Alexandre Maréchal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8720607/publications.pdf

Version: 2024-02-01

25 papers 3,228 citations

567281 15 h-index 677142 22 g-index

27 all docs

27 docs citations

times ranked

27

5651 citing authors

#	Article	IF	CITATIONS
1	DNA Damage Sensing by the ATM and ATR Kinases. Cold Spring Harbor Perspectives in Biology, 2013, 5, a012716-a012716.	5 . 5	1,076
2	Recombination and the maintenance of plant organelle genome stability. New Phytologist, 2010, 186, 299-317.	7.3	402
3	RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Research, 2015, 25, 9-23.	12.0	362
4	ATR Autophosphorylation as a Molecular Switch for Checkpoint Activation. Molecular Cell, 2011, 43, 192-202.	9.7	216
5	PRP19 Transforms into a Sensor of RPA-ssDNA after DNA Damage and Drives ATR Activation via a Ubiquitin-Mediated Circuitry. Molecular Cell, 2014, 53, 235-246.	9.7	207
6	Whirly proteins maintain plastid genome stability in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14693-14698.	7.1	177
7	Whirly transcription factors: defense gene regulation and beyond. Trends in Plant Science, 2005, 10, 95-102.	8.8	133
8	Two Distinct Modes of ATR Activation Orchestrated by Rad17 and Nbs1. Cell Reports, 2013, 3, 1651-1662.	6.4	125
9	Crystal Structures of DNA-Whirly Complexes and Their Role in <i>Arabidopsis</i> Organelle Genome Repair Â. Plant Cell, 2010, 22, 1849-1867.	6.6	116
10	<scp>SHLD</scp> 2/ <scp>FAM</scp> 35A coâ€operates with <scp>REV</scp> 7 to coordinate <scp>DNA</scp> doubleâ€strand break repair pathway choice. EMBO Journal, 2018, 37, .	7.8	111
11	SMARCAL1 Resolves Replication Stress at ALT Telomeres. Cell Reports, 2016, 14, 1032-1040.	6.4	90
12	SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes and Development, 2014, 28, 1472-1484.	5.9	57
13	Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function. BMC Plant Biology, 2008, 8, 42.	3.6	37
14	A phosphorylation-and-ubiquitylation circuitry driving ATR activation and homologous recombination. Nucleic Acids Research, 2017, 45, 8859-8872.	14.5	33
15	Cell viability and secretion of active proteins in Schizosaccharomyces pombe do not require the chaperone function of calnexin. Biochemical Journal, 2004, 380, 441-448.	3.7	18
16	Cellular Depletion of BRD8 Causes p53-Dependent Apoptosis and Induces a DNA Damage Response in Non-Stressed Cells. Scientific Reports, 2018, 8, 14089.	3.3	15
17	Ubiquitylation at the Fork: Making and Breaking Chains to Complete DNA Replication. International Journal of Molecular Sciences, 2018, 19, 2909.	4.1	12
18	POGZ promotes homologyâ€directed DNA repair in an HP1â€dependent manner. EMBO Reports, 2022, 23, e51041.	4.5	9

#	Article	IF	CITATIONS
19	Investigation of Protein Recruitment to DNA Lesions Using 405 Nm Laser Micro-irradiation. Journal of Visualized Experiments, $2018, \ldots$	0.3	8
20	Human high-density lipoprotein microtranscriptome is unique and suggests an extended role in lipid metabolism. Epigenomics, 2019, 11, 917-934.	2.1	8
21	CUT Domains Stimulate Pol \hat{l}^2 Enzymatic Activities to Accelerate Completion of Base Excision Repair. Journal of Molecular Biology, 2021, 433, 166806.	4.2	6
22	The PRP19 Ubiquitin Ligase, Standing at the Cross-Roads of mRNA Processing and Genome Stability. Cancers, 2022, 14, 878.	3.7	6
23	A LARGe surprise links ATR and Rho. Cell Cycle, 2014, 13, 3627-3627.	2.6	O
24	Transcription factor families involved in plant defence: from discovery to structure, 2009, , 142-162.		0
25	Abstract A04: Phosphorylation and ubiquitylation on the RPA-ssDNA platform promote homologous recombination. , 2017, , .		0