List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8721181/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Costâ€Effective Supercapacitor Material of Ultrahigh Specific Capacitances: Spinel Nickel Cobaltite Aerogels from an Epoxideâ€Driven Sol–Gel Process. Advanced Materials, 2010, 22, 347-351.	21.0	1,108
2	Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route. Chemistry of Materials, 2009, 21, 3228-3233.	6.7	278
3	In Situ Grown Bimetallic MOFâ€Based Composite as Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting with Ultrastability at High Current Densities. Advanced Energy Materials, 2018, 8, 1801065.	19.5	239
4	Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor. Journal of the American Chemical Society, 2009, 131, 17690-17695.	13.7	230
5	Synergistically well-mixed MOFs grown on nickel foam as highly efficient durable bifunctional electrocatalysts for overall water splitting at high current densities. Nano Energy, 2019, 57, 1-13.	16.0	211
6	Wafer Scale Phaseâ€Engineered 1T―and 2Hâ€MoSe ₂ /Mo Core–Shell 3Dâ€Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction. Advanced Materials, 2016, 28, 9831-9838.	21.0	208
7	Alternating the Output of a CdS Nanowire Nanogenerator by a White‣ightâ€&timulated Optoelectronic Effect. Advanced Materials, 2008, 20, 3127-3130.	21.0	207
8	Preparation of Monolithic Silica Aerogel of Low Thermal Conductivity by Ambient Pressure Drying. Journal of the American Ceramic Society, 2007, 90, 2003-2007.	3.8	180
9	Manganese Oxide/Carbon Aerogel Composite: an Outstanding Supercapacitor Electrode Material. Advanced Energy Materials, 2011, 1, 901-907.	19.5	175
10	Ultrahigh Specific Capacitances for Supercapacitors Achieved by Nickel Cobaltite/Carbon Aerogel Composites. Advanced Functional Materials, 2012, 22, 5038-5043.	14.9	163
11	In situ formation of NiO on Ni foam prepared with a novel leaven dough method as an outstanding electrocatalyst for oxygen evolution reactions. Journal of Materials Chemistry A, 2016, 4, 9797-9806.	10.3	125
12	Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Applied Catalysis B: Environmental, 2019, 258, 118023.	20.2	114
13	Double functionalization of N-doped carbon carved hollow nanocubes with mixed metal phosphides as efficient bifunctional catalysts for electrochemical overall water splitting. Nano Energy, 2019, 65, 103995.	16.0	111
14	Vaporâ^'Solid Growth of Sn Nanowires:Â Growth Mechanism and Superconductivity. Journal of Physical Chemistry B, 2005, 109, 4398-4403.	2.6	108
15	Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities. Applied Catalysis B: Environmental, 2020, 279, 119375.	20.2	102
16	Preparation, Characterization, and Electrophysical Properties of Nanostructured BiPO ₄ and Bi ₂ Se ₃ Derived from a Structurally Characterized, Single-Source Precursor Bi[Se ₂ P(O <i>i</i> Pr) ₂] ₃ . Journal of Physical Chemistry C, 2007, 111, 18538-18544.	3.1	100
17	Growth of ZnO Nanostructures with Controllable Morphology Using a Facile Green Antisolvent Method. Journal of Physical Chemistry C, 2010, 114, 8867-8872.	3.1	97
18	Dispersing WO3 in carbon aerogel makes an outstanding supercapacitor electrode material. Carbon, 2014, 69, 287-293.	10.3	94

#	Article	IF	CITATIONS
19	Hollow nanocubes composed of well-dispersed mixed metal-rich phosphides in N-doped carbon as highly efficient and durable electrocatalysts for the oxygen evolution reaction at high current densities. Journal of Materials Chemistry A, 2017, 5, 19656-19663.	10.3	93
20	Particle-in-box nanostructured materials created via spatially confined pyrolysis as high performance bifunctional catalysts for electrochemical overall water splitting. Nano Energy, 2018, 48, 489-499.	16.0	90
21	Transparent, Hydrophobic Composite Aerogels with High Mechanical Strength and Low High-Temperature Thermal Conductivities. Journal of Physical Chemistry B, 2008, 112, 11881-11886.	2.6	86
22	Manganese Oxide/Graphene Aerogel Composites as an Outstanding Supercapacitor Electrode Material. Chemistry - A European Journal, 2014, 20, 517-523.	3.3	86
23	ZnFe2O4 decorated CdS nanorods as a highly efficient, visible light responsive, photochemically stable, magnetically recyclable photocatalyst for hydrogen generation. Nanoscale, 2013, 5, 7356.	5.6	85
24	NiFe Alloy Nanotube Arrays as Highly Efficient Bifunctional Electrocatalysts for Overall Water Splitting at High Current Densities. ACS Applied Materials & Interfaces, 2019, 11, 24096-24106.	8.0	85
25	Mixed NiO/NiCo ₂ O ₄ Nanocrystals Grown from the Skeleton of a 3D Porous Nickel Network as Efficient Electrocatalysts for Oxygen Evolution Reactions. ACS Applied Materials & Interfaces, 2018, 10, 417-426.	8.0	83
26	Glucose-derived nitrogen-doped hierarchical hollow nest-like carbon nanostructures from a novel template-free method as an outstanding electrode material for supercapacitors. Journal of Materials Chemistry A, 2015, 3, 24453-24462.	10.3	82
27	NiFeMo alloy inverse-opals on Ni foam as outstanding bifunctional catalysts for electrolytic water splitting of ultra-low cell voltages at high current densities. Applied Catalysis B: Environmental, 2020, 267, 118376.	20.2	77
28	[Cu4{Se2P(OiPr)2}4]:Â A Novel Precursor Enabling Preparation of Nonstoichiometric Copper Selenide (Cu2-xSe) Nanowires. Chemistry of Materials, 2006, 18, 3323-3329.	6.7	76
29	Graphene aerogels as a highly efficient counter electrode material for dye-sensitized solar cells. Carbon, 2013, 54, 291-299.	10.3	74
30	Cu ₂ Oâ€Decorated Mesoporous TiO ₂ Beads as a Highly Efficient Photocatalyst for Hydrogen Production. ChemCatChem, 2014, 6, 293-300.	3.7	74
31	Pervaporation of acetic acid/water mixtures through silicalite filled polydimethylsiloxane membranes. Journal of Membrane Science, 2000, 176, 159-167.	8.2	68
32	Ultralow overpotentials for oxygen evolution reactions achieved by nickel cobaltite aerogels. Journal of Materials Chemistry, 2011, 21, 18180.	6.7	68
33	Carbon black-derived graphene quantum dots composited with carbon aerogel as a highly efficient and stable reduction catalyst for the iodide/tri-iodide couple. Nanoscale, 2015, 7, 1209-1215.	5.6	67
34	Catalase-Modulated Heterogeneous Fenton Reaction for Selective Cancer Cell Eradication: SnFe ₂ O ₄ Nanocrystals as an Effective Reagent for Treating Lung Cancer Cells. ACS Applied Materials & Interfaces, 2017, 9, 1273-1279.	8.0	67
35	Bimetallic Metal–Organic Framework-Derived Hybrid Nanostructures as High-Performance Catalysts for Methane Dry Reforming. ACS Applied Materials & Interfaces, 2020, 12, 15183-15193.	8.0	67
36	A New Class of Opacified Monolithic Aerogels of Ultralow High-Temperature Thermal Conductivities. Journal of Physical Chemistry C, 2009, 113, 7424-7428.	3.1	66

#	Article	IF	CITATIONS
37	Cu2O-decorated CdS nanostructures for high efficiency visible light driven hydrogen production. International Journal of Hydrogen Energy, 2013, 38, 9665-9672.	7.1	62
38	γ-Fe ₂ O ₃ /graphene nanocomposites as a stable high performance anode material for neutral aqueous supercapacitors. Journal of Materials Chemistry A, 2014, 2, 16955-16962.	10.3	61
39	Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies. CrystEngComm, 2012, 14, 4732.	2.6	59
40	High Performance Flexible Lithiumâ€lon Battery Electrodes: Ion Exchange Assisted Fabrication of Carbon Coated Nickel Oxide Nanosheet Arrays on Carbon Cloth. Advanced Functional Materials, 2021, 31, 2101199.	14.9	58
41	Tin oxide nanocrystals embedded in silica aerogel: Photoluminescence and photocatalysis. Microporous and Mesoporous Materials, 2008, 112, 580-588.	4.4	57
42	Layered Protonated Titanate Nanosheets Synthesized with a Simple One-Step, Low-Temperature, Urea-Modulated Method as an Effective Pollutant Adsorbent. ACS Applied Materials & Interfaces, 2014, 6, 16669-16678.	8.0	56
43	In2O3 nanorod formation induced by substrate structure. Journal of Crystal Growth, 2005, 285, 400-407.	1.5	54
44	Nanostructures of Sn and Their Enhanced, Shape-Dependent Superconducting Properties. Small, 2006, 2, 268-273.	10.0	54
45	A cost-effective, stable, magnetically recyclable photocatalyst of ultra-high organic pollutant degradation efficiency: SnFe ₂ 0 ₄ nanocrystals from a carrier solvent assisted interfacial reaction process. Journal of Materials Chemistry A, 2015, 3, 12259-12267.	10.3	54
46	One-Step, Surfactant-Free Hydrothermal Method for Syntheses of Mesoporous TiO2 Nanoparticle Aggregates and Their Applications in High Efficiency Dye-Sensitized Solar Cells. Chemistry of Materials, 2012, 24, 3255-3262.	6.7	53
47	Mesoporous Fluorocarbonâ€Modified Silica Aerogel Membranes Enabling Longâ€Term Continuous CO ₂ Capture with Large Absorption Flux Enhancements. ChemSusChem, 2013, 6, 437-442.	6.8	52
48	High-Temperature All Solid-State Microsupercapacitors based on SiC Nanowire Electrode and YSZ Electrolyte. ACS Applied Materials & Interfaces, 2015, 7, 26658-26665.	8.0	52
49	Pt coupled ZnFe ₂ O ₄ nanocrystals as a breakthrough photocatalyst for Fenton-like processes – photodegradation treatments from hours to seconds. Journal of Materials Chemistry A, 2015, 3, 18578-18585.	10.3	50
50	Polymer nanocomposite containing CdS–ZnS core–shell particles: Optical properties and morphology. Journal of Applied Physics, 2003, 93, 5789-5793.	2.5	48
51	Mixed Metal Phosphide Chainmail Catalysts Confined in N-Doped Porous Carbon Nanoboxes as Highly Efficient Water-Oxidation Electrocatalysts with Ultralow Overpotentials and Tafel Slopes. ACS Applied Materials & Interfaces, 2020, 12, 7153-7161.	8.0	47
52	(NixFeyCo6-x-y)Mo6C cuboids as outstanding bifunctional electrocatalysts for overall water splitting. Applied Catalysis B: Environmental, 2021, 290, 120049.	20.2	47
53	Stop band shift based chemical sensing with three-dimensional opal and inverse opal structures. Sensors and Actuators B: Chemical, 2007, 124, 452-458.	7.8	46
54	Well-Aligned Ternary Cd ₁₋ <i>_x</i> Zn <i>_x</i> S Nanowire Arrays and Their Composition-Dependent Field Emission Properties. Journal of Physical Chemistry C, 2007, 111, 13418-13426.	3.1	45

#	Article	IF	CITATIONS
55	Gold nanocrystal decorated trimetallic metal organic frameworks as high performance electrocatalysts for oxygen evolution reaction. Applied Catalysis B: Environmental, 2021, 286, 119916.	20.2	45
56	SnO ₂ Quantum Dots Synthesized with a Carrier Solvent Assisted Interfacial Reaction for Band-Structure Engineering of TiO ₂ Photocatalysts. Journal of Physical Chemistry C, 2014, 118, 14457-14463.	3.1	43
57	Effective conductivity of composites with spherical inclusions: Effect of coating and detachment. Journal of Applied Physics, 1996, 79, 609.	2.5	42
58	Spontaneous Reduction of Metal Ions Initiated by Ethylenediamine-Capped CdS Nanowires: A Sensing Mechanism Revealed. Chemistry of Materials, 2008, 20, 2854-2856.	6.7	42
59	Ti-MOF derived TixFe1â^'xOy shells boost Fe2O3 nanorod cores for enhanced photoelectrochemical water oxidation. Chemical Engineering Journal, 2019, 361, 660-670.	12.7	42
60	Titania and Pt/titania aerogels as superior mesoporous structures for photocatalytic water splitting. Journal of Materials Chemistry, 2011, 21, 12668.	6.7	41
61	Core/shell p-BiOI/n-β-Bi2O3 heterojunction array with significantly enhanced photoelectrochemical water splitting efficiency. Journal of Alloys and Compounds, 2018, 738, 138-144.	5.5	41
62	Nitrogen-doped carbon nanoboxes as high rate capability and long-life anode materials for high-performance Li-ion capacitors. Chemical Engineering Journal, 2020, 396, 125314.	12.7	41
63	The Effective Thermal Conductivities of Composites with 2-D Arrays of Circular and Square Cylinders. Journal of Composite Materials, 1995, 29, 483-506.	2.4	40
64	Synthesis of stoichiometric flowerlike ZnO nanorods with hundred per cent morphological yield. Solid State Communications, 2007, 142, 302-305.	1.9	40
65	Preparation of Nanosized ZnS-Passivated CdS Particle Films via the MOCVD Process with Co-fed Single Source Precursors. Langmuir, 2004, 20, 194-201.	3.5	38
66	Hollow Porous α-Fe ₂ O ₃ Nanoparticles as Anode Materials for High-Performance Lithium-Ion Capacitors. ACS Sustainable Chemistry and Engineering, 2021, 9, 1180-1192.	6.7	38
67	Effective thermal conductivity of composites containing spheroidal inclusions. AICHE Journal, 1990, 36, 927-938.	3.6	37
68	Photoluminescence Resulting from Semiconductorâ^'Metal Solid Solution Observed in One-Dimensional Semiconductor Nanostructures. Langmuir, 2004, 20, 23-26.	3.5	37
69	Pulse electrodeposited FeCoNiMnW high entropy alloys as efficient and stable bifunctional electrocatalysts for acidic water splitting. Chemical Engineering Journal, 2022, 446, 137452.	12.7	37
70	3D Porous Graphene Nanostructure from a Simple, Fast, Scalable Process for High Performance Flexible Gel-Type Supercapacitors. ACS Sustainable Chemistry and Engineering, 2017, 5, 4457-4467.	6.7	36
71	Selfâ€Targeting, Immune Transparent Plasma Protein Coated Nanocomplex for Noninvasive Photothermal Anticancer Therapy. Advanced Healthcare Materials, 2017, 6, 1700181.	7.6	36
72	Performance of airlift bioreactors with net draft tube. Enzyme and Microbial Technology, 2003, 33, 332-342.	3.2	35

#	Article	IF	CITATIONS
73	In-situ grown metal-organic framework-derived carbon-coated Fe-doped cobalt oxide nanocomposite on fluorine-doped tin oxide glass for acidic oxygen evolution reaction. Applied Catalysis B: Environmental, 2022, 303, 120899.	20.2	35
74	Superparamagnetism Found in Diluted Magnetic Semiconductor Nanowires: Mn-Doped CdSe. Journal of Physical Chemistry C, 2008, 112, 17964-17968.	3.1	34
75	In-Situ Grown, Passivator-Modulated Anodization Derived Synergistically Well-Mixed Ni–Fe Oxides from Ni Foam as High-Performance Oxygen Evolution Reaction Electrocatalyst. ACS Applied Energy Materials, 2019, 2, 743-753.	5.1	34
76	N-doped carbon armored metal phosphides grown in-situ on nickel foam as chainmail catalysts toward high efficiency electrolytic water splitting. Journal of Colloid and Interface Science, 2020, 562, 42-51.	9.4	32
77	Small highly mesoporous silicon nanoparticles for high performance lithium ion based energy storage. Chemical Engineering Journal, 2020, 400, 125958.	12.7	32
78	Open-mouth N-doped carbon nanoboxes embedded with mixed metal phosphide nanoparticles as high-efficiency catalysts for electrolytic water splitting. Nanoscale, 2020, 12, 5848-5856.	5.6	32
79	Formation of Parallel Strips in Thin Films of Polystyrene/Poly(vinyl pyrrolidone) Blends via Spin Coating on Unpatterned Substrates. Langmuir, 2006, 22, 8029-8035.	3.5	31
80	A Facile Route To Create Surface Porous Polymer Films via Phase Separation for Antireflection Applications. ACS Applied Materials & amp; Interfaces, 2009, 1, 72-75.	8.0	31
81	Layered Double Hydroxides as an Effective Additive in Polymer Gelled Electrolyte based Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 17518-17525.	8.0	31
82	Hydrothermal synthesis, characterizations and photoluminescence study of single crystalline hexagonal ZnO nanorods with three dimensional flowerlike microstructures. Superlattices and Microstructures, 2014, 69, 239-252.	3.1	31
83	Exfoliated SnS 2 Nanoplates for Enhancing Direct Electrochemical Glucose Sensing. Electrochimica Acta, 2016, 219, 241-250.	5.2	31
84	Room temperature chemical synthesis of lead selenide thin films with preferred orientation. Applied Surface Science, 2006, 253, 930-936.	6.1	29
85	Porous FTO thin layers created with a facile one-step Sn4+-based anodic deposition process and their potential applications in ion sensing. Journal of Materials Chemistry, 2012, 22, 16259.	6.7	28
86	NiFe/(Ni,Fe) ₃ S ₂ Core/Shell Nanowire Arrays as Outstanding Catalysts for Electrolytic Water Splitting at High Current Densities. Small Methods, 2019, 3, 1900234.	8.6	28
87	Dopantâ€Induced Formation of Branched CdS Nanocrystals. Small, 2008, 4, 951-955.	10.0	27
88	A novel way of improving light harvesting in dye-sensitized solar cells – Electrodeposition of titania. Electrochemistry Communications, 2009, 11, 2180-2183.	4.7	27
89	Air annealing induced transformation of cubic CdSe microspheres into hexagonal nanorods and micro-pyramids. Journal of Alloys and Compounds, 2015, 640, 504-510.	5.5	26
90	Few-Layer Graphene Sheet-Passivated Porous Silicon Toward Excellent Electrochemical Double-Layer Supercapacitor Electrode. Nanoscale Research Letters, 2018, 13, 242.	5.7	26

#	Article	IF	CITATIONS
91	A General Process for Preparation of Core-Shell Particles of Complete and Smooth Shells. Journal of the American Ceramic Society, 2005, 88, 277-283.	3.8	25
92	Ultrafast formation of ZnO mesocrystals with excellent photocatalytic activities by a facile Tris-assisted antisolvent process. CrystEngComm, 2011, 13, 6218.	2.6	25
93	TiO2 nanocrystals decorated Z-schemed core-shell CdS-CdO nanorod arrays as high efficiency anodes for photoelectrochemical hydrogen generation. Journal of Colloid and Interface Science, 2018, 521, 216-225.	9.4	25
94	Effective conductivities of aligned spheroid dispersions estimated by an equivalent inclusion model. Journal of Applied Physics, 1998, 84, 2647-2655.	2.5	24
95	Porous N-doped carbon nanostructure integrated with mesh current collector for Li-ion based energy storage. Chemical Engineering Journal, 2019, 374, 201-210.	12.7	24
96	A new trick for an old technology: Ion exchange syntheses of advanced energy storage and conversion nanomaterials. Energy Storage Materials, 2021, 41, 758-790.	18.0	24
97	Twinning Enhances Efficiencies of Metallic Catalysts toward Electrolytic Water Splitting. Advanced Energy Materials, 2021, 11, 2101827.	19.5	24
98	One-step formation of core–shell sulfide–oxide nanorod arrays from a single precursor. Nanotechnology, 2006, 17, 4773-4782.	2.6	23
99	Porous fluorine-doped tin oxide as a promising substrate for electrochemical biosensors—demonstration in hydrogen peroxide sensing. Journal of Materials Chemistry B, 2014, 2, 7779-7784.	5.8	23
100	p-Cu ₂ S/n-Zn _x Cd _{1â^'x} S nanocrystals dispersed in a 3D porous graphene nanostructure: an excellent photocatalyst for hydrogen generation through sunlight driven water splitting. Catalysis Science and Technology, 2017, 7, 1305-1314.	4.1	23
101	Pd–Ag alloy films prepared by metallorganic chemical vapor deposition process. Thin Solid Films, 2000, 376, 67-72.	1.8	22
102	Superior mixing performance for airlift reactor with a net draft tube. Chemical Engineering Science, 2004, 59, 3021-3028.	3.8	22
103	MOF-derived cobalt Disulfide/Nitrogen-doped carbon composite polyhedrons linked with Multi-walled carbon nanotubes as sulfur hosts for Lithium-Sulfur batteries. Chemical Engineering Journal, 2022, 431, 133924.	12.7	22
104	Characterization of Polypyrrole-CdSe/CdTe Nanocomposite Films Prepared with an All Electrochemical Deposition Process. Journal of Physical Chemistry B, 2003, 107, 6974-6978.	2.6	21
105	Tetragonal/orthorhombic-bismuth tungstate homojunction formed through in situ bismuth induced phase transformation as highly efficient photocatalyst for pollutant degradation. Journal of Colloid and Interface Science, 2022, 607, 269-280.	9.4	21
106	Growth of zirconia and yttria-stabilized zirconia nanorod arrays assisted by phase transition. CrystEngComm, 2010, 12, 3664.	2.6	20
107	Aerosol-Based Self-Assembly of a Ag–ZnO Hybrid Nanoparticle Cluster with Mechanistic Understanding for Enhanced Photocatalysis. Langmuir, 2018, 34, 5030-5039.	3.5	20
108	Triple functionalization of carved N-doped carbon nanoboxes with synergistic trimetallic sulphide for high performance lithium–sulphur batteries. Journal of Materials Chemistry A, 2021, 9, 9028-9037.	10.3	20

SHIH-YUAN LU

#	Article	IF	CITATIONS
109	Modeling particle growth and deposition in a tubular CVD reactor. Journal of Crystal Growth, 1999, 200, 527-542.	1.5	19
110	Hydrothermal growth and characterizations of dandelion-like ZnO nanostructures. Journal of Alloys and Compounds, 2013, 579, 444-449.	5.5	19
111	Selective and efficient cleavage of lignin model compound into value-added aromatic chemicals with CuFe2O4 nanoparticles decorated on partially reduced graphene oxides via sunlight-assisted heterogeneous Fenton processes. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97, 264-271.	5.3	19
112	Ceramic/Polyaniline Composite Porous Membranes. Journal of Porous Materials, 1999, 6, 153-159.	2.6	18
113	Collision integrals of discrete-sectional model in simulating powder production. AICHE Journal, 1994, 40, 1761-1764.	3.6	17
114	Effect of interfacial characteristics on effective conductivities of isotropic two-dimensional periodic composites. Chemical Engineering Science, 1995, 50, 2611-2631.	3.8	17
115	Preferential Partition of Nanowires in Thin Films of Immiscible Polymer Blends. Macromolecular Rapid Communications, 2006, 27, 424-429.	3.9	17
116	Electrochemical synthesis of ultrafast and gram-scale surfactant-free tellurium nanowires by gas–solid transformation and their applications as supercapacitor electrodes for p-doping of graphene transistors. Nanoscale, 2015, 7, 7535-7539.	5.6	17
117	SnFe ₂ O ₄ Nanocrystals as Highly Efficient Catalysts for Hydrogenâ€Peroxide Sensing. Chemistry - A European Journal, 2016, 22, 10877-10883.	3.3	17
118	Solvent-modulated reaction between mesoporous PbI2 film and CH3NH3I for enhancement of photovoltaic performances of perovskite solar cells. Electrochimica Acta, 2018, 266, 118-129.	5.2	17
119	Metal-organic framework-derived Mg-Zn hybrid nanocatalyst for biodiesel production. Advanced Powder Technology, 2022, 33, 103365.	4.1	17
120	Modulation of the coordination environment enhances the electrocatalytic efficiency of Mo single atoms toward water splitting. Journal of Materials Chemistry A, 2022, 10, 8784-8797.	10.3	17
121	Organic–inorganic hybrid polyaspartimide involving polyhedral oligomeric silsesquioxane via Michael addition for CO ₂ capture. Journal of Polymer Science Part A, 2012, 50, 2521-2526.	2.3	16
122	Morphology of and surface modification by TiO2 deposits on a porous ceramic substrate. Journal of Materials Science, 1999, 34, 4293-4304.	3.7	15
123	Fabrication of synthetic opals composed of mesoporous SnO2 spheres with an anodization-assisted double template process. Electrochemistry Communications, 2007, 9, 2867-2870.	4.7	15
124	Ag/AgFeO ₂ : An Outstanding Magnetically Responsive Photocatalyst for HeLa Cell Eradication. ACS Omega, 2017, 2, 4261-4268.	3.5	15
125	Heterogeneous Fenton Reaction Enabled Selective Colon Cancerous Cell Treatment. Scientific Reports, 2018, 8, 16580.	3.3	15
126	Effect of interfacial characteristics on effective conductivities of composites containing randomly distributed aligned long fibers. Chemical Engineering Science, 1996, 51, 4393-4404.	3.8	14

#	Article	IF	CITATIONS
127	Coating window for double layer extrusion slot coating of poly (vinyl-alcohol) solutions. Polymer Engineering and Science, 2001, 41, 1823-1829.	3.1	14
128	Silicalite/poly(dimethylsiloxane) nanocomposite pervaporation membranes for acetic acid/water separation. Journal of Materials Research, 2001, 16, 3053-3059.	2.6	14
129	Fabrication of Array of Nanoporous Tin Oxide Nanorods with Electrochemical Processes. Electrochemical and Solid-State Letters, 2005, 8, D9.	2.2	14
130	Formation of Nanowire Striations Driven by Marangoni Instability in Spin-Cast Polymer Thin Films. Langmuir, 2007, 23, 10069-10073.	3.5	14
131	Modulation and Improvement on Separation of Photoinduced Charge Carriers in CdSâ^'Metal Nanoheterostructures. Journal of Physical Chemistry C, 2009, 113, 17342-17346.	3.1	14
132	Large enhancements in hydrogen production of TiO2 through a simple carbon decoration. Carbon, 2013, 62, 69-75.	10.3	14
133	N-doped carbon dots@layer facilitated heterostructure of TiO2 polymorphs for efficient photoelectrochemical water oxidation. Journal of the Taiwan Institute of Chemical Engineers, 2018, 93, 388-396.	5.3	14
134	Enhancement of catalytic activity by UV-light irradiation in CeO2 nanocrystals. Scientific Reports, 2019, 9, 8018.	3.3	14
135	Creeping motion of a spherical aerosol particle in a cylindrical pore. Chemical Engineering Science, 2002, 57, 1479-1484.	3.8	13
136	Pyrolytic Carbon from an Aromatic Precursor and Its Application as a Counter Electrode in Dyeâ€ S ensitized Solar Cells. Chemistry - A European Journal, 2011, 17, 1358-1364.	3.3	13
137	CuO nanorods from carrier solvent assisted interfacial reaction processes: An unexpected extraordinary Fe-free photocatalyst in sunlight assisted Fenton-like processes. Journal of the Taiwan Institute of Chemical Engineers, 2017, 70, 244-251.	5.3	13
138	Diffusion and reaction in regular arrays of spheres. Journal of Chemical Physics, 1998, 109, 4985-4989.	3.0	12
139	Effective conductivities of rectangular arrays of aligned spheroids. Journal of Applied Physics, 1999, 85, 264-269.	2.5	12
140	Evaporation-Assisted Formation of Three-Dimensional Photonic Crystals. Journal of the American Ceramic Society, 2005, 88, 974-976.	3.8	11
141	Noble metal-titania hybrid nanoparticle clusters and the interaction to proteins for photo-catalysis in aqueous environments. Journal of Colloid and Interface Science, 2017, 490, 802-811.	9.4	11
142	Porous core-shell B-doped silicon–carbon composites as electrode materials for lithium ion capacitors. Journal of Power Sources, 2022, 531, 231345.	7.8	11
143	Nitrogen-doped carbon armored Cobalt oxide hollow nanocubes electrochemically anchored on fluorine-doped tin oxide substrate for acidic oxygen evolution reaction. Journal of Colloid and Interface Science, 2022, 623, 327-336.	9.4	11
144	Boundary effects on creeping motion of an aerosol particle in a non-concentric pore. Chemical Engineering Science, 2001, 56, 5207-5216.	3.8	10

#	Article	IF	CITATIONS
145	A first-passage scheme for determination of overall rate constants for non-diffusion-limited suspensions. Journal of Chemical Physics, 2002, 116, 3128-3133.	3.0	10
146	Patch size effect on diffusion and incorporation in dilute suspension of partially active spheres. Journal of Chemical Physics, 2004, 120, 3997-4003.	3.0	10
147	Deposition of Nanoâ€ s ize Titania—Silica Particles in a Hotâ€Wall CVD Process. Journal of the American Ceramic Society, 2000, 83, 709-712.	3.8	10
148	Twoâ€Dimensional Marangoniâ€Instabilityâ€Induced Periodic Patterns of Polymer Blend Films Cast on Tilted Substrates. Macromolecular Chemistry and Physics, 2008, 209, 615-624.	2.2	10
149	Thermophoretic motion of an aerosol particle in a non-concentric pore. Journal of Aerosol Science, 2001, 32, 1341-1358.	3.8	9
150	Size Effects on Silica Polymorphism. Journal of the American Ceramic Society, 2002, 85, 2590-2592.	3.8	9
151	Thermophoretic Motion of a Spherical Aerosol Particle in a Cylindrical Pore. Aerosol Science and Technology, 2003, 37, 455-459.	3.1	9
152	Opaline metallic photonic crystals possessing complete photonic band gaps in optical regime. Applied Physics Letters, 2008, 92, 121919.	3.3	9
153	Highly Photoluminescent Metal–Polymer Complexes prepared with a Facile Chemical Vapor Deposition Polymerization Process. Chemistry of Materials, 2008, 20, 2435-2437.	6.7	9
154	N-Doped Hierarchical Continuous Hollow Thin Porous Carbon Nanostructure for High-Performance Flexible Gel-Type Symmetric Supercapacitors. ACS Sustainable Chemistry and Engineering, 2019, 7, 17020-17029.	6.7	9
155	Solvent-Free Synthesis of MIL-101(Cr) for CO2 Gas Adsorption: The Effect of Metal Precursor and Molar Ratio. Sustainability, 2022, 14, 1152.	3.2	9
156	Overall rate constants for diffusion and incorporation in clusters of spheres. Journal of Chemical Physics, 2002, 117, 3431-3439.	3.0	8
157	Titania Nano-network Film Templated from Microphase-separated Block Copolymer and its Photocatalysis in Fractured Form. Journal of Materials Research, 2005, 20, 1523-1528.	2.6	8
158	Fabrication of Patterned Inverse Opal Structure Through Physical Confinement Assembly and Selective Electrochemical Deposition. Journal of the American Ceramic Society, 2007, 90, 1956-1958.	3.8	8
159	Morphological modulation of optoelectronic properties of organic–inorganic nanohybrids prepared with a one-step co-fed chemical vapor deposition polymerization process. Journal of Materials Chemistry, 2009, 19, 6766.	6.7	8
160	Differential Sensing of Serine and Tyrosine with Aligned CdS Nanowire Arrays Based on pHâ€Đependent Photoluminescence Behavior. ChemPhysChem, 2009, 10, 711-714.	2.1	7
161	Effects of Particle Surface Conditions on Conductivity of Spherical Dispersions. Journal of Colloid and Interface Science, 1997, 192, 386-397.	9.4	6
162	Overall rate constants for dilute spheroid dispersions. Chemical Engineering Science, 1999, 54, 3917-3920.	3.8	6

#	Article	IF	CITATIONS
163	Diffusion and reaction in rectangular arrays of spheroids. Journal of Chemical Physics, 2000, 113, 6906-6915.	3.0	6
164	High performance perovskite solar cells fabricated from porous PbI2-xBrx prepared with mixture solvent pore generation treatment. Electrochimica Acta, 2018, 292, 399-406.	5.2	6
165	Rate constants of spherical dispersions: From diffusion-limited data to nondiffusion limited results. Journal of Chemical Physics, 1999, 110, 12263-12264.	3.0	5
166	Immobilization and photocatalytic efficiency of titania nanoparticles on silica carrier spheres. Journal of Materials Research, 2006, 21, 2290-2297.	2.6	5
167	Efficiency Enhancement Achieved with Elongated Titania Nanocrystals for Dye Sensitized Solar Cells. Journal of the Electrochemical Society, 2011, 158, B1306.	2.9	5
168	One-step Sn4+-based anodic deposition for flattening of fluorine-doped tin oxide enabling large transmittance enhancements. RSC Advances, 2013, 3, 9011.	3.6	5
169	Membrane microstructure resulting from deposition of polydisperse particles. Journal of Membrane Science, 2000, 177, 55-71.	8.2	4
170	Oxide nanodot arrays templated from polymer nano-channels via a novel vapor-transport-assisted wet chemistry process. Journal of Materials Research, 2008, 23, 2061-2066.	2.6	4
171	Alkaline Water Splitting: In Situ Grown Bimetallic MOFâ€Based Composite as Highly Efficient Bifunctional Electrocatalyst for Overall Water Splitting with Ultrastability at High Current Densities (Adv. Energy Mater. 23/2018). Advanced Energy Materials, 2018, 8, 1870105.	19.5	4
172	Coating Sequence Effect for Composites Containing Multiply Coated Long Fibers. Journal of Composite Materials, 1998, 32, 1306-1324.	2.4	3
173	Optimal feeding for tower-type reactors. AICHE Journal, 2005, 51, 713-724.	3.6	3
174	Electrocatalysis: Wafer Scale Phase-Engineered 1T- and 2H-MoSe2 /Mo Core-Shell 3D-Hierarchical Nanostructures toward Efficient Electrocatalytic Hydrogen Evolution Reaction (Adv. Mater. 44/2016). Advanced Materials, 2016, 28, 9658-9658.	21.0	3
175	Twinning Enhances Efficiencies of Metallic Catalysts toward Electrolytic Water Splitting (Adv.) Tj ETQq1 1 0.7843	14 rgBT /(19.5	Overlock 10
176	A reciprocal theorem for effective conductivities of two-dimensional composites containing multiply coated cylinders of arbitrary cross section. Journal of Applied Physics, 1999, 85, 1975-1977.	2.5	2
177	Synthesis and characterization of ZnO nanostructures using modified chemical bath deposition method. Materials Letters, 2014, 137, 401-404.	2.6	2
178	Covering of substrate holes through particle deposition. Journal of Applied Physics, 2000, 88, 2331-2335.	2.5	1
179	Alkaline Water Splitting: NiFe/(Ni,Fe) ₃ S ₂ Core/Shell Nanowire Arrays as Outstanding Catalysts for Electrolytic Water Splitting at High Current Densities (Small Methods) Tj ETQq1 1 0.78	4 8.1 ⁄4 rgB	T / Overlock
180	Coating Shape Effect on Effective Conductivities of Aligned Long Elliptic Cylinder Reinforced Composites. Japanese Journal of Applied Physics, 2000, 39, 5202-5208.	1.5	0

#	Article	IF	CITATIONS
181	Minimum Coating Thickness in Pore Size Reduction of Inorganic Substrates through Particle Deposition. Japanese Journal of Applied Physics, 2001, 40, 4652-4656.	1.5	0
182	Determination of effective conductivities of imperfect contact composites with first-passage simulation. Physical Review E, 2003, 68, 056705.	2.1	0
183	Selectivity for patch-distributed reactive spherical surfaces. AICHE Journal, 2007, 53, 475-478.	3.6	0
184	Morphology-Dependent Optoelectronic Properties of Blue Emitter Poly(p-phenylene) Synthesized with Chemical Vapor Deposition Polymerization. Journal of Physical Chemistry B, 2010, 114, 7469-7473.	2.6	0
185	Threeâ€Dimensionally Extended Host Electrodes for Biosensor Applications. ChemElectroChem, 2016, 3, 552-557.	3.4	0
186	Solidâ€Liquid Interface Based Biphasic Reaction for Nanomaterial Preparation: Bundled CuO Nanorods as an Example and Their Outstanding Photocatalytic Efficiencies. ChemistrySelect, 2017, 2, 3276-3281.	1.5	0
187	(Invited) Exploring Synergistic Effects for High Performance Catalysts of Electrolytic Water Splitting. ECS Meeting Abstracts, 2021, MA2021-01, 1213-1213.	0.0	0