Alex John O'Neill

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8723439/publications.pdf

Version: 2024-02-01

57	3,322	26	56
papers	citations	h-index	g-index
59	59	59	5273
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Sal-type ABC-F proteins: intrinsic and common mediators of pleuromutilin resistance by target protection in staphylococci. Nucleic Acids Research, 2022, 50, 2128-2142.	14.5	16
2	Creating a framework to align antimicrobial resistance (AMR) research with the global guidance: a viewpoint. Journal of Antimicrobial Chemotherapy, 2022, 77, 2315-2320.	3.0	8
3	A platform for detecting cross-resistance in antibacterial drug discovery. Journal of Antimicrobial Chemotherapy, 2021, 76, 1467-1471.	3.0	3
4	Structural basis of ABCF-mediated resistance to pleuromutilin, lincosamide, and streptogramin A antibiotics in Gram-positive pathogens. Nature Communications, 2021, 12, 3577.	12.8	40
5	Impaired Alanine Transport or Exposure to d-Cycloserine Increases the Susceptibility of MRSA to \hat{l}^2 -lactam Antibiotics. Journal of Infectious Diseases, 2020, 221, 1000-1016.	4.0	25
6	Structure of the 70S Ribosome from the Human Pathogen Acinetobacter baumannii in Complex with Clinically Relevant Antibiotics. Structure, 2020, 28, 1087-1100.e3.	3.3	16
7	Activity-directed expansion of a series of antibacterial agents. Chemical Communications, 2020, 56, 8047-8050.	4.1	9
8	Target protection as a key antibiotic resistance mechanism. Nature Reviews Microbiology, 2020, 18, 637-648.	28.6	100
9	Potential for repurposing the personal care product preservatives bronopol and bronidox as broad-spectrum antibiofilm agents for topical application. Journal of Antimicrobial Chemotherapy, 2019, 74, 907-911.	3.0	4
10	Transient Silencing of Antibiotic Resistance by Mutation Represents a Significant Potential Source of Unanticipated Therapeutic Failure. MBio, $2019,10,10$	4.1	39
11	Antibiotic Resistance ABC-F Proteins: Bringing Target Protection into the Limelight. ACS Infectious Diseases, 2018, 4, 239-246.	3.8	79
12	<i>N</i> -Leucinyl Benzenesulfonamides as Structurally Simplified Leucyl-tRNA Synthetase Inhibitors. ACS Medicinal Chemistry Letters, 2018, 9, 84-88.	2.8	15
13	Acquired Nisin Resistance in <i>Staphylococcus aureus</i> Involves Constitutive Activation of an Intrinsic Peptide Antibiotic Detoxification Module. MSphere, 2018, 3, .	2.9	25
14	1-((2,4-Dichlorophenethyl)Amino)-3-Phenoxypropan-2-ol Kills Pseudomonas aeruginosa through Extensive Membrane Damage. Frontiers in Microbiology, 2018, 9, 129.	3.5	9
15	Epistasis analysis uncovers hidden antibiotic resistance-associated fitness costs hampering the evolution of MRSA. Genome Biology, 2018, 19, 94.	8.8	43
16	Design, synthesis and microbiological evaluation of novel compounds as potential Staphylococcus aureus phenylalanine tRNA synthetase inhibitors. Egyptian Journal of Chemistry, 2018, 61, 0-0.	0.2	2
17	Revisiting unexploited antibiotics in search of new antibacterial drug candidates: the case of MSD-819 (6-chloro-2-quinoxalinecarboxylic acid 1,4-dioxide). Journal of Antibiotics, 2017, 70, 317-319.	2.0	5
18	Cryptic silver resistance is prevalent and readily activated in certain Gram-negative pathogens. Journal of Antimicrobial Chemotherapy, 2017, 72, 3043-3046.	3.0	30

#	Article	IF	CITATIONS
19	Revisiting unexploited antibiotics in search of new antibacterial drug candidates: the case of \hat{l}^3 -actinorhodin. Scientific Reports, 2017, 7, 17419.	3.3	19
20	Batumin does not exert its antistaphylococcal effect through inhibition of aminoacyl-tRNA synthetase enzymes. International Journal of Antimicrobial Agents, 2017, 49, 121-122.	2.5	6
21	Elucidation of the Mode of Action of a New Antibacterial Compound Active against Staphylococcus aureus and Pseudomonas aeruginosa. PLoS ONE, 2016, 11, e0155139.	2.5	30
22	A target-protection mechanism of antibiotic resistance at atomic resolution: insights into FusB-type fusidic acid resistance. Scientific Reports, 2016, 6, 19524.	3.3	19
23	ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection. MBio, 2016, 7, e01975.	4.1	222
24	Targeting Multiple Aminoacyl-tRNA Synthetases Overcomes the Resistance Liabilities Associated with Antibacterial Inhibitors Acting on a Single Such Enzyme. Antimicrobial Agents and Chemotherapy, 2016, 60, 6359-6361.	3.2	18
25	<i>Tert</i> -butyl benzoquinone: mechanism of biofilm eradication and potential for use as a topical antibiofilm agent. Journal of Antimicrobial Chemotherapy, 2016, 71, 1841-1844.	3.0	11
26	A Polymorphism in <i>leuS</i> Confers Reduced Susceptibility to GSK2251052 in a Clinical Isolate of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 2016, 60, 3219-3221.	3.2	8
27	Silver resistance in Gram-negative bacteria: a dissection of endogenous and exogenous mechanisms. Journal of Antimicrobial Chemotherapy, 2015, 70, 1037-1046.	3.0	195
28	Zinc oxide nanoparticle-coated films: fabrication, characterization, and antibacterial properties. Journal of Nanoparticle Research, 2015, 17, 1.	1.9	20
29	Redox-active compounds with a history of human use: antistaphylococcal action and potential for repurposing as topical antibiofilm agents. Journal of Antimicrobial Chemotherapy, 2015, 70, 479-488.	3.0	29
30	Design, synthesis and evaluation of second generation MurF inhibitors based on a cyanothiophene scaffold. European Journal of Medicinal Chemistry, 2014, 73, 83-96.	5.5	25
31	Identification and characterization of an anti-pseudomonal dichlorocarbazol derivative displaying anti-biofilm activity. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5404-5408.	2.2	16
32	Transposon library screening for identification of genetic loci participating in intrinsic susceptibility and acquired resistance to antistaphylococcal agents. Journal of Antimicrobial Chemotherapy, 2013, 68, 12-16.	3.0	64
33	Discovery of the first inhibitors of bacterial enzyme d-aspartate ligase from Enterococcus faecium (Aslfm). European Journal of Medicinal Chemistry, 2013, 67, 208-220.	5.5	19
34	Staphylococcus aureus Biofilms Promote Horizontal Transfer of Antibiotic Resistance. Antimicrobial Agents and Chemotherapy, 2013, 57, 1968-1970.	3.2	266
35	Structure–activity relationships of new cyanothiophene inhibitors ofÂthe essential peptidoglycan biosynthesis enzyme MurF. European Journal of Medicinal Chemistry, 2013, 66, 32-45.	5.5	62
36	Mutagenesis Mapping of the Protein-Protein Interaction Underlying FusB-Type Fusidic Acid Resistance. Antimicrobial Agents and Chemotherapy, 2013, 57, 4640-4644.	3.2	4

#	Article	IF	CITATIONS
37	The Target of Daptomycin Is Absent from Escherichia coli and Other Gram-Negative Pathogens. Antimicrobial Agents and Chemotherapy, 2013, 57, 637-639.	3.2	105
38	The silver cation (Ag+): antistaphylococcal activity, mode of action and resistance studies. Journal of Antimicrobial Chemotherapy, 2013, 68, 131-138.	3.0	101
39	Population Diversification in Staphylococcus aureus Biofilms May Promote Dissemination and Persistence. PLoS ONE, 2013, 8, e62513.	2.5	26
40	" <i>tet</i> (U)―ls Not a Tetracycline Resistance Determinant. Antimicrobial Agents and Chemotherapy, 2012, 56, 3378-3379.	3.2	13
41	6-Arylpyrido[2,3-d]pyrimidines as Novel ATP-Competitive Inhibitors of Bacterial D-Alanine:D-Alanine Ligase. PLoS ONE, 2012, 7, e39922.	2.5	21
42	Increased Mutability of Staphylococci in Biofilms as a Consequence of Oxidative Stress. PLoS ONE, 2012, 7, e47695.	2.5	76
43	Structure-Based Ligand Design of Novel Bacterial RNA Polymerase Inhibitors. ACS Medicinal Chemistry Letters, 2011, 2, 729-734.	2.8	17
44	Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nature Reviews Microbiology, 2011, 9, 62-75.	28.6	667
45	Further Characterization ofBacillus subtilisAntibiotic Biosensors and Their Use for Antibacterial Mode-of-Action Studies. Antimicrobial Agents and Chemotherapy, 2011, 55, 1784-1786.	3.2	13
46	<i>In Vitro</i> Studies Indicate a High Resistance Potential for the Lantibiotic Nisin in Staphylococcus aureus and Define a Genetic Basis for Nisin Resistance. Antimicrobial Agents and Chemotherapy, 2011, 55, 2362-2368.	3.2	73
47	Activity of and Development of Resistance to Corallopyronin A, an Inhibitor of RNA Polymerase. Antimicrobial Agents and Chemotherapy, 2011, 55, 2413-2416.	3.2	28
48	Staphylococcus aureus SH1000 and 8325-4: comparative genome sequences of key laboratory strains in staphylococcal research. Letters in Applied Microbiology, 2010, 51, 358-361.	2.2	97
49	Furanyl-Rhodanines Are Unattractive Drug Candidates for Development as Inhibitors of Bacterial RNA Polymerase. Antimicrobial Agents and Chemotherapy, 2010, 54, 4506-4509.	3.2	17
50	Analysis of mutational resistance to trimethoprim in Staphylococcus aureus by genetic and structural modelling techniques. Journal of Antimicrobial Chemotherapy, 2009, 63, 1112-1117.	3.0	38
51	The nature of <i>Staphylococcus aureus</i> MurA and MurZ and approaches for detection of peptidoglycan biosynthesis inhibitors. Molecular Microbiology, 2009, 72, 335-343.	2.5	75
52	Consequences of daptomycin-mediated membrane damage in Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 2008, 62, 1003-1008.	3.0	115
53	Intrinsic Novobiocin Resistance in Staphylococcus saprophyticus. Antimicrobial Agents and Chemotherapy, 2007, 51, 4484-4485.	3.2	26
54	In vivo transfer of high-level mupirocin resistance from Staphylococcus epidermidis to methicillin-resistant Staphylococcus aureus associated with failure of mupirocin prophylaxis. Journal of Antimicrobial Chemotherapy, 2005, 56, 1166-1168.	3.0	101

ALEX JOHN O'NEILL

#	Article	IF	CITATIONS
55	Anti-staphylococcal activity of indolmycin, a potential topical agent for control of staphylococcal infections. Journal of Antimicrobial Chemotherapy, 2004, 54, 549-552.	3.0	66
56	Preclinical evaluation of novel antibacterial agents by microbiological and molecular techniques. Expert Opinion on Investigational Drugs, 2004, 13, 1045-1063.	4.1	104
57	The isoleucyl-tRNA synthetase mutation V588F conferring mupirocin resistance in glycopeptide-intermediate Staphylococcus aureus is not associated with a significant fitness burden. Journal of Antimicrobial Chemotherapy, 2003, 53, 102-104.	3.0	39