List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8723446/publications.pdf Version: 2024-02-01

Ιλνίες Ρεμά:Ν

#	Article	IF	CITATIONS
1	Epidemiology of Candidaemia in Europe: Results of 28-Month European Confederation of Medical Mycology (ECMM) Hospital-Based Surveillance Study. European Journal of Clinical Microbiology and Infectious Diseases, 2004, 23, 317-322.	2.9	441
2	Candidaemia in Europe: epidemiology and resistance. International Journal of Antimicrobial Agents, 2006, 27, 359-366.	2.5	303
3	Epidemiology and predictive factors for early and late mortality in Candida bloodstream infections: a population-based surveillance in Spain. Clinical Microbiology and Infection, 2014, 20, O245-O254.	6.0	241
4	An outbreak due to <i>Candida auris</i> with prolonged colonisation and candidaemia in a tertiary care European hospital. Mycoses, 2018, 61, 498-505.	4.0	236
5	Candidemia at a Tertiary-Care Hospital: Epidemiology, Treatment, Clinical Outcome and Risk Factors for Death. European Journal of Clinical Microbiology and Infectious Diseases, 2002, 21, 767-774.	2.9	211
6	Population-Based Survey of Filamentous Fungi and Antifungal Resistance in Spain (FILPOP Study). Antimicrobial Agents and Chemotherapy, 2013, 57, 3380-3387.	3.2	206
7	Scedosporium and Lomentospora: an updated overview of underrated opportunists. Medical Mycology, 2018, 56, S102-S125.	0.7	186
8	Interlaboratory Comparison of Results of Susceptibility Testing with Caspofungin against Candida and Aspergillus Species. Journal of Clinical Microbiology, 2004, 42, 3475-3482.	3.9	174
9	Aspergillus infections in lung transplant recipients: risk factors and outcome. Clinical Microbiology and Infection, 2005, 11, 359-365.	6.0	157
10	Epidemiology, species distribution and in vitro antifungal susceptibility of fungaemia in a Spanish multicentre prospective survey. Journal of Antimicrobial Chemotherapy, 2012, 67, 1181-1187.	3.0	136
11	Wild-Type MIC Distributions and Epidemiological Cutoff Values for Amphotericin B, Flucytosine, and Itraconazole and Candida spp. as Determined by CLSI Broth Microdilution. Journal of Clinical Microbiology, 2012, 50, 2040-2046.	3.9	128
12	Impact of Therapeutic Strategies on the Prognosis of Candidemia in the ICU*. Critical Care Medicine, 2014, 42, 1423-1432.	0.9	127
13	Prospective Multicenter Study of the Epidemiology, Molecular Identification, and Antifungal Susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis Isolated from Patients with Candidemia. Antimicrobial Agents and Chemotherapy, 2011, 55, 5590-5596.	3.2	126
14	Minimum fungicidal concentrations of amphotericin B for bloodstream Candida species. Diagnostic Microbiology and Infectious Disease, 2003, 45, 203-206.	1.8	117
15	Fungal co-infection in COVID-19 patients: Should we be concerned?. Revista Iberoamericana De Micologia, 2020, 37, 41-46.	0.9	113
16	Molecular Identification and Antifungal Susceptibility of Yeast Isolates Causing Fungemia Collected in a Population-Based Study in Spain in 2010 and 2011. Antimicrobial Agents and Chemotherapy, 2014, 58, 1529-1537.	3.2	112
17	Nosocomial fungemia by Candida auris: First four reported cases in continental Europe. Revista Iberoamericana De Micologia, 2017, 34, 23-27.	0.9	110
18	Blastoschizomyces capitatusInfection in Patients with Leukemia: Report of 26 Cases. Clinical Infectious Diseases, 2004, 38, 335-341.	5.8	108

#	Article	IF	CITATIONS
19	Patterns of Amphotericin B Killing Kinetics against Seven Candida Species. Antimicrobial Agents and Chemotherapy, 2004, 48, 2477-2482.	3.2	105
20	Initial Use of Echinocandins Does Not Negatively Influence Outcome in Candida parapsilosis Bloodstream Infection: A Propensity Score Analysis. Clinical Infectious Diseases, 2014, 58, 1413-1421.	5.8	104
21	Epidemiology and antifungal susceptibility of Candida species isolated from blood: results of a 2-year multicentre study in Spain. European Journal of Clinical Microbiology and Infectious Diseases, 2005, 24, 23-30.	2.9	99
22	Antifungal drug resistance mechanisms. Expert Review of Anti-Infective Therapy, 2009, 7, 453-460.	4.4	99
23	Invasive Candida infections in surgical patients in intensive care units: a prospective, multicentre survey initiated by the European Confederation of Medical Mycology (ECMM) (2006–2008). Clinical Microbiology and Infection, 2015, 21, 87.e1-87.e10.	6.0	96
24	Trends in antifungal susceptibility testing using CLSI reference and commercial methods. Expert Review of Anti-Infective Therapy, 2009, 7, 107-119.	4.4	95
25	In vitro activity of voriconazole, itraconazole, caspofungin, anidulafungin (VER002, LY303366) and amphotericin B against aspergillus spp. Diagnostic Microbiology and Infectious Disease, 2003, 45, 131-135.	1.8	85
26	Epidemiology of invasive fungal infections due to Aspergillus spp. and Zygomycetes. Clinical Microbiology and Infection, 2006, 12, 2-6.	6.0	70
27	Nationwide Sentinel Surveillance of Bloodstream <i>Candida</i> Infections in 40 Tertiary Care Hospitals in Spain. Journal of Clinical Microbiology, 2010, 48, 4200-4206.	3.9	64
28	Comparison of the Sensititre YeastOne colorimetric antifungal panel and Etest with the NCCLS M38-A method to determine the activity of amphotericin B and itraconazole against clinical isolates of Aspergillus spp Journal of Antimicrobial Chemotherapy, 2003, 52, 365-370.	3.0	63
29	<i>In Vitro</i> Fungicidal Activities of Echinocandins against <i>Candida metapsilosis</i> , <i>C. orthopsilosis</i> , and <i>C. parapsilosis</i> Evaluated by Time-Kill Studies. Antimicrobial Agents and Chemotherapy, 2010, 54, 2194-2197.	3.2	62
30	Food and probiotic strains from the Saccharomyces cerevisiae species as a possible origin of human systemic infections. International Journal of Food Microbiology, 2006, 110, 286-290.	4.7	61
31	Epidemiology and Antifungal Susceptibility of Bloodstream Fungal Isolates in Pediatric Patients: a Spanish Multicenter Prospective Survey. Journal of Clinical Microbiology, 2011, 49, 4158-4163.	3.9	60
32	Method-Dependent Epidemiological Cutoff Values for Detection of Triazole Resistance in <i>Candida</i> and <i>Aspergillus</i> Species for the Sensititre YeastOne Colorimetric Broth and Etest Agar Diffusion Methods. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	59
33	In vitro Susceptibility of <i>Candida dubliniensis</i> to Current and New Antifungal Agents. Chemotherapy, 2000, 46, 395-401.	1.6	58
34	Synergistic Activities of Fluconazole and Voriconazole with Terbinafine against Four Candida Species Determined by Checkerboard, Time-Kill, and Etest Methods. Antimicrobial Agents and Chemotherapy, 2005, 49, 1593-1596.	3.2	57
35	Epidemiology and outcome of candidaemia in patients with oncological and haematological malignancies: results from a population-based surveillance in Spain. Clinical Microbiology and Infection, 2015, 21, 491.e1-491.e10.	6.0	57
36	Multicenter Study of Epidemiological Cutoff Values and Detection of Resistance in Candida spp. to Anidulafungin, Caspofungin, and Micafungin Using the Sensititre YeastOne Colorimetric Method. Antimicrobial Agents and Chemotherapy, 2015, 59, 6725-6732.	3.2	57

#	Article	IF	CITATIONS
37	Identification of Off-Patent Compounds That Present Antifungal Activity Against the Emerging Fungal Pathogen Candida auris. Frontiers in Cellular and Infection Microbiology, 2019, 9, 83.	3.9	57
38	Uneven Distribution of Mating Types among Genotypes of <i>Candida glabrata</i> Isolates from Clinical Samples. Eukaryotic Cell, 2009, 8, 287-295.	3.4	54
39	Clinical validation of a multiplex real-time PCR assay for detection of invasive candidiasis in intensive care unit patients. Journal of Antimicrobial Chemotherapy, 2014, 69, 3134-3141.	3.0	51
40	Comparison of Three Statistical Methods for Establishing Tentative Wild-Type Population and Epidemiological Cutoff Values for Echinocandins, Amphotericin B, Flucytosine, and Six Candida Species as Determined by the Colorimetric Sensititre YeastOne Method. Journal of Clinical Microbiology, 2012, 50, 3921-3926.	3.9	50
41	Current diagnostic approaches to invasive candidiasis in critical care settings. Mycoses, 2010, 53, 424-433.	4.0	49
42	Detection and treatment of <i>Candida auris</i> in an outbreak situation: risk factors for developing colonization and candidemia by this new species in critically ill patients. Expert Review of Anti-Infective Therapy, 2019, 17, 295-305.	4.4	49
43	Voriconazole in the management of nosocomial invasive fungal infections. Therapeutics and Clinical Risk Management, 2006, 2, 129-157.	2.0	49
44	Executive summary of clinical practice guideline for the management of invasive diseases caused by Aspergillus: 2018 Update by the GEMICOMED-SEIMC/REIPI. Enfermedades Infecciosas Y MicrobiologÃa ClAnica, 2019, 37, 535-541.	0.5	46
45	Breakthrough candidaemia in the era of broad-spectrum antifungal therapies. Clinical Microbiology and Infection, 2016, 22, 181-188.	6.0	44
46	Clinical factors associated with a Candida albicansGerm Tube Antibody positive test in Intensive Care Unit patients. BMC Infectious Diseases, 2011, 11, 60.	2.9	41
47	Evaluation of the possible influence of trailing and paradoxical effects on the clinical outcome of patients with candidemia. Clinical Microbiology and Infection, 2017, 23, 49.e1-49.e8.	6.0	41
48	Epidemiology and echinocandin susceptibility of Candida parapsilosis sensu lato species isolated from bloodstream infections at a Spanish university hospital. Journal of Antimicrobial Chemotherapy, 2012, 67, 2739-2748.	3.0	40
49	Visceral leishmaniasis in lung transplantation. Transplantation Proceedings, 2003, 35, 2001-2003.	0.6	39
50	Candida tropicalis bloodstream infection: Incidence, risk factors and outcome in a population-based surveillance. Journal of Infection, 2015, 71, 385-394.	3.3	39
51	Comparison of 24-Hour and 48-Hour Voriconazole MICs as Determined by the Clinical and Laboratory Standards Institute Broth Microdilution Method (M27-A3 Document) in Three Laboratories: Results Obtained with 2,162 Clinical Isolates of <i>Candida</i> spp. and Other Yeasts. Journal of Clinical Microbiology, 2009, 47, 2766-2771.	3.9	38
52	Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by <i>Candida albicans</i> . ACS Sensors, 2019, 4, 1291-1298.	7.8	38
53	Killing Kinetics of Caspofungin, Micafungin, and Amphotericin B against Candida guilliermondii. Antimicrobial Agents and Chemotherapy, 2006, 50, 2829-2832.	3.2	36
54	Evaluation of Disk Diffusion Method for Determining Posaconazole Susceptibility of Filamentous Fungi: Comparison with CLSI Broth Microdilution Method. Antimicrobial Agents and Chemotherapy, 2006, 50, 1108-1111.	3.2	36

#	Article	IF	CITATIONS
55	Clinical significance of the detection of Candida albicans germ tube-specific antibodies in critically ill patients. Clinical Microbiology and Infection, 2009, 15, 592-595.	6.0	36
56	Epidemiological Cutoff Values for Fluconazole, Itraconazole, Posaconazole, and Voriconazole for Six Candida Species as Determined by the Colorimetric Sensititre YeastOne Method. Journal of Clinical Microbiology, 2013, 51, 2691-2695.	3.9	35
57	Outbreak of Candida auris in Spain: A comparison of antifungal activity by three methods with published data. International Journal of Antimicrobial Agents, 2019, 53, 541-546.	2.5	35
58	In Vitro Activities of Echinocandins against <i>Candida krusei</i> Determined by Three Methods: MIC and Minimal Fungicidal Concentration Measurements and Time-Kill Studies. Antimicrobial Agents and Chemotherapy, 2009, 53, 3108-3111.	3.2	34
59	Empirical and targeted therapy of candidemia with fluconazole versus echinocandins: a propensity score–derived analysis of a population-based, multicentre prospective cohort. Clinical Microbiology and Infection, 2016, 22, 733.e1-733.e8.	6.0	34
60	Molecular identification of Candida auris by PCR amplification of species-specific GPI protein-encoding genes. International Journal of Medical Microbiology, 2018, 308, 812-818.	3.6	34
61	Azole resistance survey on clinical Aspergillus fumigatus isolates in Spain. Clinical Microbiology and Infection, 2021, 27, 1170.e1-1170.e7.	6.0	34
62	Comparative in vitro Antifungal Activity of Amphotericin B Lipid Complex, Amphotericin B and Fluconazole. Chemotherapy, 2000, 46, 235-244.	1.6	33
63	Multidisciplinary approach to the treatment of invasive fungal infections in adult patients. Prophylaxis, empirical, preemptive or targeted therapy, which is the best in the different hosts?. Therapeutics and Clinical Risk Management, 2008, Volume 4, 1261-1280.	2.0	33
64	Incidence and risk factors of post-engraftment invasive fungal disease in adult allogeneic hematopoietic stem cell transplant recipients receiving oral azoles prophylaxis. Bone Marrow Transplantation, 2015, 50, 1465-1472.	2.4	33
65	Molecular Identification and Susceptibility Testing of Molds Isolated in a Prospective Surveillance of Triazole Resistance in Spain (FILPOP2 Study). Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	33
66	In vitro antifungal susceptibility testing of filamentous fungi with Sensititre Yeast OneTM. Mycoses, 2006, 49, 293-297.	4.0	32
67	Evaluation of the Etest method for susceptibility testing of <i>Aspergillus</i> spp. and <i>Fusarium</i> spp. to three echinocandins. Medical Mycology, 2010, 48, 858-861.	0.7	32
68	Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection. Sensors and Actuators B: Chemical, 2020, 320, 128281.	7.8	31
69	The C-terminal antibody binding domain ofCandida albicansmp58 represents a protective epitope during candidiasis. FEMS Microbiology Letters, 2004, 232, 133-138.	1.8	30
70	Comparison of E-Test®, disk diffusion and a modified CLSI broth microdilution (M 38-A) method for <i>in vitro</i> testing of itraconazole, fluconazole and voriconazole against dermatophytes. Medical Mycology, 2008, 46, 119-123.	0.7	30
71	Assessment of Two New Molecular Methods for Identification of Candida parapsilosis Sensu Lato Species. Journal of Clinical Microbiology, 2011, 49, 3257-3261.	3.9	30
72	Infectious complications in patients undergoing unrelated donor bone marrow transplantation: experience from a single institution. Clinical Microbiology and Infection, 2002, 8, 725-733.	6.0	29

#	Article	IF	CITATIONS
73	Histoplasmosis diseminada con sÃndrome hemofagocÃŧico en un paciente con sida: descripción de un caso y revisión de la literatura española. Revista Iberoamericana De Micologia, 2007, 24, 312-316.	0.9	28
74	Increased Mortality in Young Candidemia Patients Associated with Presence of a Candida albicans General-Purpose Genotype. Journal of Clinical Microbiology, 2011, 49, 3250-3256.	3.9	28
75	What Do We Know about Candida auris? State of the Art, Knowledge Gaps, and Future Directions. Microorganisms, 2021, 9, 2177.	3.6	28
76	Spondylodiscitis Caused by Candida krusei: Case Report and Susceptibility Patterns. Journal of Clinical Microbiology, 2006, 44, 1912-1914.	3.9	27
77	Fungemia due to Candida guilliermondii in a pediatric and adult population during a 12-year period. Diagnostic Microbiology and Infectious Disease, 2008, 60, 109-112.	1.8	27
78	Successful Topical Application of Caspofungin in the Treatment of Fungal Keratitis Refractory to Voriconazole. JAMA Ophthalmology, 2010, 128, 941.	2.4	27
79	Developing collaborative works for faster progress on fungal respiratory infections in cystic fibrosis. Medical Mycology, 2018, 56, S42-S59.	0.7	27
80	Characterization of the Differential Pathogenicity of Candida auris in a Galleria mellonella Infection Model. Microbiology Spectrum, 2021, 9, e0001321.	3.0	27
81	Kinetic Patterns of <i>Candida albicans</i> Germ Tube Antibody in Critically Ill Patients: Influence on Mortality. Vaccine Journal, 2009, 16, 1527-1528.	3.1	26
82	Voriconazole inhibits biofilm formation in different species of the genus Candida. Journal of Antimicrobial Chemotherapy, 2012, 67, 2418-2423.	3.0	26
83	Antifungal Activity against Candida Biofilms. International Journal of Artificial Organs, 2012, 35, 780-791.	1.4	26
84	Lack of evidence for infectious SARS-CoV-2 in feces and sewage. European Journal of Clinical Microbiology and Infectious Diseases, 2021, 40, 2665-2667.	2.9	26
85	Unexpected Postmortem Diagnosis of Acanthamoeba Meningoencephalitis Following Allogeneic Peripheral Blood Stem Cell Transplantation. American Journal of Transplantation, 2008, 8, 1562-1566.	4.7	25
86	Bacterial and fungal contamination risks in human oocyte and embryo cryopreservation: open versus closed vitrification systems. Fertility and Sterility, 2016, 106, 127-132.	1.0	25
87	Usefulness of guideline recommendations for prognosis in patients with candidemia. Medical Mycology, 2019, 57, 659-667.	0.7	24
88	Two Cases of Fungemia due to Candida lusitaniae and a Literature Review. European Journal of Clinical Microbiology and Infectious Diseases, 2002, 21, 294-299.	2.9	23
89	Activity of BAL 4815 against filamentous fungi. Journal of Antimicrobial Chemotherapy, 2008, 61, 1083-1086.	3.0	23
90	Routine Use of a Commercial Test, GLABRATA RTT, for Rapid Identification of <i>Candida glabrata</i> in Six Laboratories. Journal of Clinical Microbiology, 2004, 42, 4870-4872.	3.9	22

#	Article	IF	CITATIONS
91	Examination of the in vitro fungicidal activity of echinocandins against Candida lusitaniae by time-killing methods. Journal of Antimicrobial Chemotherapy, 2013, 68, 864-868.	3.0	22
92	Intraphagocytic killing of Gram-positive bacteria by ciprofloxacin. Journal of Antimicrobial Chemotherapy, 1994, 34, 965-974.	3.0	20
93	Genotyping Reveals High Clonal Diversity and Widespread Genotypes of Candida Causing Candidemia at Distant Geographical Areas. Frontiers in Cellular and Infection Microbiology, 2020, 10, 166.	3.9	20
94	Infección fúngica invasora en el paciente crÃŧico: diferentes opciones terapéuticas y una misma estrategia. Revista Iberoamericana De Micologia, 2006, 23, 59-63.	0.9	19
95	A simple prediction score for estimating the risk of candidaemia caused by fluconazole non-susceptible strains. Clinical Microbiology and Infection, 2015, 21, 684.e1-684.e9.	6.0	19
96	Echinocandins Compared to Fluconazole for Candidemia of a Urinary Tract Source: A Propensity Score Analysis. Clinical Infectious Diseases, 2017, 64, 1374-1379.	5.8	19
97	Salvage therapy with topical posaconazole in lung transplant recipients with invasive Scedosporium infection. American Journal of Transplantation, 2018, 18, 504-509.	4.7	19
98	Factors associated with the development of septic shock in patients with candidemia: a post hoc analysis from two prospective cohorts. Critical Care, 2020, 24, 117.	5.8	19
99	PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION. Mediterranean Journal of Hematology and Infectious Diseases, 2016, 8, 2116035.	1.3	18
100	Updates in antifungal susceptibility testing of filamentous fungi. Current Fungal Infection Reports, 2009, 3, 133-141.	2.6	17
101	Combined use of nonculture-based lab techniques in the diagnosis and management of critically ill patients with invasive fungal infections. Expert Review of Anti-Infective Therapy, 2012, 10, 1321-1330.	4.4	17
102	The <i>aspHS</i> gene as a new target for detecting <i>Aspergillus fumigatus</i> during infections by quantitative real-time PCR. Medical Mycology, 2013, 51, 545-554.	0.7	17
103	An evidence-based bundle improves the quality of care and outcomes of patients with candidaemia. Journal of Antimicrobial Chemotherapy, 2020, 75, 730-737.	3.0	17
104	Comparison of Anidulafungin MICs Determined by the Clinical and Laboratory Standards Institute Broth Microdilution Method (M27-A3 Document) and Etest for <i>Candida</i> Species Isolates. Antimicrobial Agents and Chemotherapy, 2010, 54, 1347-1350.	3.2	16
105	Antifungal Susceptibility Testing of Filamentous Fungi. Current Fungal Infection Reports, 2012, 6, 41-50.	2.6	16
106	Incidence and outcome of invasive fungal disease after front-line intensive chemotherapy in patients with acute myeloid leukemia: impact of antifungal prophylaxis. Annals of Hematology, 2019, 98, 2081-2088.	1.8	16
107	Identification of pathogenic yeast species by polymerase chain reaction amplification of theRPSOgene intron fragment. Journal of Applied Microbiology, 2009, 108, 1917-27.	3.1	15
108	Differentiation of Candida parapsilosis, C. orthopsilosis, and C. metapsilosis by specific PCR amplification of the RPSO intron. International Journal of Medical Microbiology, 2011, 301, 531-535.	3.6	15

#	Article	IF	CITATIONS
109	Activity of Amphotericin B and Anidulafungin Combined with Rifampicin, Clarithromycin, Ethylenediaminetetraacetic Acid, N-Acetylcysteine, and Farnesol against Candida tropicalis Biofilms. Journal of Fungi (Basel, Switzerland), 2017, 3, 16.	3.5	15
110	Oligonucleotide-capped nanoporous anodic alumina biosensor as diagnostic tool for rapid and accurate detection of <i>Candida auris</i> in clinical samples. Emerging Microbes and Infections, 2021, 10, 407-415.	6.5	15
111	Effect of Statin Use on Outcomes of Adults with Candidemia. PLoS ONE, 2013, 8, e77317.	2.5	15
112	In Vitro Antifungal Activity of Ibrexafungerp (SCY-078) Against Contemporary Blood Isolates From Medically Relevant Species of Candida: A European Study. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	15
113	Comparison of disc diffusion assay with the CLSI reference method (M27-A2) for testing in vitro posaconazole activity against common and uncommon yeasts. Journal of Antimicrobial Chemotherapy, 2007, 61, 135-138.	3.0	14
114	Evaluation of disk diffusion method compared to broth microdilution for antifungal susceptibility testing of 3 echinocandins against Aspergillus spp Diagnostic Microbiology and Infectious Disease, 2012, 73, 53-56.	1.8	14
115	Mobilisation Mechanism of Pathogenicity Islands by Endogenous Phages in Staphylococcus aureus clinical strains. Scientific Reports, 2018, 8, 16742.	3.3	14
116	Fungal infections following treatment with monoclonal antibodies and other immunomodulatory therapies. Revista Iberoamericana De Micologia, 2020, 37, 5-16.	0.9	14
117	Novel Chromogenic Medium CHROMagarTM Candida Plus for Detection of Candida auris and Other Candida Species from Surveillance and Environmental Samples: A Multicenter Study. Journal of Fungi (Basel, Switzerland), 2022, 8, 281.	3.5	14
118	In-vitro postantibiotic effect of sparfloxacin and ciprofloxacin against Pseudomonas aeruginosa and Enterococcus faecalis. Journal of Antimicrobial Chemotherapy, 1994, 34, 679-685.	3.0	13
119	Killing of Gram-Negative Bacteria by Ciprofloxacin within both Healthy Human Neutrophils and Neutrophils with Inactivated O ₂ -Dependent Bactericidal Mechanisms. Chemotherapy, 1999, 45, 268-276.	1.6	13
120	Sensititre YeastOne Caspofungin Susceptibility Testing of Candida Clinical Isolates: Correlation with Results of NCCLS M27-A2 Multicenter Study. Antimicrobial Agents and Chemotherapy, 2005, 49, 1604-1607.	3.2	13
121	Candidemia in major burns patients. Mycoses, 2016, 59, 391-398.	4.0	13
122	EPICO 3.0. Recommendations on invasive candidiasis in patients with complicated intra-abdominal infection and surgical patients with ICU extended stay. Revista Iberoamericana De Micologia, 2016, 33, 196-205.	0.9	13
123	Comparison of posaconazole and voriconazole in vitro killing against Candida krusei. Diagnostic Microbiology and Infectious Disease, 2008, 62, 177-181.	1.8	12
124	Jávea consensus guidelines for the treatment of Candida peritonitis and other intra-abdominal fungal infections in non-neutropenic critically ill adult patients. Revista Iberoamericana De Micologia, 2017, 34, 130-142.	0.9	12
125	Candidemia from urinary tract source: the challenge of candiduria. Hospital Practice (1995), 2018, 46, 243-245.	1.0	12
126	Comparison of the Sensititre YeastOne® Colorimetric Antifungal Panel with the Modified Clinical and Laboratory Standards Institute Broth Microdilution (M38-A) Method for Antifungal Susceptibility Testing of Dermatophytes. Chemotherapy, 2008, 54, 427-430.	1.6	11

#	Article	IF	CITATIONS
127	Rapid and specific detection of section Fumigati and Aspergillus fumigatus in human samples using a new multiplex real-time PCR. Diagnostic Microbiology and Infectious Disease, 2014, 80, 111-118.	1.8	11
128	Antifungal Resistance among Less Prevalent Candida Non-albicans and Other Yeasts versus Established and under Development Agents: A Literature Review. Journal of Fungi (Basel, Switzerland), 2021, 7, 24.	3.5	11
129	Host–pathogen interactions upon <i>Candida auris</i> infection: fungal behaviour and immune response in <i>Galleria mellonella</i> . Emerging Microbes and Infections, 2022, 11, 136-146.	6.5	11
130	Performance of BacticardTM Candida compared with the germ tube test for the presumptive identification of Candida albicans. Mycoses, 2003, 46, 467-470.	4.0	10
131	Multilocus microsatellite analysis of European and African Candida glabrata isolates. European Journal of Clinical Microbiology and Infectious Diseases, 2016, 35, 885-892.	2.9	10
132	Invasive fungal infection in crtically ill patients: hurdles and next challenges. Journal of Chemotherapy, 2019, 31, 64-73.	1.5	10
133	Detection of azole resistance in Aspergillus fumigatus complex isolates using MALDI-TOF mass spectrometry. Clinical Microbiology and Infection, 2022, 28, 260-266.	6.0	10
134	Actividad in vitro de voriconazol y otros tres antifúngicos frente a dermatofitos. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2003, 21, 484-487.	0.5	9
135	Comparison of in vitro Antifungal Activities of Amphotericin B Lipid Complex with Itraconazole against 708 Clinical Yeast Isolates and Opportunistic Moulds Determined by National Committee for Clinical Laboratory Standards Methods M27-A and M38-P. Chemotherapy, 2002, 48, 224-231.	1.6	8
136	Control measures for Acinetobacter baumannii: a survey of Spanish hospitals. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2011, 29, 36-38.	0.5	8
137	Risk factors, clinical presentation and prognosis of mixed candidaemia: a populationâ€based surveillance in Spain. Mycoses, 2016, 59, 636-643.	4.0	8
138	T2Candida® to guide antifungal and lengh of treatment of candidemia in a pediatric multivisceral transplant recipient. Medical Mycology Case Reports, 2018, 21, 66-68.	1.3	8
139	Mechanisms of Action of Quinolones against Staphylococci and Relationship with Their in vitro Bactericidal Activity. Chemotherapy, 1999, 45, 175-182.	1.6	7
140	GuÃa práctica de tratamiento urgente de la microangiopatÃa trombótica. Medicina ClÃnica, 2018, 151, 123.e1-123.e9.	0.6	7
141	Comparison of micafungin MICs as determined by the Clinical and Laboratory Standards Institute broth microdilution method (M27-A3 document) and Etest for Candida spp. isolates. Diagnostic Microbiology and Infectious Disease, 2011, 70, 54-59.	1.8	6
142	Triplex Hybridization-Based Nanosystem for the Rapid Screening of Pneumocystis Pneumonia in Clinical Samples. Journal of Fungi (Basel, Switzerland), 2020, 6, 292.	3.5	6
143	Human intestinal infection due to coccidia in Mozambique: two cases. Acta Tropica, 1999, 72, 25-29.	2.0	5
144	Emerging Resistance to Azoles and Echinocandins: Clinical Relevance and Laboratory Detection. Current Fungal Infection Reports, 2010, 4, 186-195.	2.6	5

#	Article	IF	CITATIONS
145	Candidemia Diagnosis With T2 Nuclear Magnetic Resonance in a PICU: A New Approach. Pediatric Critical Care Medicine, 2021, 22, e109-e114.	0.5	5
146	In Vitro Pharmacokinetic/Pharmacodynamic Modelling and Simulation of Amphotericin B against Candida auris. Pharmaceutics, 2021, 13, 1767.	4.5	5
147	Intraphagocytic bioactivity of lomefloxacin against Pseudomonas aeruginosa. Journal of Antimicrobial Chemotherapy, 1993, 32, 279-284.	3.0	4
148	Pharmacotherapy of <i>Candida</i> Infections with Echinocandins. Clinical Medicine Therapeutics, 2009, 1, CMT.S2311.	0.1	4
149	Update on invasive mycoses by filamentous fungi in critically ill patients. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2011, 29, 36-41.	0.5	4
150	Invasive scedosporiosis in lung transplant recipients: A nine-year retrospective study in a tertiary care hospital. Revista Iberoamericana De Micologia, 2021, 38, 184-187.	0.9	4
151	Time-kill assays of amphotericin B plus anidulafungin against Candida tropicalis biofilms formed on two different biomaterials. International Journal of Artificial Organs, 2018, 41, 23-27.	1.4	3
152	Validation of a multivariable prediction model for postâ€engraftment invasive fungal disease in 465 adult allogeneic hematopoietic stem cell transplant recipients. Mycoses, 2019, 62, 418-427.	4.0	3
153	Recent changes in candidemia trends in a tertiary hospital (2011–2018). Revista Iberoamericana De Micologia, 2020, 37, 87-93.	0.9	3
154	Utility of two PCRâ€RFLPâ€based techniques for identification of Candida parapsilosis complex blood isolates. Mycoses, 2020, 63, 461-470.	4.0	3
155	Candidemia Candida albicans clusters have higher tendency to form biofilms than singleton genotypesâ€. Medical Mycology, 2020, 58, 887-895.	0.7	2
156	Filamentous fungi in the airway of patients with cystic fibrosis: Just spectators?. Revista Iberoamericana De Micologia, 2021, 38, 168-174.	0.9	2
157	Latest developments in fungal lung infection in solid organ transplantation (SOT). Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2008, 26, 49-57.	0.5	1
158	State of the Art in the Laboratory Methods for the Diagnosis of Invasive Fungal Diseases. , 2014, , 281-297.		1
159	Contamination of tissue allografts from a multiorganâ€multitissue donor colonized by Candida auris. Transplant Infectious Disease, 2020, 23, e13535.	1.7	1
160	Update on invasive fungal infections: the last two years. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2007, 25, 19-27.	0.5	0
161	Candida auris: A New, Threatening Yeast. , 2021, , 544-555.		0
162	Microbiological assessment of arterial allografts processed in a tissue bank. Cell and Tissue Banking, 2021, 22, 539-549.	1.1	0

#	Article	IF	CITATIONS
163	Lack of relationship between genotype and virulence in Candida species. Revista Iberoamericana De Micologia, 2021, 38, 9-11.	0.9	0
164	Role of De-Escalation and Combination Therapy Strategies in the Management of Invasive Fungal Infection: A Multidisciplinary Point of View. , 2010, , 241-272.		0
165	Lesión cutánea papuloeritematosa tras punción con acÃcula de pino en paciente en tratamiento corticoideo. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2003, 21, 209-210.	0.5	0
166	Niño de 9 años con dolor abdominal crónico. Enfermedades Infecciosas Y MicrobiologÃa ClÃnica, 2003, 21, 271-272.	0.5	0