Marcelo Lozada-Hidalgo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8720655/publications.pdf

Version: 2024-02-01

516710 794594 2,824 18 16 citations h-index papers

19 g-index 19 19 19 4464 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Proton transport through one-atom-thick crystals. Nature, 2014, 516, 227-230.	27.8	668
2	Molecular transport through capillaries made with atomic-scale precision. Nature, 2016, 538, 222-225.	27.8	483
3	Electronic Properties of Graphene Encapsulated with Different Two-Dimensional Atomic Crystals. Nano Letters, 2014, 14, 3270-3276.	9.1	433
4	Sieving hydrogen isotopes through two-dimensional crystals. Science, 2016, 351, 68-70.	12.6	247
5	Limits on gas impermeability of graphene. Nature, 2020, 579, 229-232.	27.8	220
6	Complete steric exclusion of ions and proton transport through confined monolayer water. Science, 2019, 363, 145-148.	12.6	207
7	Scalable and efficient separation of hydrogen isotopes using graphene-based electrochemical pumping. Nature Communications, 2017, 8, 15215.	12.8	119
8	Perfect proton selectivity in ion transport through two-dimensional crystals. Nature Communications, 2019, 10, 4243.	12.8	60
9	Giant photoeffect in proton transport through graphene membranes. Nature Nanotechnology, 2018, 13, 300-303.	31.5	59
10	Proton and Li-Ion Permeation through Graphene with Eight-Atom-Ring Defects. ACS Nano, 2020, 14, 7280-7286.	14.6	55
11	2D Crystals Significantly Enhance the Performance of a Working Fuel Cell. Advanced Energy Materials, 2017, 7, 1601216.	19.5	53
12	Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals. Nature Nanotechnology, 2018, 13, 468-472.	31.5	45
13	Atomically thin micas as proton-conducting membranes. Nature Nanotechnology, 2019, 14, 962-966.	31.5	45
14	Ion exchange in atomically thin clays and micas. Nature Materials, 2021, 20, 1677-1682.	27.5	40
15	Raman spectroscopy of highly pressurized graphene membranes. Applied Physics Letters, 2016, 108, .	3.3	39
16	Exponentially selective molecular sieving through angstrom pores. Nature Communications, 2021, 12, 7170.	12.8	29
17	On the Chemistry and Diffusion of Hydrogen in the Interstitial Space of Layered Crystals <i>h</i> à€BN, MoS ₂ , and Graphite. Small, 2019, 15, e1901722.	10.0	12
18	Vortices on demand in multicomponent Bose-Einstein condensates. Physical Review A, 2012, 86, .	2.5	8