Dale R Gardner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8721600/publications.pdf

Version: 2024-02-01

218677 315739 2,125 117 26 38 citations h-index g-index papers 117 117 117 1101 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Analysis of Swainsonine:Â Extraction Methods, Detection, and Measurement in Populations of Locoweeds (Oxytropisspp.). Journal of Agricultural and Food Chemistry, 2001, 49, 4573-4580.	5.2	123
2	Swainsonine-Containing Plants and Their Relationship to Endophytic Fungi. Journal of Agricultural and Food Chemistry, 2014, 62, 7326-7334.	5.2	103
3	Ponderosa Pine Needle-Induced Abortion in Beef Cattle: Identification of Isocupressic Acid as the Principal Active Compound. Journal of Agricultural and Food Chemistry, 1994, 42, 756-761.	5.2	71
4	Detection of monofluoroacetate in Palicourea and Amorimia species. Toxicon, 2012, 60, 791-796.	1.6	70
5	Production of the Alkaloid Swainsonine by a Fungal Endosymbiont of the Ascomycete Order Chaetothyriales in the Host <i>Ipomoea carnea</i> Journal of Agricultural and Food Chemistry, 2013, 61, 3797-3803.	5.2	66
6	Swainsoninine Concentrations and Endophyte Amounts of Undifilum oxytropis in Different Plant Parts of Oxytropis sericea. Journal of Chemical Ecology, 2009, 35, 1272-1278.	1.8	61
7	Norditerpene alkaloid concentrations in tissues and floral rewards of larkspurs and impacts on pollinators. Biochemical Systematics and Ecology, 2013, 48, 123-131.	1.3	61
8	Production of the Alkaloid Swainsonine by a Fungal Endophyte in the Host <i>Swainsona canescens</i> . Journal of Natural Products, 2013, 76, 1984-1988.	3.0	55
9	Swainsonine and Endophyte Relationships in Astragalus mollissimus and Astragalus lentiginosus. Journal of Agricultural and Food Chemistry, 2011, 59, 1281-1287.	5.2	48
10	Analysis of Toxic Norditerpenoid Alkaloids inDelphiniumSpecies by Electrospray, Atmospheric Pressure Chemical Ionization, and Sequential Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 1999, 47, 5049-5058.	5.2	47
11	Quantitative Analysis of Norditerpenoid Alkaloids in Larkspur (Delphinium spp.) by Fourier Transform Infrared Spectroscopy., 1997, 8, 55-62.		38
12	A comparison of alternative sample preparation procedures for the analysis of swainsonine using LC-MS/MS. Phytochemical Analysis, 2011, 22, 124-127.	2.4	38
13	The Alkaloid Profiles of <i>Lupinus sulphureus </i> . Journal of Agricultural and Food Chemistry, 2009, 57, 1646-1653.	5.2	37
14	Effects of larkspur (Delphinium barbeyi) on heart rate and electrically evoked electromyographic response of the external anal sphincter in cattle. American Journal of Veterinary Research, 2009, 70, 539-546.	0.6	35
15	Serum elimination profiles of methyllycaconitine and deltaline in cattle following oral administration of larkspur (Delphinium barbeyi). American Journal of Veterinary Research, 2009, 70, 926-931.	0.6	35
16	The Biogeographical Distribution of Duncecap Larkspur (Delphinium occidentale) Chemotypes and Their Potential Toxicity. Journal of Chemical Ecology, 2009, 35, 643-652.	1.8	34
17	Lupine Induced "Crooked Calf Disease―in Washington and Oregon: Identification of the Alkaloid Profiles inLupinus sulfureus, Lupinus leucophyllus,andLupinus sericeus. Journal of Agricultural and Food Chemistry, 2007, 55, 10649-10655.	5.2	33
18	Influence of 7,8-methylenedioxylycoctonine–type alkaloids on the toxic effects associated with ingestion of tall larkspur (Delphinium spp) in cattle. American Journal of Veterinary Research, 2010, 71, 487-492.	0.6	33

#	Article	IF	CITATIONS
19	Detection of toxic monofluoroacetate in Palicourea species. Toxicon, 2014, 80, 9-16.	1.6	33
20	Tremetone and Structurally Related Compounds in White Snakeroot (Ageratina altissima): A Plant Associated with Trembles and Milk Sickness. Journal of Agricultural and Food Chemistry, 2010, 58, 8560-8565.	5.2	32
21	Nectar and pollen sugars constituting larval provisions of the alfalfa leaf-cutting bee (Megachile) Tj ETQq1 1 0.784	1314 rgBT 2.0	/Qyerlock 1
22	Development of Enzyme-Linked Immunosorbent Assays for the Hepatotoxic Alkaloids Riddelliine and RiddelliineN-Oxide. Journal of Agricultural and Food Chemistry, 2001, 49, 4144-4151.	5.2	31
23	Comparison of the toxic effects of two duncecap larkspur (Delphinium occidentale) chemotypes in mice and cattle. American Journal of Veterinary Research, 2011, 72, 706-714.	0.6	31
24	Influence of Phenological Stage on Swainsonine and Endophyte Concentrations in Oxytropis sericea. Journal of Chemical Ecology, 2012, 38, 195-203.	1.8	31
25	Abortifacient Activity in Beef Cattle of Acetyl- and Succinylisocupressic Acid from Ponderosa Pine. Journal of Agricultural and Food Chemistry, 1996, 44, 3257-3261.	5.2	29
26	Implication of agathic acid from Utah juniper bark as an abortifacient compound in cattle. Journal of Applied Toxicology, 2010, 30, 115-119.	2.8	28
27	Pine Needle Abortion in Cattle:Â Metabolism of Isocupressic Acid. Journal of Agricultural and Food Chemistry, 1999, 47, 2891-2897.	5.2	27
28	HPLCâ€MS analysis of toxic norditerpenoid alkaloids: refinement of toxicity assessment of low larkspurs (<i>Delphinium</i>). Phytochemical Analysis, 2009, 20, 104-113.	2.4	26
29	Pine needle abortion in cattle: analysis of isocupressic acid in North American gymnosperms. , 1999, 10, 132-136.		25
30	Identification of Indole Diterpenes in <i>Ipomoea asarifolia</i> and <i>Ipomoea muelleri</i> , Plants Tremorgenic to Livestock. Journal of Agricultural and Food Chemistry, 2017, 65, 5266-5277.	5.2	25
31	Influence of endophyte genotype on swainsonine concentrations in Oxytropis sericea. Toxicon, 2013, 61, 105-111.	1.6	24
32	A swainsonine survey of North American Astragalus and Oxytropis taxa implicated as locoweeds. Toxicon, 2016, 118, 104-111.	1.6	23
33	Mitigation of Larkspur Poisoning on Rangelands Through the Selection of Cattle. Rangelands, 2014, 36, 10-15.	1.9	22
34	Detection of swainsonine and isolation of the endophyte Undifilum from the major locoweeds in Inner Mongolia. Biochemical Systematics and Ecology, 2012, 45, 79-85.	1.3	21
35	Teratogenic Effects of <i>Mimosa tenuiflora</i> in a Rat Model and Possible Role of <i>N</i> -Methyland <i>N</i> , <i>N</i> -Dimethyltryptamine. Journal of Agricultural and Food Chemistry, 2014, 62, 7398-7401.	5.2	21
36	Influence of Seed Endophyte Amounts on Swainsonine Concentrations in <i>Astragalus</i> and <i>Oxytropis</i> Locoweeds. Journal of Agricultural and Food Chemistry, 2012, 60, 8083-8089.	5.2	20

3

#	Article	lF	Citations
37	Effect of $\hat{l}\pm7$ nicotinic acetylcholine receptor agonists and antagonists on motor function in mice. Toxicology and Applied Pharmacology, 2013, 266, 366-374.	2.8	20
38	Three New Toxic Norditerpenoid Alkaloids from the Low LarkspurDelphinium nuttallianum. Journal of Natural Products, 2000, 63, 1127-1130.	3.0	19
39	Pro-toxic 1,2-Dehydropyrrolizidine Alkaloid Esters, Including Unprecedented 10-Membered Macrocyclic Diesters, in the Medicinally-used <i>Alafia</i> cf. <i>caudata</i> and <i>Amphineurion marginatum</i> (Apocynaceae: Apocynoideae: Nerieae and Apocyneae). Phytochemical Analysis, 2016, 27, 257-276.	2.4	19
40	A heritable symbiont and hostâ€associated factors shape fungal endophyte communities across spatial scales. Journal of Ecology, 2018, 106, 2274-2286.	4.0	19
41	A suite of rare microbes interacts with a dominant, heritable, fungal endophyte to influence plant trait expression. ISME Journal, 2021, 15, 2763-2778.	9.8	19
42	Toxic Alkaloid Concentrations in Delphinium Nuttallianum, Delphinium Andersonii, and Delphinium Geyeri in the Intermountain Region. Rangeland Ecology and Management, 2007, 60, 441-446.	2.3	17
43	Detection of Resin Acid Compounds in Airborne Particulate Generated from Rosin Used as a Soldering Flux. AIHA Journal, 1997, 58, 868-875.	0.4	16
44	Tremorgenic Indole Diterpenes from <i>Ipomoea asarifolia</i> and <i>Ipomoea muelleri</i> and the Identification of 6,7-Dehydro-11-hydroxy-12,13-epoxyterpendole A. Journal of Natural Products, 2018, 81, 1682-1686.	3.0	16
45	Activity of pyrrolizidine alkaloids against biofilm formation and Trichomonas vaginalis. Biomedicine and Pharmacotherapy, 2016, 83, 323-329.	5.6	15
46	Screening for swainsonine among South American Astragalus species. Toxicon, 2017, 139, 54-57.	1.6	15
47	Finding the bad actor: Challenges in identifying toxic constituents in botanical dietary supplements. Food and Chemical Toxicology, 2019, 124, 431-438.	3.6	15
48	Larkspur Poison Weed: 100 Years of Delphinium Research. Rangelands, 2009, 31, 22-27.	1.9	14
49	A toxicokinetic comparison of two species of low larkspur (Delphinium spp.) in cattle. Research in Veterinary Science, 2013, 95, 612-615.	1.9	14
50	The relative toxicity of Delphinium stachydeum in mice and cattle. Toxicon, 2015, 99, 36-43.	1.6	14
51	Swainsonine-induced lysosomal storage disease in goats caused by the ingestion of Sida rodrigoi Monteiro in North-western Argentina. Toxicon, 2017, 128, 1-4.	1.6	14
52	Late Season Toxic Alkaloid Concentrations in Tall Larkspur (Delphinium spp.). Journal of Range Management, 2000, 53, 329.	0.3	13
53	Differences in Ponderosa Pine Isocupressic Acid Concentrations Across Space and Time. Rangelands, 2010, 32, 14-17.	1.9	13
54	Ptaquiloside reduces NK cell activities by enhancing metallothionein expression, which is prevented by selenium. Toxicology, 2013, 304, 100-108.	4.2	13

#	Article	IF	CITATIONS
55	Profiling of Dehydropyrrolizidine Alkaloids and their <i>N</i> Oxides in Herbarium-Preserved Specimens of <i>Amsinckia</i> Species Using HPLC-esi(+)MS. Journal of Agricultural and Food Chemistry, 2014, 62, 7382-7392.	5.2	13
56	The non-competitive blockade of GABAA receptors by an aqueous extract of water hemlock (Cicuta) Tj ETQq0 0 C	rgBT /Ove	erlock 10 Tf 5
57	The alkaloid profiles of Sophora nuttalliana and Sophora stenophylla. Biochemical Systematics and Ecology, 2013, 48, 58-64.	1.3	12
58	Catastrophic cattle loss to low larkspur (Delphinium nuttallianum) in Idaho. Veterinary and Human Toxicology, 2003, 45, 137-9.	0.3	12
59	Oxidized Resin Acids in Aerosol Derived from Rosin Core Solder. AlHA Journal, 1998, 59, 889-894.	0.4	11
60	A Gas Chromatography–Mass Spectrometry Method for the Detection and Quantitation of Monofluoroacetate in Plants Toxic to Livestock. Journal of Agricultural and Food Chemistry, 2017, 65, 1428-1433.	5.2	11
61	Chemical Analysis of Plants that Poison Livestock: Successes, Challenges, and Opportunities. Journal of Agricultural and Food Chemistry, 2018, 66, 3308-3314.	5.2	11
62	Detection of swainsonine and calystegines in Convolvulaceae species from the semiarid region of Pernambuco. Pesquisa Veterinaria Brasileira, 2018, 38, 2044-2051.	0.5	11
63	Spontaneous outbreak of Astragalus pehuenches (Fabaceae) poisoning in cattle in Argentina. Toxicon, 2019, 157, 84-86.	1.6	11
64	Differences between Angus and Holstein cattle in the Lupinus leucophyllus induced inhibition of fetal activity. Toxicon, 2015, 106, 1-6.	1.6	10
65	Biodiversity of Convolvulaceous species that contain ergot alkaloids, indole diterpene alkaloids, and swainsonine. Biochemical Systematics and Ecology, 2019, 86, 103921.	1.3	10
66	Detection of swainsonine-producing endophytes in Patagonian Astragalus species. Toxicon, 2019, 171, 1-6.	1.6	10
67	Evaluation of noninvasive specimens to diagnose livestock exposure to toxic larkspur (Delphinium) Tj ETQq1 1 0.	784314 rg 1.6	BT/Overlock
68	Livestock Poisoning With Pyrrolizidine-Alkaloid–Containing Plants (Senecio, Crotalaria,) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 5 0 222 Td
69	The serum concentrations of lupine alkaloids in orally-dosed Holstein cattle. Research in Veterinary Science, 2015, 100, 239-244.	1.9	9
70	A Survey of Tremetone, Dehydrotremetone, and Structurally Related Compounds in <i>Isocoma</i> spp. (Goldenbush) in the Southwestern United States. Journal of Agricultural and Food Chemistry, 2015, 63, 872-879.	5.2	9
71	Galegine Content in Goatsrue (<i>Galega officinalis</i>) Varies by Plant Part and Phenological Growth Stage. Weed Science, 2011, 59, 349-352.	1.5	8
72	Changes in swainsonine, calystegine, and nitrogen concentrations on an annual basis in Ipomoea carnea. Toxicon, 2015, 95, 62-66.	1.6	8

#	Article	IF	CITATIONS
73	A Screen for Swainsonine in Select North American <i>Astragalus</i> Species. Chemistry and Biodiversity, 2017, 14, e1600364.	2.1	8
74	Senecio grisebachii Baker: Pyrrolizidine alkaloids and experimental poisoning in calves. Toxicon, 2017, 133, 68-73.	1.6	8
75	Two Delphinium ramosum chemotypes, their biogeographical distribution and potential toxicity. Biochemical Systematics and Ecology, 2017, 75, 1-9.	1.3	8
76	A survey of swainsonine content in Swainsona species. Rangeland Journal, 2017, 39, 213.	0.9	8
77	Animal and plant factors which affect larkspur toxicosis in cattle: Sex, age, breed, and plant chemotype. Toxicon, 2019, 165, 31-39.	1.6	8
78	Sex-dependent differences for larkspur (<i>Delphinium barbeyi</i>) toxicosis in yearling Angus cattle1. Journal of Animal Science, 2019, 97, 1424-1432.	0.5	8
79	Localization of the Swainsonine-Producing Chaetothyriales Symbiont in the Seed and Shoot Apical Meristem in Its Host Ipomoea carnea. Microorganisms, 2022, 10, 545.	3.6	8
80	Cattle Grazing Toxic Delphinium andersonii in South-Central Idaho. Rangeland Ecology and Management, 2011, 64, 664-668.	2.3	7
81	Alkaloid profiles of Dermatophyllum arizonicum, Dermatophyllum gypsophilum, Dermatophyllum secundiflorum, Styphnolobium affine, and Styphnolobium japonicum previously classified as Sophora species. Biochemical Systematics and Ecology, 2013, 49, 87-93.	1.3	7
82	Adverse Effects of Larkspur (Delphinium spp.) on Cattle. Agriculture (Switzerland), 2015, 5, 456-474.	3.1	7
83	Analysis of rumen contents and ocular fluid for toxic alkaloids from goats and cows dosed larkspur (Delphinium barbeyi), lupine (Lupinus leucophyllus), and death camas (Zigadenus paniculatus). Toxicon, 2020, 176, 21-29.	1.6	7
84	A Comparison of the Abortifacient Risk of Western Juniper Trees in Oregon. Rangelands, 2013, 35, 40-44.	1.9	6
85	An Evaluation of Hair, Oral Fluid, Earwax, and Nasal Mucus as Noninvasive Specimens to Determine Livestock Exposure to Teratogenic Lupine Species. Journal of Agricultural and Food Chemistry, 2019, 67, 43-49.	5.2	6
86	Pine needle abortion biomarker detected in bovine fetal fluids. Journal of Veterinary Diagnostic Investigation, 2015, 27, 74-79.	1.1	5
87	The effect of western juniper on the estrous cycle in beef cattle. Research in Veterinary Science, 2015, 98, 16-18.	1.9	5
88	Analysis of Swainsonine and Swainsonine <i>N</i> -Oxide as Trimethylsilyl Derivatives by Liquid Chromatography–Mass Spectrometry and Their Relative Occurrence in Plants Toxic to Livestock. Journal of Agricultural and Food Chemistry, 2016, 64, 6156-6162.	5.2	5
89	Clinical and pathological comparison of Astragalus lentiginosus and Ipomoea carnea poisoning in goats. Toxicon, 2019, 171, 20-28.	1.6	5
90	Spontaneous abortion in cattle after consumption of Hesperocyparis (Cupressus) macrocarpa (Hartw.) Bartel and Cupressus arizonica (Greene) needles in Uruguay. Toxicon, 2020, 181, 53-56.	1.6	5

#	Article	IF	Citations
91	Use of Herbarium Voucher Specimens To Investigate Phytochemical Composition in Poisonous Plant Research. Journal of Agricultural and Food Chemistry, 2021, 69, 4037-4047.	5.2	5
92	Toxic plants. , 2011, , 689-705.		4
93	Poisonous plants. , 2014, , 563-589.		4
94	The Effect of Co-Administration of Death Camas (Zigadenus spp.) and Low Larkspur (Delphinium spp.) in Cattle. Toxins, 2016, 8, 21.	3.4	4
95	Effects of Elevated CO2 on the Swainsonine Chemotypes of Astragalus lentiginosus and Astragalus mollissimus. Journal of Chemical Ecology, 2017, 43, 307-316.	1.8	4
96	The effect of alkaloid composition of larkspur (<i>Delphinium</i>) species on the intoxication of Angus heifers1. Journal of Animal Science, 2019, 97, 1415-1423.	0.5	4
97	Fatal stagger poisoning by consumption of Festuca argentina (Speg.) Parodi in goats from Argentine Patagonia. Toxicon, 2020, 186, 191-197.	1.6	4
98	Seasonal variation in toxic steroidal alkaloids of foothill death camas (Zigadenus paniculatus). Biochemical Systematics and Ecology, 2020, 90, 104044.	1.3	4
99	Clinical, pathologic, and toxicologic characterization of <i>Salvia reflexa </i> (lance-leaf sage) poisoning in cattle fed contaminated hay. Journal of Veterinary Diagnostic Investigation, 2021, 33, 538-547.	1.1	4
100	Selected Poisonous Plants Affecting Animal and Human Health., 2013,, 1259-1314.		3
101	Seasonal variation in the secondary chemistry of foliar and reproductive tissues of Delphinium nuttallianum. Biochemical Systematics and Ecology, 2016, 65, 93-99.	1.3	3
102	Poisonous Plants of the United States. , 2018, , 837-889.		3
103	Diterpenoids from Gutierrezia sarothrae and G. microcephala: Chemical diversity, chemophenetics and implications to toxicity in grazing livestock. Phytochemistry, 2020, 178, 112465.	2.9	3
104	Phylogenetic Patterns of Swainsonine Presence in Morning Glories. Frontiers in Microbiology, 2022, 13, 871148.	3.5	3
105	If One Plant Toxin Is Harmful to Livestock, What about Two?. Journal of Agricultural and Food Chemistry, 2014, 62, 7363-7369.	5.2	2
106	Evaluation of the Seasonal and Annual Abortifacient Risk of Western Juniper Trees on Oregon Rangelands. Rangelands, 2015, 37, 139-143.	1.9	1
107	Fungicide treatment and clipping of Oxytropis sericea does not disrupt swainsonine concentrations. Toxicon, 2016, 122, 26-30.	1.6	1
108	Ipomoea brasiliana poisoning on buck reproduction. Ciencia Rural, 2018, 48, .	0.5	1

#	Article	IF	CITATIONS
109	Poisonous Plants. , 2019, , 627-652.		1
110	Toxicity of the swainsonine-containing plant Ipomoea carnea subsp. fistulosa for goats and sheep. Toxicon, 2021, 197, 40-47.	1.6	1
111	Hepatotoxicity in Cattle Associated with Salvia reflexa Diterpenes, including 7-Hydroxyrhyacophiline, a New Seco-Clerodane Diterpene. Journal of Agricultural and Food Chemistry, 2021, 69, 1251-1258.	5.2	1
112	Experimental poisoning by Crotalaria lanceolata and Crotalaria pallida seeds in broilers. Pesquisa Veterinaria Brasileira, 2019, 39, 863-869.	0.5	1
113	Mineral-salt supplementation to ameliorate larkspur poisoning in cattle. Journal of Animal Science, 2022, , .	0.5	1
114	Toxic plants., 2017,, 903-923.		0
115	Experimental poisoning in broiler chickens by Senecio vernonioides, Senecio conyzaefolius and Senecio paulensis. Pesquisa Veterinaria Brasileira, 2018, 38, 2065-2069.	0.5	O
116	Herbicidal control of deathcamas (<i>Zigadenus paniculatus</i>). Weed Technology, 2021, 35, 380-384.	0.9	0
117	Toxic plants. , 2022, , 933-953.		o