
Hartmut Yersin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8720356/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Eliminating the Reverse ISC Bottleneck of TADF Through Excited State Engineering and Environmentâ€Tuning Toward State Resonance Leading to Monoâ€Exponential Subâ€Âµs Decay. High OLED External Quantum Efficiency Confirms Efficient Exciton Harvesting. Advanced Functional Materials, 2022, 32, .	14.9	19
2	Pâ^©N Bridged Cu(I) Dimers Featuring Both TADF and Phosphorescence. From Overview towards Detailed Case Study of the Excited Singlet and Triplet States. Molecules, 2021, 26, 3415.	3.8	9
3	Sandwichâ€Like Encapsulation of a Highly Luminescent Copper(I) Complex. Advanced Optical Materials, 2021, 9, 2100516.	7.3	12
4	Fabrication of a Solution-Processed White Light Emitting Diode Containing a Single Dimeric Copper(I) Emitter Featuring Combined TADF and Phosphorescence. Micromachines, 2021, 12, 1500.	2.9	10
5	Cu(I) Complexes of Multidentate N,C,N- and P,C,P-Carbodiphosphorane Ligands and Their Photoluminescence. Molecules, 2020, 25, 3990.	3.8	8
6	Cu(I) and Ag(I) Complexes with a New Type of Rigid Tridentate N,P,P-Ligand for Thermally Activated Delayed Fluorescence and OLEDs with High External Quantum Efficiency. Chemistry of Materials, 2020, 32, 10365-10382.	6.7	45
7	Design of a New Mechanism beyond Thermally Activated Delayed Fluorescence toward Fourth Generation Organic Light Emitting Diodes. Chemistry of Materials, 2019, 31, 6110-6116.	6.7	44
8	Ag(<scp>i</scp>) complex design affording intense phosphorescence with a landmark lifetime of over 100 milliseconds. Dalton Transactions, 2019, 48, 2802-2806.	3.3	30
9	Symmetry-Based Design Strategy for Unprecedentedly Fast Decaying Thermally Activated Delayed Fluorescence (TADF). Application to Dinuclear Cu(I) Compounds. Chemistry of Materials, 2019, 31, 4392-4404.	6.7	51
10	Sky-blue thermally activated delayed fluorescence (TADF) based on Ag(<scp>i</scp>) complexes: strong solvation-induced emission enhancement. Inorganic Chemistry Frontiers, 2019, 6, 3168-3176.	6.0	43
11	Design strategies for materials showing thermally activated delayed fluorescence and beyond: Towards the fourthâ€generation OLED mechanism. Journal of the Society for Information Display, 2018, 26, 194-199.	2.1	26
12	Dinuclear Ag(I) Complex Designed for Highly Efficient Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry Letters, 2018, 9, 702-709.	4.6	60
13	Deep blue emitting Cu(<scp>i</scp>) tripod complexes. Design of high quantum yield materials showing TADF-assisted phosphorescence. Dalton Transactions, 2018, 47, 17067-17076.	3.3	37
14	Temperature dependence of photophysical properties of a dinuclear C^N-cyclometalated Pt(<scp>ii</scp>) complex with an intimate Pt–Pt contact. Zero-field splitting and sub-state decay rates of the lowest triplet. Physical Chemistry Chemical Physics, 2018, 20, 25096-25104.	2.8	13
15	Gold(I) Complexes Containing Phosphanyl―and Arsanylborane Ligands. Chemistry - A European Journal, 2018, 24, 10073-10077.	3.3	16
16	6â€1: <i>Distinguished Paper and Invited Paper:</i> Design Strategies for Materials Showing Thermally Activated Delayed Fluorescence and Beyond: Towards the Fourthâ€generation OLED Mechanism. Digest of Technical Papers SID International Symposium, 2018, 49, 48-51.	0.3	1
17	Dinuclear Cu(l) Complex with Combined Bright TADF and Phosphorescence. Zero-Field Splitting and Spin–Lattice Relaxation Effects of the Triplet State. Journal of Physical Chemistry Letters, 2018, 9, 2848-2856.	4.6	60
18	Design of Conformationally Distorted Donor–Acceptor Dyads Showing Efficient Thermally Activated Delayed Fluorescence. Journal of Physical Chemistry Letters, 2018, 9, 3692-3697.	4.6	36

#	Article	IF	CITATIONS
19	Design Strategy for Ag(I)-Based Thermally Activated Delayed Fluorescence Reaching an Efficiency Breakthrough. Chemistry of Materials, 2017, 29, 1708-1715.	6.7	93
20	Highly Efficient Organic Lightâ€Emitting Diode Using A Low Refractive Index Electron Transport Layer. Advanced Optical Materials, 2017, 5, 1700197.	7.3	44
21	TADF Material Design: Photophysical Background and Case Studies Focusing on Cu ^I and Ag ^I Complexes. ChemPhysChem, 2017, 18, 3508-3535.	2.1	190
22	Thermally Activated Delayed Fluorescence from Ag(I) Complexes: A Route to 100% Quantum Yield at Unprecedentedly Short Decay Time. Inorganic Chemistry, 2017, 56, 13274-13285.	4.0	85
23	Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties. Topics in Current Chemistry Collections, 2017, , 141-174.	0.5	3
24	Cu(I) complexes – Thermally activated delayed fluorescence. Photophysical approach and material design. Coordination Chemistry Reviews, 2016, 325, 2-28.	18.8	416
25	Copper(I) Complexes for Thermally Activated Delayed Fluorescence: From Photophysical to Device Properties. Topics in Current Chemistry, 2016, 374, 25.	5.8	133
26	Thermally Tunable Dual Emission of the d ⁸ –d ⁸ Dimer [Pt ₂ (l¼-P ₂ O ₅ (BF ₂) ₂) ₄] ^{4â€ Inorganic Chemistry, 2016, 55, 2441-2449.}	" ≪∤so up>.	42
27	Encapsulation of Functional Organic Compounds in Nanoglass for Optically Anisotropic Coatings. Angewandte Chemie - International Edition, 2015, 54, 4963-4967.	13.8	20
28	Charge-transfer excited states in phosphorescent organo-transition metal compounds: a difficult case for time dependent density functional theory?. RSC Advances, 2015, 5, 63318-63329.	3.6	72
29	Diversity of Copper(I) Complexes Showing Thermally Activated Delayed Fluorescence: Basic Photophysical Analysis. Inorganic Chemistry, 2015, 54, 4322-4327.	4.0	168
30	Halocuprate(<scp>i</scp>) zigzag chain structures with N-methylated DABCO cations – bright metal-centered luminescence and thermally activated color shifts. Dalton Transactions, 2015, 44, 19305-19313.	3.3	24
31	Electric-field induced nonlinear optical materials based on a bipolar copper (I) complex embedded in polymer matrices. Journal of Materials Science: Materials in Electronics, 2015, 26, 8394-8397.	2.2	8
32	A new class of deep-blue emitting Cu(<scp>i</scp>) compounds – effects of counter ions on the emission behavior. Dalton Transactions, 2015, 44, 20045-20055.	3.3	47
33	Quasi-epitaxial Growth of [Ru(bpy)3]2+by Confinement in Clay Nanoplatelets Yields Polarized Emission. Small, 2015, 11, 792-796.	10.0	8
34	Highly Efficient Luminescence of Cu(I) Compounds: Thermally Activated Delayed Fluorescence Combined with Short-Lived Phosphorescence. Journal of the American Chemical Society, 2015, 137, 399-404.	13.7	394
35	A new class of luminescent Cu(<scp>i</scp>) complexes with tripodal ligands – TADF emitters for the yellow to red color range. Dalton Transactions, 2015, 44, 8506-8520.	3.3	84
36	Phosphorescence versus Thermally Activated Delayed Fluorescence. Controlling Singlet–Triplet Splitting in Brightly Emitting and Sublimable Cu(I) Compounds. Journal of the American Chemical Society, 2014, 136, 16032-16038.	13.7	372

#	Article	IF	CITATIONS
37	TADF for singlet harvesting: next generation OLED materials based on brightly green and blue emitting Cu(I) and Ag(I) compounds. Proceedings of SPIE, 2014, , .	0.8	22
38	Thermally Activated Delayed Fluorescence (TADF) and Enhancing Photoluminescence Quantum Yields of [Cu ^I (diimine)(diphosphine)] ⁺ Complexes—Photophysical, Structural, and Computational Studies. Inorganic Chemistry, 2014, 53, 10854-10861.	4.0	198
39	Brightly Luminescent Pt(II) Pincer Complexes with a Sterically Demanding Carboranyl-Phenylpyridine Ligand: A New Material Class for Diverse Optoelectronic Applications. Journal of the American Chemical Society, 2014, 136, 9637-9642.	13.7	165
40	Novel oligonuclear copper complexes featuring exciting luminescent characteristics. Proceedings of SPIE, 2013, , .	0.8	3
41	Brightly Blue and Green Emitting Cu(l) Dimers for Singlet Harvesting in OLEDs. Journal of Physical Chemistry A, 2013, 117, 11823-11836.	2.5	224
42	Photophysical Properties of Cyclometalated Pt(II) Complexes: Counterintuitive Blue Shift in Emission with an Expanded Ligand π System. Inorganic Chemistry, 2013, 52, 12403-12415.	4.0	143
43	Highly efficient thermally activated fluorescence of a new rigid Cu(i) complex [Cu(dmp)(phanephos)]+. Dalton Transactions, 2013, 42, 9826.	3.3	153
44	Synthesis, Structure, and Characterization of Dinuclear Copper(I) Halide Complexes with P^N Ligands Featuring Exciting Photoluminescence Properties. Inorganic Chemistry, 2013, 52, 2292-2305.	4.0	311
45	Singlet harvesting with brightly emitting Cu(I) and metal-free organic compounds. , 2012, , .		31
46	Improving the Performance of Pt(II) Complexes for Blue Light Emission by Enhancing the Molecular Rigidity. Inorganic Chemistry, 2012, 51, 312-319.	4.0	211
47	Palladium(ii)- and platinum(ii)phenyl-2,6-bis(oxazole) pincer complexes: Syntheses, crystal structures, and photophysical properties. Dalton Transactions, 2011, 40, 8800.	3.3	13
48	Blue-Light Emission of Cu(I) Complexes and Singlet Harvesting. Inorganic Chemistry, 2011, 50, 8293-8301.	4.0	410
49	The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs. Coordination Chemistry Reviews, 2011, 255, 2622-2652.	18.8	1,114
50	Organometallic Pt(II) and Ir(III) Triplet Emitters for OLED Applications and the Role of Spin–Orbit Coupling: A Study Based on High-Resolution Optical Spectroscopy. Topics in Organometallic Chemistry, 2010, , 193-235.	0.7	201
51	Photophysical Properties and OLED Applications of Phosphorescent Platinum(II) Schiff Base Complexes. Chemistry - A European Journal, 2010, 16, 233-247.	3.3	261
52	Magnetic field effects on the phosphorescence of Pt(4,6-dFppy)(acac) – Tunability of the vibrational satellite structure. Chemical Physics Letters, 2010, 484, 261-265.	2.6	19
53	Triplet state properties of a red light emitting [Pt(s-thpy)(acac)] compound. Chemical Physics Letters, 2010, 486, 53-59.	2.6	24
54	The Triplet State of <i>fac</i> -lr(ppy) ₃ . Inorganic Chemistry, 2010, 49, 9290-9299.	4.0	343

#	Article	IF	CITATIONS
55	The Lowest Excited State of Brightly Emitting Gold(I) Triphosphine Complexes. Inorganic Chemistry, 2010, 49, 3764-3767.	4.0	52
56	Bright Sky-Blue Phosphorescence of [<i>n</i> -Bu ₄ N][Pt(4,6-dFppy)(CN) ₂]: Synthesis, Crystal Structure, and Detailed Photophysical Studies. Inorganic Chemistry, 2010, 49, 7818-7825.	4.0	49
57	Cold(I) Complexes Bearing Pâ^©N-Ligands: An Unprecedented Twelve-membered Ring Structure Stabilized by Aurophilic Interactions. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2009, 64, 1513-1524.	0.7	25
58	Triplet state relaxation processes of the OLED emitter Pt(4,6-dFppy)(acac). Chemical Physics Letters, 2009, 468, 46-51.	2.6	32
59	Photophysical properties of Re(pbt)(CO)4 studied by high resolution spectroscopy. Chemical Physics Letters, 2009, 468, 205-210.	2.6	20
60	Probing the Excited State Properties of the Highly Phosphorescent Pt(dpyb)Cl Compound by High-Resolution Optical Spectroscopy. Inorganic Chemistry, 2009, 48, 11407-11414.	4.0	68
61	Exceptional Oxygen Sensing Capabilities and Triplet State Properties of Ir(ppy-NPh ₂) ₃ . Chemistry of Materials, 2009, 21, 2173-2175.	6.7	120
62	Synthesis of Cyclometallated Platinum Complexes with Substituted Thienylpyridines and Detailed Characterization of Their Luminescence Properties. Inorganic Chemistry, 2009, 48, 4179-4189.	4.0	74
63	Blue Light Emitting Ir(III) Compounds for OLEDs - New Insights into Ancillary Ligand Effects on the Emitting Triplet State. Journal of Physical Chemistry A, 2009, 113, 5927-5932.	2.5	150
64	Matrix Effects on the Triplet State of the OLED Emitter Ir(4,6-dFppy) ₂ (pic) (FIrpic): Investigations by High-Resolution Optical Spectroscopy. Inorganic Chemistry, 2009, 48, 1928-1937.	4.0	119
65	μ-Bis(diphenylarsino)methane-κ2As:As′-bis[chloridogold(I)]. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, m281-m281.	0.2	0
66	Matrix influence on the OLED emitter Ir(btp)2(acac) in polymeric host materials – Studies by persistent spectral hole burning. Organic Electronics, 2008, 9, 641-648.	2.6	30
67	Triplet state properties of [Os(phen)2(dppene)]2+ in different host materials and host to guest energy transfer in PVK. Chemical Physics Letters, 2008, 455, 72-78.	2.6	11
68	Unprecedented coordination chemistry of a chloro(phosphine)gold(I) complex: [(Ad2BnP)2Au][AuCl2]. Inorganic Chemistry Communication, 2008, 11, 409-412.	3.9	23
69	{Bis[2-(diphenylphosphanyl)phenyl] ether-l̂°2P,P′}(1,1′-dibenzyl-1H,1′H-4,4′bi-1,2,3-triazole-l̂°2N3,N3 hexafluoridophosphate dichloromethane hemisolvate. Acta Crystallographica Section E: Structure Reports Online, 2008, 64, m195-m195.	′)coppe 0.2	er(l) 1
70	Spin-orbit coupling routes and OLED performance: studies of blue-light emitting Ir(III) and Pt(II) complexes. Proceedings of SPIE, 2007, , .	0.8	32
71	Triplet State Properties of the OLED Emitter Ir(btp)2(acac):Â Characterization by Site-Selective Spectroscopy and Application of High Magnetic Fields. Inorganic Chemistry, 2007, 46, 5076-5083.	4.0	88
72	Synthesis, Characterisation and Ligand Properties of Novel Biâ€1,2,3â€triazole Ligands. European Journal of Inorganic Chemistry, 2007, 2007, 4597-4606.	2.0	79

#	Article	IF	CITATIONS
73	Phosphorescence dynamics and spin-lattice relaxation of the OLED emitter Ir(btp)2(acac). Chemical Physics Letters, 2007, 444, 273-279.	2.6	29
74	Synthesis, crystal structures, and electronic spectra of (1,8-naphthyridine)ReI(CO)3Cl and [(1,8-naphthyridine)CuI(DPEPhos)]PF6. Inorganic Chemistry Communication, 2007, 10, 1473-1477.	3.9	20
75	Bis(4,4′-di- <i>tert</i> -butyl-2,2′-bipyridine-κ ² <i>N</i> , <i>N</i> ′)silver(l) trifluoromethanesulfonate. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, m2364-m2364.	0.2	2
76	Phosphorescence Studies of the Pt(thpy)[sub 2] Complex for Use in Single Molecule Spectroscopy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2005, 99, 297.	0.6	4
77	Crystal Structure offacâ^'Ir(ppy)3and Emission Properties under Ambient Conditions and at High Pressureâ€. Chemistry of Materials, 2005, 17, 1745-1752.	6.7	75
78	Structure and Spectroscopy of Tb[Au(CN)2]3·3H2O. Journal of Physical Chemistry B, 2005, 109, 13083-13090.	2.6	25
79	Organometallic triplet emitters for OLED applications: controlling emission properties by chemical variation. , 2004, 5214, 124.		12
80	Emission and absorption of Ir(ppy)2(CO)(Cl) – temperature dependence, phosphorescence decay dynamics, and assignment of excited states. Chemical Physics Letters, 2004, 397, 289-295.	2.6	45
81	Emission properties of Ir(ppy) 3 and Ir(ppy) 2 (CO)(Cl): compounds with different transition types. , 2004, 5214, 356.		9
82	Emission of Ir(ppy)3. Temperature dependence, decay dynamics, and magnetic field properties. Chemical Physics Letters, 2003, 377, 299-305.	2.6	221
83	Organometallic Pt(II) Compounds. A Complementary Study of a Triplet Emitter Based on Optical High-Resolution and Optically Detected Magnetic Resonance Spectroscopy. Inorganic Chemistry, 2002, 41, 4915-4922.	4.0	70
84	Energy transfer and harvesting in [Ru1â^'xOsx(bpy)3](PF6)2 and {ĥ-[Ru(bpy)3]Δ-[Os(bpy)3]}(PF6)4. Coordination Chemistry Reviews, 2002, 229, 75-93.	18.8	33
85	Energy harvesting in {ĥ-[Ru(bpy)3]Δ-[Os(bpy)3]}(PF6)4 and tunability of emission properties under magnetic field application. Chemical Physics Letters, 2002, 362, 365-372.	2.6	8
86	Low-Lying Electronic States and Photophysical Properties of Organometallic Pd(II) and Pt(II) Compounds. Modern Research Trends Presented in Detailed Case Studies. Topics in Current Chemistry, 2001, , 81-186.	4.0	145
87	Spin-lattice relaxation in metal-organic platinum(II) complexes. Chemical Physics Letters, 2000, 316, 280-284.	2.6	9
88	Triplet sublevels of metal organic complexes – temperature dependence of spin–lattice relaxation. Chemical Physics, 2000, 255, 301-316.	1.9	28
89	Triplets in metal–organic compounds. Chemical tunability of relaxation dynamics. Coordination Chemistry Reviews, 2000, 208, 331-364.	18.8	106
90	Crystal Engineering as a Tool for Directed Radiationless Energy Transfer in Layered {ĥ-[Ru(bpy)3]Δ-[Os(bpy)3]}(PF6)4. Journal of the American Chemical Society, 2000, 122, 2548-2555.	13.7	42

#	Article	IF	CITATIONS
91	Intraligand Charge Transfer in the Pd(II) Oxinate Complex Pd(qol)2. Site-Selective Emission, Excitation, and Optically Detected Magnetic Resonance. Inorganic Chemistry, 2000, 39, 770-777.	4.0	40
92	Spatial Extensions of Excited States of Metal Complexes. Tunability by Chemical Variation. Inorganic Chemistry, 1999, 38, 5820-5831.	4.0	38
93	High-Pressure, Low-Temperature Emission Studies of a Metalâ^'Organic Platinum(II) Compound in a Shpol'skii Matrix. Inorganic Chemistry, 1999, 38, 1411-1415.	4.0	16
94	Effect of high pressure on the emission spectrum of single crystals of Tl[Au(CN)2]. Chemical Physics Letters, 1998, 295, 95-98.	2.6	17
95	Tunable Radiationless Energy Transfer in Eu[Au(CN)2]3·3H2O by High Pressure. Inorganic Chemistry, 1998, 37, 3209-3216.	4.0	41
96	Energy migration and up-conversion in Cs 2 NaEr x Y 1-x C l6 at 1.2 K. , 1997, , .		1
97	Up-conversion and energy migration in the holmium hexachloroelpasolites. , 1997, 3176, 114.		0
98	Characterization of excited electronic and vibronic states of platinum metal compounds with chelate ligands by highly frequency-resolved and time-resolved spectra. Topics in Current Chemistry, 1997, , 153-249.	4.0	72
99	Intraligand Charge Transfer in Pt(qol)2. Characterization of Electronic States by High-Resolution Shpol'skii Spectroscopy. Inorganic Chemistry, 1997, 36, 3040-3048.	4.0	75
100	Determination of Relaxation Paths in the Manifold of Excited States of Pt(2-thpy)2 and [Ru(bpy)3]2+ by Time-Resolved Excitation and Emission. Inorganic Chemistry, 1997, 36, 3957-3965.	4.0	23
101	Characterization of intraligand charge transfer transitions in Pd(qol)2, Pt(qol)2 and Pt(qtl)2 investigated by Shpol'skii spectroscopy. Journal of Luminescence, 1997, 72-74, 658-659.	3.1	25
102	Lowest excited triplet states in [Ru(bpy)3]2+ and [Rh(bpy)3]3+ A comparative study based on highly resolved spectra. Journal of Luminescence, 1997, 72-74, 677-678.	3.1	9
103	Chemically tuned zero-field splittings and spin-lattice relaxation Investigation by time-resolved emission. Journal of Luminescence, 1997, 72-74, 462-463.	3.1	18
104	Low-lying electronic states of [Rh(bpy)3]3+, [Pt(bpy)2]2+, and [Ru(bpy)3]2+. A comparative study based on highly resolved and time-resolved spectra. Coordination Chemistry Reviews, 1997, 159, 325-358.	18.8	129
105	Ligand-centered 3ππâ^— emission and raman activity of [Pt(bpy-h8) (bpy-d8)2â^']2+ (n=0,1,2). Inorganica Chimica Acta, 1997, 265, 139-147.	2.4	23
106	Characterization of the Lowest Excited States of [Rh(bpy-h8)n(bpy-d8)3-n]3+by Highly Resolved Emission and Excitation Spectra. Inorganic Chemistry, 1996, 35, 2220-2228.	4.0	41
107	Matrix deuteration effects and spin-lattice relaxation in the lowest triplet of the palladium(II) complex Pd(2-thpy)2. Chemical Physics Letters, 1995, 235, 490-496.	2.6	21
108	Characterization of triplet sublevels by Highly resolved vibrational satellite structures. Application to Pt(2-thpy)2. The Journal of Physical Chemistry, 1995, 99, 13385-13391.	2.9	66

#	ARTICLE	IF	CITATIONS
109	Extreme Pressure-Induced Shifts of Emission Energies in M[Au(CN)2] and M2[Pt(CN)4].cntdot.nH2O. Compounds with Low-Dimensional and Metal-Metal Interactions. Inorganic Chemistry, 1995, 34, 1642-1645.	4.0	46
110	Energy Transfer between Different Sites in Neat Single-Crystal [Ru(bpy)3](PF6)2. Inorganic Chemistry, 1995, 34, 1967-1968.	4.0	12
111	Pressure and concentration dependent formation of oligomers of tetrakis-(p-methylphenylisocyanide)rhodium(I). Inorganica Chimica Acta, 1994, 216, 245-247.	2.4	1
112	Molecular mechanical and quantum chemical study on the species involved in the hydrolysis of cis-diamminedichloroplatinum(II) and substituted bis(ethylenediamine)dichloroplatinum(II) complexes Part I. Reactants and products. Inorganica Chimica Acta, 1994, 217, 159-170.	2.4	13
113	Vibrational satellite structures and properties of electronic states of transition metal complexes. Coordination Chemistry Reviews, 1994, 132, 35-42.	18.8	31
114	Crystal Structure of trans-Bis(acetonitrile)dich]oroplatinum(II). Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1994, 49, 297-300.	0.7	5
115	Properties of electronic spectra of antitumor-active dichlorobis(cycloalkylamine)platinum(II) compounds. Inorganica Chimica Acta, 1993, 208, 77-83.	2.4	3
116	Highly resolved emission of osmium-deuterated bipyridine compound [Os(bpy-h8)n(bpy-d8)3-n]2+ (n =) Tj ETQo	10 0 0 rgB ⁻	T /Qverlock 10
117	Pressure-induced tuning of fluorescence to phosphorescence in [Cr(urea-h4)6] (ClO4)3 and [Cr(urea-d4)6] (ClO4)3. Chemical Physics Letters, 1992, 199, 1-9.	2.6	17
118	Localization in excited states of molecules. Application to [Ru(bpy)3]2+. Coordination Chemistry Reviews, 1991, 111, 39-46.	18.8	37
119	Isotope-induced shifts of electronic transitions: application to [Ru(bpy-h8)3]2+ and [Ru(bpy-d8)3]2+ in [Zn(bpy-h8)3](ClO4)2. Chemical Physics Letters, 1991, 179, 85-94.	2.6	34
120	Highly resolved emission of tris(2,2'-bipyridine-d8)osmium(2+). The Journal of Physical Chemistry, 1990, 94, 3560-3564.	2.9	22
121	Zeeman splittings of the two lowest excited states of [Ru(bpy)3](PF6)2. Chemical Physics Letters, 1990, 171, 122-126.	2.6	16
122	Site selective spectra of the lowest excited states of [Os(bpy)3]2+ in [Ru1-x Os x (bpy)3]X 2(X = PF6, AsF6,) Tj I	etq _q 0 0 0	rgBT /Overloo
123	Zero-field splittings of the two lowest excited electronic states in crystalline [Ru(bpy)3]X2 with X=PF6, ClO4. Chemical Physics Letters, 1989, 161, 315-320.	2.6	19
124	Geometrical distortions in excited A′2 states of single-crystal [Ru(bpy)3](PF6)2. Chemical Physics Letters, 1989, 158, 519-524.	2.6	14
125	Energy transfer and highly resolved emission of [Ru1-xOsx(bpy)3] (PF6)2. Journal of Luminescence, 1988, 40-41, 676-677.	3.1	8
126	Magnetic-field induced absorption of zero-phonon lines in tris(bipyridine)ruthenium(2+)	4.0	23

Magnetic-field induced absorption of zero-phonon lines in tris(bipyridine)ruthenium(2+) bis(hexafluorophosphate) and diperchlorate single crystals. Inorganic Chemistry, 1987, 26, 1641-1642. 126 4.0

#	Article	IF	CITATIONS
127	Magnetic-field effects in the low-temperature polarized emission and absorption spectra of single-crystal tris(2,2'-bipyridine)ruthenium(2+) bis(hexafluorophosphate) ([Ru(bpy)3](PF6)2). Journal of the American Chemical Society, 1987, 109, 4818-4822.	13.7	44
128	Zero-phonon and vibronic structure of [Os(bpy)32+ doped into single-crystal [Ru(bpy)3](ClO4)2. Chemical Physics Letters, 1987, 140, 157-162.	2.6	21
129	Highly resolved polarized absorption spectra of single-crystal [Ru(bpy)3](PF6)2. Chemical Physics Letters, 1987, 134, 497-501.	2.6	44
130	On the zero-phonon structure of single-crystal [Ru(bpy)3](PF6)2. Inorganica Chimica Acta, 1987, 132, 187-191.	2.4	20
131	Fine structure in the emission spectrum of [Ru(bpy)3] (PF6)2 single crystals. Inorganica Chimica Acta, 1986, 113, 91-94.	2.4	37
132	Emission properties of [Ru(bpy)3X2·nH2O powders. Inorganica Chimica Acta, 1985, 105, 201-203.	2.4	18
133	Spectroscopic properties of the quasi one-dimensional tetracyanoplatinate(II) compounds. , 1985, , 87-153.		207
134	Low-temperature emission spectra of crystalline [Ru(bpy)3](ClO4)2. Chemical Physics Letters, 1985, 120, 445-449.	2.6	35
135	On the lowest excited states of [Ru(bpy)3](PF6)2 single crystals. Journal of the American Chemical Society, 1984, 106, 6582-6586.	13.7	66
136	Effect of high pressure on the emission spectrum of tris(2,2'-bipyridine)ruthenium(II) hexafluorophosphate single crystals. Inorganic Chemistry, 1984, 23, 3745-3748.	4.0	24
137	Polarized emission of tris(2,2'-bipyridine)ruthenium bis(hexafluorophosphate) ([Ru(bpy)3](PF6)2) single crystals. Journal of the American Chemical Society, 1983, 105, 4155-4156.	13.7	47
138	Donor and acceptor state selectivity in resonant energy transfer. Journal of Chemical Physics, 1982, 76, 2136-2138.	3.0	33
139	Destabilization of a self-trapped exciton in a quasi-one-dimensional semiconductor: Mg[Pt(CN)4]·7H2O with hydrostatic pressure. Physical Review B, 1982, 26, 3187-3191.	3.2	33
140	Photoconductivity in Ba[Pt(CN)4]·4H2O crystals. Chemical Physics Letters, 1981, 81, 371-374.	2.6	5
141	Pressure induced phase transition in the highly anisotropic compound: Y2[Pt(CN)4]3·21H2O. Solid State Communications, 1981, 40, 937-938.	1.9	3
142	Luminescence quenching and exciton dynamics in quasiâ€oneâ€dimensional mixed crystals: Ba[Pt1â^'xNix(CN)4]â‹4H2O. Journal of Chemical Physics, 1981, 74, 2124-2128.	3.0	20
143	Franck-Condon analysis of transition-metal complexes. Journal of the American Chemical Society, 1980, 102, 951-955.	13.7	66
144	Transition energy tuning from 3.3 to 1.4 eV in the systemMx[Pt(CN)4]Â∙mH2O. Physical Review B, 1979, 19, 177-180.	3.2	31

#	Article	IF	CITATIONS
145	Cs2[Pt(CN)4]·H2O: Polarized emission and its correlation to the crystal structure. Chemical Physics Letters, 1979, 60, 304-306.	2.6	3
146	X-ray diffraction and spectroscopic investigations of phase transitions in linear chain compounds M2 [Pt(CN)4]3 · 21H2O, with M = Dy, Er, Tb, Y. Solid State Communications, 1979, 30, 353-355.	1.9	29
147	High pressure tuning of optical transitions in Mg[Pt(CN)4]·7H2O. Solid State Communications, 1978, 27, 1305-1308.	1.9	21
148	Phase transformation in Y2[Pt(CN)4]3-21H2O. Chemical Physics Letters, 1978, 54, 111-116.	2.6	15
149	SPECTROSCOPIC STUDIES OF Mx[Pt(CN)4] \hat{A} · yH2O*. Annals of the New York Academy of Sciences, 1978, 313, 539-559.	3.8	67
150	Energy transfer from linear stacks of tetracyanoplatinates(II) to rare earth ions. Journal of Chemical Physics, 1978, 68, 4707-4713.	3.0	58
151	On the nature of energy bands in tetracyanoplatinates. Solid State Communications, 1977, 21, 915-918.	1.9	67
152	Polarized emission from Ba[Pt(CN)4]·4H2O single crystals under high pressure. Chemical Physics Letters, 1976, 40, 423-428.	2.6	55
153	Emission lifetime of MgPt(CN)4·7H2O. Chemical Physics Letters, 1975, 36, 86-87.	2.6	3
154	Spectroscopic Behaviour of Quasi-One-Dimensional Linear Chains in MgPt(CN) ₄ · 7 H ₂ O Single Crystals. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1975, 30, 183-190.	0.7	18
155	Emission, Emissionslebensdauer und Absorption von [Cr urea6]X3-Einkristallen. Theoretica Chimica Acta, 1974, 33, 63-78.	0.8	23
156	Lumineszenzlebensdauern sauerstoffkoordinierter Chrom(III)-Komplexkristalle bei tiefen Temperaturen. Zeitschrift Fur Physikalische Chemie, 1974, 92, 193-197.	2.8	7
157	Polarisationsâ€spektralphotometrische Untersuchungen in Emission und Absorption an [Cr urea ₆] J ₃ â€Einkristallen. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1971, 75, 1257-1263.	0.9	10
158	Triplet Emitters for OLED Applications. Mechanisms of Exciton Trapping and Control of Emission Properties. Topics in Current Chemistry, 0, , 1-26.	4.0	413
159	Cyclometallated Organoiridium Complexes as Emitters in Electrophosphorescent Devices. , 0, , 131-161.		1
160	Highly Efficient Red-Phosphorescent Iridium Complexes. , 0, , 163-183.		5
161	Pyridyl Azolate Based Luminescent Complexes: Strategic Design, Photophysics, and Applications. , 0, , 185-220.		0
162	Electroluminescence from Metal-Containing Polymers and Metal Complexes with Functional Ligands. , 0, , 329-362.		3

#	Article	IF	CITATIONS
163	High-Efficiency Phosphorescent Polymer LEDs. , 0, , 311-328.		2