Richard Maizels

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8720385/publications.pdf Version: 2024-02-01

		7096	10158
211	22,159	78	140
papers	citations	h-index	g-index
217	217	217	16084
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Intestinal epithelial tuft cell induction is negated by a murine helminth and its secreted products. Journal of Experimental Medicine, 2022, 219, .	8.5	40
2	The IL-25-dependent tuft cell circuit driven by intestinal helminths requires macrophage migration inhibitory factor (MIF). Mucosal Immunology, 2022, 15, 1243-1256.	6.0	18
3	Ascarosides from helminths pack a punch against allergy. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2202250119.	7.1	1
4	Tissue-based IL-10 signalling in helminth infection limits IFNÎ ³ expression and promotes the intestinal Th2 response. Mucosal Immunology, 2022, 15, 1257-1269.	6.0	12
5	Convergent evolution of a parasite-encoded complement control protein-scaffold to mimic binding of mammalian TGF-β to its receptors, TβRI and TβRII. Journal of Biological Chemistry, 2022, 298, 101994.	3.4	12
6	BMP signaling in the intestinal epithelium drives a critical feedback loop to restrain IL-13–driven tuft cell hyperplasia. Science Immunology, 2022, 7, eabl6543.	11.9	24
7	Suppression of airway allergic eosinophilia by <scp> <i>Hp </i>â€TGM </scp> , a helminth mimic of <scp>TGF </scp> â€Î². Immunology, 2022, 167, 197-211.	4.4	11
8	Prostaglandin E ₂ promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Science Advances, 2021, 7, .	10.3	44
9	Induction of stable human FOXP3 ⁺ Tregs by a parasiteâ€derived TGFâ€Î² mimic. Immunology and Cell Biology, 2021, 99, 833-847.	2.3	17
10	The chaperonin CCT8 controls proteostasis essential for T cell maturation, selection, and function. Communications Biology, 2021, 4, 681.	4.4	6
11	The parasite cytokine mimic <i>Hp</i> ‶GM potently replicates the regulatory effects of TGFâ€Î² on murine CD4 ⁺ T cells. Immunology and Cell Biology, 2021, 99, 848-864.	2.3	17
12	Helminth extracellular vesicles: Interactions with the host immune system. Molecular Immunology, 2021, 137, 124-133.	2.2	51
13	Oral delivery of a functional algal-expressed TGF-Î ² mimic halts colitis in a murine DSS model. Journal of Biotechnology, 2021, 340, 1-12.	3.8	15
14	Characterisation of the secreted apyrase family of Heligmosomoides polygyrus. International Journal for Parasitology, 2021, 51, 39-48.	3.1	5
15	The multi-faceted roles of TGF-β in regulation of immunity to infection. Advances in Immunology, 2021, 150, 1-42.	2.2	8
16	Identifying novel candidates and configurations for human helminth vaccines. Expert Review of Vaccines, 2021, 20, 1389-1393.	4.4	9
17	Tuft Cells Increase Following Ovine Intestinal Parasite Infections and Define Evolutionarily Conserved and Divergent Responses. Frontiers in Immunology, 2021, 12, 781108.	4.8	9
18	The yin and yang of human soil-transmitted helminth infections. International Journal for Parasitology, 2021, 51, 1243-1253.	3.1	31

#	Article	IF	CITATIONS
19	Regulation of immunity and allergy by helminth parasites. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 524-534.	5.7	98
20	Organoids – New Models for Host–Helminth Interactions. Trends in Parasitology, 2020, 36, 170-181.	3.3	43
21	The Helminth Parasite Heligmosomoides polygyrus Attenuates EAE in an IL-4Rα-Dependent Manner. Frontiers in Immunology, 2020, 11, 1830.	4.8	16
22	Extracellular vesicles: new targets for vaccines against helminth parasites. International Journal for Parasitology, 2020, 50, 623-633.	3.1	39
23	Regulatory T ells in helminth infection: induction, function and therapeutic potential. Immunology, 2020, 160, 248-260.	4.4	69
24	Macrophage Migration Inhibitory Factor (MIF) Is Essential for Type 2 Effector Cell Immunity to an Intestinal Helminth Parasite. Frontiers in Immunology, 2019, 10, 2375.	4.8	26
25	Innate Lymphoid Cells in Helminth Infections—Obligatory or Accessory?. Frontiers in Immunology, 2019, 10, 620.	4.8	18
26	A Macrophage-Pericyte Axis Directs Tissue Restoration via Amphiregulin-Induced Transforming Growth Factor Beta Activation. Immunity, 2019, 50, 645-654.e6.	14.3	141
27	Crystal structure of Brugia malayi venom allergen-like protein-1 (BmVAL-1), a vaccine candidate for lymphatic filariasis. International Journal for Parasitology, 2018, 48, 371-378.	3.1	17
28	Heligmosomoides polygyrus Venom Allergen-like Protein-4 (HpVAL-4) is a sterol binding protein. International Journal for Parasitology, 2018, 48, 359-369.	3.1	18
29	TGF-β mimic proteins form an extended gene family in the murine parasite Heligmosomoides polygyrus. International Journal for Parasitology, 2018, 48, 379-385.	3.1	39
30	Immunology: The Neuronal Pathway to Mucosal Immunity. Current Biology, 2018, 28, R33-R36.	3.9	4
31	Human toxocariasis. Lancet Infectious Diseases, The, 2018, 18, e14-e24.	9.1	278
32	Demonstration of the Anthelmintic Potency of Marimastat in the <i>Heligmosomoides polygyrus</i> Rodent Model. Journal of Parasitology, 2018, 104, 705-709.	0.7	1
33	Modulation of Host Immunity by Helminths: The Expanding Repertoire of Parasite Effector Molecules. Immunity, 2018, 49, 801-818.	14.3	287
34	Helminth-induced IL-4 expands bystander memory CD8+ T cells for early control of viral infection. Nature Communications, 2018, 9, 4516.	12.8	73
35	Secreted venom allergen-like proteins of helminths: Conserved modulators of host responses in animals and plants. PLoS Pathogens, 2018, 14, e1007300.	4.7	41
36	Concerted IL-25R and IL-4Rα signaling drive innate type 2 effector immunity for optimal helminth expulsion. ELife, 2018, 7, .	6.0	29

#	Article	IF	CITATIONS
37	Enteric helminth-induced type I interferon signaling protects against pulmonary virus infection through interaction with the microbiota. Journal of Allergy and Clinical Immunology, 2017, 140, 1068-1078.e6.	2.9	93
38	Extracellular Vesicles from a Helminth Parasite Suppress Macrophage Activation and Constitute an Effective Vaccine for Protective Immunity. Cell Reports, 2017, 19, 1545-1557.	6.4	197
39	Helminths in the gastrointestinal tract as modulators of immunity and pathology. American Journal of Physiology - Renal Physiology, 2017, 312, G537-G549.	3.4	56
40	Epidermal Growth Factor Receptor Expression Licenses Type-2 Helper T Cells to Function in a T Cell Receptor-Independent Fashion. Immunity, 2017, 47, 710-722.e6.	14.3	82
41	HpARI Protein Secreted by a Helminth Parasite Suppresses Interleukin-33. Immunity, 2017, 47, 739-751.e5.	14.3	130
42	A structurally distinct TGF-Î ² mimic from an intestinal helminth parasite potently induces regulatory T cells. Nature Communications, 2017, 8, 1741.	12.8	159
43	Myeloid Cell Phenotypes in Susceptibility and Resistance to Helminth Parasite Infections. , 2017, , 759-769.		0
44	Intestinal helminth infection drives carcinogenesis in colitis-associated colon cancer. PLoS Pathogens, 2017, 13, e1006649.	4.7	37
45	Macrophage origin limits functional plasticity in helminth-bacterial co-infection. PLoS Pathogens, 2017, 13, e1006233.	4.7	39
46	Fat-associated lymphoid clusters control local IgM secretion during pleural infection and lung inflammation. Nature Communications, 2016, 7, 12651.	12.8	92
47	Myeloid Cell Phenotypes in Susceptibility and Resistance to Helminth Parasite Infections. Microbiology Spectrum, 2016, 4, .	3.0	8
48	Macrobiota — helminths as active participants and partners of the microbiota in host intestinal homeostasis. Current Opinion in Microbiology, 2016, 32, 14-18.	5.1	62
49	Parasitic helminth infections and the control of human allergic and autoimmune disorders. Clinical Microbiology and Infection, 2016, 22, 481-486.	6.0	109
50	ILâ€33 delivery induces serous cavity macrophage proliferation independent of interleukinâ€4 receptor alpha. European Journal of Immunology, 2016, 46, 2311-2321.	2.9	31
51	Regulation of the host immune system by helminth parasites. Journal of Allergy and Clinical Immunology, 2016, 138, 666-675.	2.9	409
52	Plasmalogen enrichment in exosomes secreted by a nematode parasite versus those derived from its mouse host: implications for exosome stability and biology. Journal of Extracellular Vesicles, 2016, 5, 30741.	12.2	74
53	Novel O -linked methylated glycan antigens decorate secreted immunodominant glycoproteins from the intestinal nematode Heligmosomoides polygyrus. International Journal for Parasitology, 2016, 46, 157-170.	3.1	16
54	Host parasite communications—Messages from helminths for the immune system. Molecular and Biochemical Parasitology, 2016, 208, 33-40.	1.1	104

#	Article	IF	CITATIONS
55	Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature, 2016, 529, 226-230.	27.8	706
56	Prostaglandin E ₂ constrains systemic inflammation through an innate lymphoid cell–IL-22 axis. Science, 2016, 351, 1333-1338.	12.6	156
57	A central role for hepatic conventional dendritic cells in supporting Th2 responses during helminth infection. Immunology and Cell Biology, 2016, 94, 400-410.	2.3	22
58	Chronic Gastrointestinal Nematode Infection Mutes Immune Responses to Mycobacterial Infection Distal to the Gut. Journal of Immunology, 2016, 196, 2262-2271.	0.8	22
59	Microbes and asthma: Opportunities for intervention. Journal of Allergy and Clinical Immunology, 2016, 137, 690-697.	2.9	68
60	TGF-Î ² in tolerance, development and regulation of immunity. Cellular Immunology, 2016, 299, 14-22.	3.0	75
61	Known Allergen Structures Predict Schistosoma mansoni IgE-Binding Antigens in Human Infection. Frontiers in Immunology, 2015, 6, 26.	4.8	25
62	CCR7-dependent trafficking of RORÎ ³ + ILCs creates a unique microenvironment within mucosal draining lymph nodes. Nature Communications, 2015, 6, 5862.	12.8	185
63	Suppression of OVA-alum induced allergy by Heligmosomoides polygyrus products is MyD88-, TRIF-, regulatory T- and B cell-independent, but is associated with reduced innate lymphoid cell activation. Experimental Parasitology, 2015, 158, 8-17.	1.2	20
64	Concerted Activity of IgG1 Antibodies and IL-4/IL-25-Dependent Effector Cells Trap Helminth Larvae in the Tissues following Vaccination with Defined Secreted Antigens, Providing Sterile Immunity to Challenge Infection. PLoS Pathogens, 2015, 11, e1004676.	4.7	62
65	Schistosoma mansoni Larvae Do Not Expand or Activate Foxp3 ⁺ Regulatory T Cells during Their Migratory Phase. Infection and Immunity, 2015, 83, 3881-3889.	2.2	9
66	Exosomes and Other Extracellular Vesicles: The New Communicators in Parasite Infections. Trends in Parasitology, 2015, 31, 477-489.	3.3	307
67	Cohabitation in the Intestine: Interactions among Helminth Parasites, Bacterial Microbiota, and Host Immunity. Journal of Immunology, 2015, 195, 4059-4066.	0.8	154
68	A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells. Nature Communications, 2015, 6, 6920.	12.8	87
69	Comparisons of Allergenic and Metazoan Parasite Proteins: Allergy the Price of Immunity. PLoS Computational Biology, 2015, 11, e1004546.	3.2	43
70	MyD88 Signaling Inhibits Protective Immunity to the Gastrointestinal Helminth Parasite <i>Heligmosomoides polygyrus</i> . Journal of Immunology, 2014, 193, 2984-2993.	0.8	34
71	Commensal-pathogen interactions in the intestinal tract. Gut Microbes, 2014, 5, 522-532.	9.8	252
72	Vaccination against helminth parasite infections. Expert Review of Vaccines, 2014, 13, 473-487.	4.4	103

#	Article	IF	CITATIONS
73	Innate and adaptive type 2 immune cell responses in genetically controlled resistance to intestinal helminth infection. Immunology and Cell Biology, 2014, 92, 436-448.	2.3	128
74	The Secreted Triose Phosphate Isomerase of Brugia malayi Is Required to Sustain Microfilaria Production In Vivo. PLoS Pathogens, 2014, 10, e1003930.	4.7	22
75	Secreted Proteomes of Different Developmental Stages of the Gastrointestinal Nematode Nippostrongylus brasiliensis. Molecular and Cellular Proteomics, 2014, 13, 2736-2751.	3.8	88
76	Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nature Communications, 2014, 5, 5488.	12.8	640
77	ILâ€6 controls susceptibility to helminth infection by impeding Th2 responsiveness and altering the Treg phenotype in vivo. European Journal of Immunology, 2014, 44, 150-161.	2.9	70
78	Chitinase-like proteins promote IL-17-mediated neutrophilia in a tradeoff between nematode killing and host damage. Nature Immunology, 2014, 15, 1116-1125.	14.5	187
79	MHC-II: A Mutual Support System for ILCs and T Cells?. Immunity, 2014, 41, 174-176.	14.3	12
80	How helminths go viral. Science, 2014, 345, 517-518.	12.6	22
81	Acquired Immunity to Helminths. , 2014, , 313-323.		0
82	Helminths and Immunological Tolerance. Transplantation, 2014, 97, 127-132.	1.0	34
83	Into the wild: digging at immunology's evolutionary roots. Nature Immunology, 2013, 14, 879-883.	14.5	52
84	IL-4 directly signals tissue-resident macrophages to proliferate beyond homeostatic levels controlled by CSF-1. Journal of Experimental Medicine, 2013, 210, 2477-2491.	8.5	337
85	Toxocara canis: Molecular basis of immune recognition and evasion. Veterinary Parasitology, 2013, 193, 365-374.	1.8	110
86	Immunomodulation by helminth parasites: Defining mechanisms and mediators. International Journal for Parasitology, 2013, 43, 301-310.	3.1	277
87	Secretion of Protective Antigens by Tissue-Stage Nematode Larvae Revealed by Proteomic Analysis and Vaccination-Induced Sterile Immunity. PLoS Pathogens, 2013, 9, e1003492.	4.7	49
88	Gain of function of the immune system caused by a ryanodine receptor 1 mutation. Journal of Cell Science, 2013, 126, 3485-92.	2.0	14
89	ICOS controls Foxp3 + regulatory Tâ€cell expansion, maintenance and ILâ€10 production during helminth infection. European Journal of Immunology, 2013, 43, 705-715.	2.9	117
90	Oesophagostomum dentatum Extract Modulates T Cell-Dependent Immune Responses to Bystander Antigens and Prevents the Development of Allergy in Mice. PLoS ONE, 2013, 8, e67544.	2.5	23

#	Article	IF	CITATIONS
91	A Transcriptomic Analysis of Echinococcus granulosus Larval Stages: Implications for Parasite Biology and Host Adaptation. PLoS Neglected Tropical Diseases, 2012, 6, e1897.	3.0	72
92	Regulatory T Cells in Human Lymphatic Filariasis: Stronger Functional Activity in Microfilaremics. PLoS Neglected Tropical Diseases, 2012, 6, e1655.	3.0	63
93	Type 2 Innate Immunity in Helminth Infection Is Induced Redundantly and Acts Autonomously following CD11c ⁺ Cell Depletion. Infection and Immunity, 2012, 80, 3481-3489.	2.2	54
94	Cutting Edge: In the Absence of TGF-β Signaling in T Cells, Fewer CD103+ Regulatory T Cells Develop, but Exuberant IFN-γ Production Renders Mice More Susceptible to Helminth Infection. Journal of Immunology, 2012, 189, 1113-1117.	0.8	30
95	Helminth Infections and Host Immune Regulation. Clinical Microbiology Reviews, 2012, 25, 585-608.	13.6	429
96	Antibodies and IL-3 support helminth-induced basophil expansion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14954-14959.	7.1	42
97	Immunity to the model intestinal helminth parasite Heligmosomoides polygyrus. Seminars in Immunopathology, 2012, 34, 829-846.	6.1	193
98	Immune modulation and modulators in Heligmosomoides polygyrus infection. Experimental Parasitology, 2012, 132, 76-89.	1.2	105
99	T cells in helminth infection: the regulators and the regulated. Trends in Immunology, 2012, 33, 181-189.	6.8	166
100	Suppression of type 2 immunity and allergic airway inflammation by secreted products of the helminth <scp>H</scp> eligmosomoides polygyrus. European Journal of Immunology, 2012, 42, 2667-2682.	2.9	83
101	Susceptibility and immunity to helminth parasites. Current Opinion in Immunology, 2012, 24, 459-466.	5.5	174
102	Allergy challenged. Nature, 2012, 484, 458-459.	27.8	37
103	Prevention of Birch Pollen-Related Food Allergy by Mucosal Treatment with Multi-Allergen-Chimers in Mice. PLoS ONE, 2012, 7, e39409.	2.5	10
104	Regulatory T Cells in Infection. Advances in Immunology, 2011, 112, 73-136.	2.2	99
105	Regulatory and Activated T Cells in Human Schistosoma haematobium Infections. PLoS ONE, 2011, 6, e16860.	2.5	51
106	Schistosome Infection Intensity Is Inversely Related to Auto-Reactive Antibody Levels. PLoS ONE, 2011, 6, e19149.	2.5	41
107	Diversity and dialogue in immunity to helminths. Nature Reviews Immunology, 2011, 11, 375-388.	22.7	697
108	Analyzing Airway Inflammation with Chemical Biology: Dissection of Acidic Mammalian Chitinase Function with a Selective Drug-like Inhibitor. Chemistry and Biology, 2011, 18, 569-579.	6.0	44

#	Article	IF	CITATIONS
109	Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of Venom Allergen-Like (VAL) proteins. Journal of Proteomics, 2011, 74, 1573-1594.	2.4	136
110	Chronic Helminth Infection Promotes Immune Regulation In Vivo through Dominance of CD11cloCD103â^' Dendritic Cells. Journal of Immunology, 2011, 186, 7098-7109.	0.8	76
111	Th2 Responses to Helminth Parasites Can Be Therapeutically Enhanced by, but Are Not Dependent upon, GITR–GITR Ligand Costimulation In Vivo. Journal of Immunology, 2011, 187, 1411-1420.	0.8	20
112	Eosinophils Forestall Obesity. Science, 2011, 332, 186-187.	12.6	21
113	Heligmosomoides polygyrus Elicits a Dominant Nonprotective Antibody Response Directed against Restricted Glycan and Peptide Epitopes. Journal of Immunology, 2011, 187, 4764-4777.	0.8	46
114	Regulatory T cells in human geohelminth infection suppress immune responses to BCG and <i>Plasmodium falciparum</i> . European Journal of Immunology, 2010, 40, 437-442.	2.9	126
115	Helminthâ€induced CD19 ⁺ CD23 ^{hi} B cells modulate experimental allergic and autoimmune inflammation. European Journal of Immunology, 2010, 40, 1682-1696.	2.9	172
116	Developmental regulation and extracellular release of a <i>VSG</i> expression-site-associated gene product from <i>Trypanosoma brucei</i> bloodstream forms. Journal of Cell Science, 2010, 123, 3401-3411.	2.0	17
117	CD11c depletion severely disrupts Th2 induction and development in vivo. Journal of Experimental Medicine, 2010, 207, 2089-2096.	8.5	253
118	Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. Journal of Experimental Medicine, 2010, 207, 2331-2341.	8.5	437
119	A Family of Diverse Kunitz Inhibitors from Echinococcus granulosus Potentially Involved in Host-Parasite Cross-Talk. PLoS ONE, 2009, 4, e7009.	2.5	33
120	A Pivotal Role for CD40-Mediated IL-6 Production by Dendritic Cells during IL-17 Induction In Vivo. Journal of Immunology, 2009, 182, 2808-2815.	0.8	61
121	MIF homologues from a filarial nematode parasite synergize with IL-4 to induce alternative activation of host macrophages. Journal of Leukocyte Biology, 2009, 85, 844-854.	3.3	71
122	Helminth immunoregulation: The role of parasite secreted proteins in modulating host immunity. Molecular and Biochemical Parasitology, 2009, 167, 1-11.	1.1	627
123	Early recruitment of natural CD4 ⁺ Foxp3 ⁺ Treg cells by infective larvae determines the outcome of filarial infection. European Journal of Immunology, 2009, 39, 192-206.	2.9	114
124	Dynamics of CD11c+ dendritic cell subsets in lymph nodes draining the site of intestinal nematode infection. Immunology Letters, 2009, 127, 68-75.	2.5	25
125	Parasite immunomodulation and polymorphisms of the immune system. Journal of Biology, 2009, 8, 62.	2.7	59
126	Regulation of pathogenesis and immunity in helminth infections. Journal of Experimental Medicine, 2009, 206, 2059-2066.	8.5	218

#	Article	IF	CITATIONS
127	C-type lectins from the nematode parasites Heligmosomoides polygyrus and Nippostrongylus brasiliensis. Parasitology International, 2009, 58, 461-470.	1.3	42
128	The secretome of the filarial parasite, Brugia malayi: Proteomic profile of adult excretory–secretory products. Molecular and Biochemical Parasitology, 2008, 160, 8-21.	1.1	231
129	Four abundant novel transcript genes from Toxocara canis with unrelated coding sequences share untranslated region tracts implicated in the control of gene expression. Molecular and Biochemical Parasitology, 2008, 162, 60-70.	1.1	16
130	Cystatins from filarial parasites: Evolution, adaptation and function in the host–parasite relationshipâ~†. International Journal of Biochemistry and Cell Biology, 2008, 40, 1389-1398.	2.8	59
131	Expansion of Foxp3+ Regulatory T Cells in Mice Infected with the Filarial Parasite Brugia malayi. Journal of Immunology, 2008, 181, 6456-6466.	0.8	95
132	Alarming dendritic cells for Th2 induction. Journal of Experimental Medicine, 2008, 205, 13-17.	8.5	156
133	T-Cell Regulation in Helminth Parasite Infections: Implications for Inflammatory Diseases. Chemical Immunology and Allergy, 2008, 94, 112-123.	1.7	70
134	CTLA-4 and CD4+CD25+ Regulatory T Cells Inhibit Protective Immunity to Filarial Parasites In Vivo. Journal of Immunology, 2007, 179, 4626-4634.	0.8	113
135	Expansion and activation of CD4+CD25+ regulatory T cells in Heligmosomoides polygyrus infection. European Journal of Immunology, 2007, 37, 1874-1886.	2.9	198
136	O-Methylated glycans from Toxocara are specific targets for antibody binding in human and animal infections. International Journal for Parasitology, 2007, 37, 97-109.	3.1	59
137	IL-4R signaling is required to induce IL-10 for the establishment of Th2 dominance. International Immunology, 2006, 18, 1421-1431.	4.0	42
138	A New C-Type Lectin Similar to the Human Immunoreceptor DC-SIGN Mediates Symbiont Acquisition by a Marine Nematode. Applied and Environmental Microbiology, 2006, 72, 2950-2956.	3.1	104
139	F4/80+ Alternatively Activated Macrophages Control CD4+ T Cell Hyporesponsiveness at Sites Peripheral to Filarial Infection. Journal of Immunology, 2006, 176, 6918-6927.	0.8	106
140	Th2 induction by Nippostrongylus secreted antigens in mice deficient in B cells, eosinophils or MHC Class I-related receptors. Immunology Letters, 2005, 96, 93-101.	2.5	23
141	Infections and allergy — helminths, hygiene and host immune regulation. Current Opinion in Immunology, 2005, 17, 656-661.	5.5	217
142	Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Molecular and Biochemical Parasitology, 2005, 139, 197-203.	1.1	61
143	Heterologous expression of the filarial nematode alt gene products reveals their potential to inhibit immune function. BMC Biology, 2005, 3, 8.	3.8	40
144	Removal of Regulatory T Cell Activity Reverses Hyporesponsiveness and Leads to Filarial Parasite Clearance In Vivo. Journal of Immunology, 2005, 174, 4924-4933.	0.8	270

#	Article	IF	CITATIONS
145	Chitinase and Fizz Family Members Are a Generalized Feature of Nematode Infection with Selective Upregulation of Ym1 and Fizz1 by Antigen-Presenting Cells. Infection and Immunity, 2005, 73, 385-394.	2.2	233
146	Suppression of allergic airway inflammation by helminth-induced regulatory T cells. Journal of Experimental Medicine, 2005, 202, 1199-1212.	8.5	568
147	Comparison of IgG-ELISA and IgG4-ELISA for Toxocara serodiagnosis. Acta Tropica, 2005, 93, 57-62.	2.0	77
148	Resistance to Helminth Infection: The Case for Interleukinâ€5–Dependent Mechanisms. Journal of Infectious Diseases, 2004, 190, 427-429.	4.0	27
149	Helminth parasites – masters of regulation. Immunological Reviews, 2004, 201, 89-116.	6.0	761
150	Lymphatic filariasis and Brugia timori: prospects for elimination. Trends in Parasitology, 2004, 20, 351-355.	3.3	32
151	Regulation of allergy and autoimmunity in helminth infection. Clinical Reviews in Allergy and Immunology, 2004, 26, 35-50.	6.5	144
152	Selective maturation of dendritic cells byNippostrongylus brasiliensis-secreted proteins drives Th2 immune responses. European Journal of Immunology, 2004, 34, 3047-3059.	2.9	156
153	Immune Regulation by helminth parasites: cellular and molecular mechanisms. Nature Reviews Immunology, 2003, 3, 733-744.	22.7	975
154	Homologues of Human Macrophage Migration Inhibitory Factor from a Parasitic Nematode. Journal of Biological Chemistry, 2002, 277, 44261-44267.	3.4	99
155	Full-length-enriched cDNA libraries from Echinococcus granulosus contain separate populations of oligo-capped and trans-spliced transcripts and a high level of predicted signal peptide sequences. Molecular and Biochemical Parasitology, 2002, 122, 171-180.	1.1	67
156	Abundant larval transcript-1 and -2 genes from Brugia malayi: diversity of genomic environments but conservation of 5′ promoter sequences functional in Caenorhabditis elegans. Molecular and Biochemical Parasitology, 2002, 125, 59-71.	1.1	35
157	A cDNA encoding Tc-MUC-5, a mucin from Toxocara canis larvae identified by expression screening. Acta Tropica, 2001, 79, 211-217.	2.0	23
158	Immunological genomics ofBrugia malayi: filarial genes implicated in immune evasion and protective immunity. Parasite Immunology, 2001, 23, 327-344.	1.5	98
159	Expression and immune recognition of Brugia malayi VAL-1, a homologue of vespid venom allergens and Ancylostoma secreted proteins. Molecular and Biochemical Parasitology, 2001, 118, 89-96.	1.1	91
160	Immune evasion genes from filarial nematodes. International Journal for Parasitology, 2001, 31, 889-898.	3.1	158
161	Bm-CPI-2, a cystatin homolog secreted by the filarial parasite Brugia malayi, inhibits class II MHC-restricted antigen processing. Current Biology, 2001, 11, 447-451.	3.9	208
162	Serine proteinase inhibitors from nematodes and the arms race between host and pathogen. Trends in Biochemical Sciences, 2001, 26, 191-197.	7.5	136

#	Article	IF	CITATIONS
163	A <i>Brugia malayi</i> Homolog of Macrophage Migration Inhibitory Factor Reveals an Important Link Between Macrophages and Eosinophil Recruitment During Nematode Infection. Journal of Immunology, 2001, 167, 5348-5354.	0.8	121
164	Ascaris suum-Derived Products Induce Human Neutrophil Activation via a G Protein-Coupled Receptor That Interacts with the Interleukin-8 Receptor Pathway. Infection and Immunity, 2001, 69, 4007-4018.	2.2	25
165	Proteins secreted by the parasitic nematodeNippostrongylus brasiliensis act as adjuvants for Th2 responses. European Journal of Immunology, 2000, 30, 1977-1987.	2.9	131
166	Alternatively activated macrophages induced by nematode infection inhibit proliferation via cell-to-cell contact. European Journal of Immunology, 2000, 30, 2669-2678.	2.9	196
167	Toxocara canis: genes expressed by the arrested infective larval stage of a parasitic nematode. International Journal for Parasitology, 2000, 30, 495-508.	3.1	70
168	The New Subfamily of Cathepsin-Z-like Protease Genes Includes Tc-cpz-1, a Cysteine Protease Gene Expressed in Toxocara canis Adults and Infective Stage Larvae. Experimental Parasitology, 2000, 94, 201-207.	1.2	19
169	The Abundant Larval Transcript-1 and -2 Genes of Brugia malayi Encode Stage-Specific Candidate Vaccine Antigens for Filariasis. Infection and Immunity, 2000, 68, 4174-4179.	2.2	152
170	The Serpin Secreted by <i>Brugia malayi</i> Microfilariae, Bm-SPN-2, Elicits Strong, but Short-Lived, Immune Responses in Mice and Humans. Journal of Immunology, 2000, 165, 5161-5169.	0.8	61
171	Identification of tgh-2, a Filarial Nematode Homolog of Caenorhabditis elegans daf-7 and Human Transforming Growth Factor Î ² , Expressed in Microfilarial and Adult Stages of Brugia malayi. Infection and Immunity, 2000, 68, 6402-6410.	2.2	159
172	A Family of Secreted Mucins from the Parasitic Nematode Toxocara canis Bears Diverse Mucin Domains but Shares Similar Flanking Six-cysteine Repeat Motifs. Journal of Biological Chemistry, 2000, 275, 39600-39607.	3.4	81
173	Immunology of Lymphatic Filariasis: Current Controversies. Tropical Medicine, 2000, , 217-243.	0.3	13
174	Identification of tgh-2, a Filarial Nematode Homolog of Caenorhabditis elegans daf-7 and Human Transforming Growth Factor β, Expressed in Microfilarial and Adult Stages of Brugia malayi. Infection and Immunity, 2000, 68, 6402-6410.	2.2	21
175	Reversal in microfilarial density and T cell responses in human lymphatic filariasis. Parasite Immunology, 1999, 21, 565-571.	1.5	20
176	Vaccination against helminth parasites - the ultimate challenge for vaccinologists?. Immunological Reviews, 1999, 171, 125-147.	6.0	77
177	A novel C-type lectin secreted by a tissue-dwelling parasitic nematode. Current Biology, 1999, 9, 825-828.	3.9	109
178	Identification of Abundantly Expressed Novel and Conserved Genes from the Infective Larval Stage of <i>Toxocara canis</i> by an Expressed Sequence Tag Strategy. Infection and Immunity, 1999, 67, 4771-4779.	2.2	79
179	A Novel Serpin Expressed by Blood-Borne Microfilariae of the Parasitic Nematode Brugia malayi Inhibits Human Neutrophil Serine Proteinases. Blood, 1999, 94, 1418-1428.	1.4	2
180	A Novel Member of the Transforming Growth Factor-β (TGF-β) Superfamily from the Filarial NematodesBrugia malayiandB. pahangi. Experimental Parasitology, 1998, 88, 200-209.	1.2	97

#	Article	IF	CITATIONS
181	Characterisation of Tc-cpl-1, a cathepsin L-like cysteine protease from Toxocara canis infective larvae1Note: Nucleotide sequence data reported here are available in GenBank database under the accession number U53172.1. Molecular and Biochemical Parasitology, 1998, 92, 275-289.	1.1	46
182	Parasite immunity: Pathways for expelling intestinal helminths. Current Biology, 1998, 8, R711-R714.	3.9	59
183	Antibody responses to filarial infective larvae are not dominated by the lgG4 isotype. Parasite Immunology, 1998, 20, 9-17.	1.5	32
184	Cloning and Characterisation of a Prohibitin Gene from Infective Larvae of the Parasitic Nematode <i>Toxocara canis</i> . DNA Sequence, 1998, 9, 323-328.	0.7	11
185	Antibody responses to filarial infective larvae are not dominated by the IgG4 isotype. Parasite Immunology, 1998, 20, 9-17.	1.5	1
186	Depression of Antigen-Specific Interleukin-5 and Interferon-Î ³ Responses in Human Lymphatic Filariasis as a Function of Clinical Status and Age. Journal of Infectious Diseases, 1997, 175, 1276-1280.	4.0	96
187	HLA-DQ Alleles Associate with Cutaneous Features of Onchocerciasis. Human Immunology, 1997, 55, 46-52.	2.4	33
188	Differentially expressed, abundant trans-spliced cDNAs from larval Brugia malayi1Note: Nucleotide sequence data reported in this paper are available in the EMBL, GenBankâ,,¢ and DDJB databases under the accession numbers U57547, U80971-U80980, U81008 and U84736.1. Molecular and Biochemical Parasitology, 1997, 87, 85-95.	1.1	78
189	Immunology of Human Helminth Infection. International Archives of Allergy and Immunology, 1996, 109, 3-10.	2.1	143
190	Nippostrongylus brasiliensis:Cytokine Responses and Nematode Expulsion in Normal and IL-4-Deficient Mice. Experimental Parasitology, 1996, 84, 65-73.	1.2	108
191	In Th2-biased lymphatic filarial patients, responses to purified protein derivative ofMycobacterium tuberculosis remain Th1. European Journal of Immunology, 1996, 26, 501-504.	2.9	36
192	APC from mice harbouring the filarial nematode, Brugia malayi, prevent cellular proliferation but not cytokine production. International Immunology, 1996, 8, 143-151.	4.0	108
193	Human Onchocerciasis in Nigeria: Isotypic Responses and Antigen Recognition in Individuals with Defined Cutaneous Pathology. American Journal of Tropical Medicine and Hygiene, 1996, 54, 600-612.	1.4	9
194	An Abundant, trans-spliced mRNA from Toxocara canis Infective Larvae Encodes a 26-kDa Protein with Homology to Phosphatidylethanolamine-binding Proteins. Journal of Biological Chemistry, 1995, 270, 18517-18522.	3.4	88
195	Specific T cell unresponsiveness in human filariasis: diversity in underlying mechanisms. Parasite Immunology, 1995, 17, 587-594.	1.5	38
196	Heterogeneity of IgG antibody responses to cloned Onchocerca volvulus antigens in microfiladermia positive individuals from Esmeraldas Province, Ecuador. Parasite Immunology, 1994, 16, 201-209.	1.5	13
197	Elevated levels of T cell activation antigen CD27 and increased interleukin-4 production in human lymphatic filariasis. European Journal of Immunology, 1993, 23, 3312-3317.	2.9	55
198	Immunological modulation and evasion by helminth parasites in human populations. Nature, 1993, 365, 797-805.	27.8	519

#	Article	IF	CITATIONS
199	Immunity and the prospects for vaccination against filariasis. Immunobiology, 1992, 184, 263-281.	1.9	29
200	Age-specific acquisition of immunity to infective larvae in a bancroftian filariasis endemic area of Papua New Guinea. Parasite Immunology, 1991, 13, 277-290.	1.5	96
201	Characterization of nematode glycoproteins: the major O-glycans of Toxocara excretory-secretory antigens are O-methylated trisaccharides. Glycobiology, 1991, 1, 163-171.	2.5	96
202	Cuticular localisation and turnover of the major surface glycoprotein (gp29) of adult Brugia malayi. Molecular and Biochemical Parasitology, 1990, 42, 31-43.	1.1	43
203	Biochemical and immunochemical characterisation of a 20-kilodalton complex of surface-associated antigens from adult Onchocerca gutturosa filarial nematodes. Molecular and Biochemical Parasitology, 1989, 34, 197-208.	1.1	18
204	Filarial surface antigens: the major 29 kilodalton glycoprotein and a novel 17–200 kilodalton complex from adult Brugia malayi parasites. Molecular and Biochemical Parasitology, 1989, 32, 213-227.	1.1	80
205	Identification, synthesis and immunogenicity of cuticular collagens from the filarial nematodes Brugia malayi and Brugia pahangi. Molecular and Biochemical Parasitology, 1989, 32, 229-246.	1.1	67
206	The antibody recognition profiles of humans naturally infected with <i>Ascaris lumbricoides</i> . Parasite Immunology, 1989, 11, 615-627.	1.5	47
207	Toxocara canis: Proteolytic enzymes secreted by the infective larvae in vitro. Experimental Parasitology, 1989, 69, 30-36.	1.2	51
208	Secretory acetylcholinesterases from Brugia malayi adult and microfilarial parasites. Molecular and Biochemical Parasitology, 1987, 26, 257-265.	1.1	49
209	Biochemical properties of larval excretory-secretory glycoproteins of the parasitic nematode Toxocara canis. Molecular and Biochemical Parasitology, 1986, 18, 155-170.	1.1	75
210	Secreted and circulating antigens of the filarial parasite Brugia pahangi: Analysis of in vitro released components and detection of parasite products in vivo. Molecular and Biochemical Parasitology, 1985, 17, 277-288.	1.1	44
211	Surface antigens of a filarial nematode: analysis of adult Brugia pahangi surface components and their use in monoclonal antibody production. Molecular and Biochemical Parasitology, 1985, 15, 203-210.	1.1	50