 2015, 8, 329-337.                                                                                                        | 2.8 | 350       |
| 48 | Why do we map threats? Linking threat mapping with actions to make better conservation decisions.<br>Frontiers in Ecology and the Environment, 2015, 13, 91-99.                                                                    | 1.9 | 187       |
| 49 | Assessing species vulnerability to climate change. Nature Climate Change, 2015, 5, 215-224.                                                                                                                                        | 8.1 | 856       |
| 50 | Integrating climate change vulnerability assessments from species distribution models and trait-based approaches. Biological Conservation, 2015, 190, 167-178.                                                                     | 1.9 | 70        |
| 51 | Building robust conservation plans. Conservation Biology, 2015, 29, 503-512.                                                                                                                                                       | 2.4 | 9         |
| 52 | Fire policy optimization to maximize suitable habitat for locally rare species under different climatic conditions: A case study of antelopes in the Kruger National Park. Biological Conservation, 2015, 191, 313-321.            | 1.9 | 7         |
| 53 | Socio-economic and ecological impacts of global protected area expansion plans. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140284.                                                       | 1.8 | 34        |
| 54 | A framework to identify enabling and urgent actions for the 2020 Aichi Targets. Basic and Applied<br>Ecology, 2014, 15, 633-638.                                                                                                   | 1.2 | 58        |

PIERO VISCONTI

| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A Retrospective Evaluation of the Global Decline of Carnivores and Ungulates. Conservation Biology, 2014, 28, 1109-1118.                                                                 | 2.4 | 109       |
| 56 | A mid-term analysis of progress toward international biodiversity targets. Science, 2014, 346, 241-244.                                                                                  | 6.0 | 949       |
| 57 | EU agricultural reform fails on biodiversity. Science, 2014, 344, 1090-1092.                                                                                                             | 6.0 | 449       |
| 58 | Update or Outdate: Longâ€Term Viability of the IUCN Red List. Conservation Letters, 2014, 7, 126-130.                                                                                    | 2.8 | 96        |
| 59 | Effects of Errors and Gaps in Spatial Data Sets on Assessment of Conservation Progress.<br>Conservation Biology, 2013, 27, 1000-1010.                                                    | 2.4 | 61        |
| 60 | Achieving the Convention on Biological Diversity's Goals for Plant Conservation. Science, 2013, 341, 1100-1103.                                                                          | 6.0 | 119       |
| 61 | Cheap and Nasty? The Potential Perils of Using Management Costs to Identify Global Conservation<br>Priorities. PLoS ONE, 2013, 8, e80893.                                                | 1.1 | 20        |
| 62 | Global habitat suitability models of terrestrial mammals. Philosophical Transactions of the Royal<br>Society B: Biological Sciences, 2011, 366, 2633-2641.                               | 1.8 | 240       |
| 63 | A systematic approach for prioritizing multiple management actions for invasive species. Biological<br>Invasions, 2011, 13, 1241-1253.                                                   | 1.2 | 57        |
| 64 | What spatial data do we need to develop global mammal conservation strategies?. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2623-2632.            | 1.8 | 99        |
| 65 | Future hotspots of terrestrial mammal loss. Philosophical Transactions of the Royal Society B:<br>Biological Sciences, 2011, 366, 2693-2702.                                             | 1.8 | 107       |
| 66 | Governance factors in the identification of global conservation priorities for mammals.<br>Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2661-2669. | 1.8 | 59        |
| 67 | Reconciling global mammal prioritization schemes into a strategy. Philosophical Transactions of the<br>Royal Society B: Biological Sciences, 2011, 366, 2722-2728.                       | 1.8 | 16        |
| 68 | Habitat vulnerability in conservation planning—when it matters and how much. Conservation Letters, 2010, 3, 404-414.                                                                     | 2.8 | 28        |
| 69 | Conservation planning with dynamic threats: The role of spatial design and priority setting for species' persistence. Biological Conservation, 2010, 143, 756-767.                       | 1.9 | 75        |
| 70 | Using connectivity metrics in conservation planning – when does habitat quality matter?. Diversity and Distributions, 2009, 15, 602-612.                                                 | 1.9 | 56        |
| 71 | Generation length for mammals. Nature Conservation, 0, 5, 89-94.                                                                                                                         | 0.0 | 144       |