Andrew P Michelmore

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8720231/publications.pdf

Version: 2024-02-01

76 papers 3,568 citations

147801 31 h-index 59 g-index

77 all docs

77 docs citations

77 times ranked 4513 citing authors

#	Article	IF	CITATIONS
1	Rational approaches for optimizing chemical functionality of plasma polymers: A case study with ethyl trimethylacetate. Plasma Processes and Polymers, 2021, 18, 2000195.	3.0	3
2	Atmospheric Pressure Dielectric Barrier Discharges for the Deposition of Organic Plasma Polymer Coatings for Biomedical Application. Plasma Chemistry and Plasma Processing, 2021, 41, 47-83.	2.4	18
3	A surface dielectric barrier discharge for deposition of allylamine polymer costings. Applied Surface Science, 2021, 544, 148826.	6.1	3
4	Epoxy/graphene nanocomposites prepared by in-situ microwaving. Carbon, 2021, 177, 271-281.	10.3	25
5	Comparative Study of Natural Terpenoid Precursors in Reactive Plasmas for Thin Film Deposition. Molecules, 2021, 26, 4762.	3.8	4
6	Fabrication and characterization of biorenewable plasma polymer films using sandalwood oil precursor. Journal of Applied Polymer Science, 2020, 137, 49288.	2.6	1
7	Elastomer nanocomposites containing MXene for mechanical robustness and electrical and thermal conductivity. Nanotechnology, 2020, 31, 315715.	2.6	31
8	Electrically and thermally conductive elastomer by using MXene nanosheets with interface modification. Chemical Engineering Journal, 2020, 397, 125439.	12.7	61
9	A new method for preparation of functionalized graphene and its epoxy nanocomposites. Composites Part B: Engineering, 2020, 196, 108096.	12.0	41
10	Improved recovery of cryopreserved cell monolayers with a hyaluronic acid surface treatment. Biointerphases, 2020, 15, 061015.	1.6	1
11	Plasma Polymerisation of Amine Thin Coatings with a Surface Barrier Discharge at Atmospheric Pressure. , 2020, , .		O
12	Deposition of 2â€oxazolineâ€based plasma polymer coatings using atmospheric pressure helium plasma jet. Plasma Processes and Polymers, 2019, 16, 1900104.	3.0	12
13	Label-Free Bacterial Toxin Detection in Water Supplies Using Porous Silicon Nanochannel Sensors. ACS Sensors, 2019, 4, 1515-1523.	7.8	40
14	The Physics of Plasma Ion Chemistry: A Case Study of Plasma Polymerization of Ethyl Acetate. Journal of Physical Chemistry Letters, 2019, 10, 7306-7310.	4.6	3
15	Promiscuous hydrogen in polymerising plasmas. Physical Chemistry Chemical Physics, 2018, 20, 7033-7042.	2.8	10
16	Nanostructured Electrochemical Biosensors for Label-Free Detection of Water- and Food-Borne Pathogens. ACS Applied Materials & Samp; Interfaces, 2018, 10, 6055-6072.	8.0	115
17	Multidentate polyzwitterion attachment to polydopamine modified ultrafiltration membranes for dairy processing: Characterization, performance and durability. Journal of Industrial and Engineering Chemistry, 2018, 61, 356-367.	5.8	12
18	Cell sheets in cell therapies. Cytotherapy, 2018, 20, 169-180.	0.7	22

#	Article	IF	CITATIONS
19	Particle aggregates formed during furfuryl methacrylate plasma polymerization affect human mesenchymal stem cell behaviour. Colloids and Surfaces B: Biointerfaces, 2018, 161, 261-268.	5.0	1
20	Binding of Nanoparticles to Aminated Plasma Polymer Surfaces is Controlled by Primary Amine Density and Solution pH. Journal of Physical Chemistry C, 2018, 122, 14986-14995.	3.1	9
21	Development of Advanced Dressings for the Delivery of Progenitor Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3445-3454.	8.0	12
22	Synthesis of highly functionalised plasma polymer films from protonated precursor ions <i>via</i> the plasma α–γ transition. Physical Chemistry Chemical Physics, 2017, 19, 5637-5646.	2.8	13
23	Secrets of Plasma-Deposited Polyoxazoline Functionality Lie in the Plasma Phase. Chemistry of Materials, 2017, 29, 8047-8051.	6.7	25
24	A Novel Fabrication Approach for Multifunctional Graphene-based Thin Film Nano-composite Membranes with Enhanced Desalination and Antibacterial Characteristics. Scientific Reports, 2017, 7, 7490.	3.3	22
25	The chemistry of organophosphate thin film coatings from low pressure plasma and the effect of the substrate on adhesion. Plasma Processes and Polymers, 2017, 14, 1700037.	3.0	6
26	Continuous-Wave RF Plasma Polymerization of Furfuryl Methacrylate: Correlation Between Plasma and Surface Chemistry. Plasma Processes and Polymers, 2017, 14, 1600054.	3.0	9
27	Plasma Polymer and Biomolecule Modification of 3D Scaffolds for Tissue Engineering. Plasma Processes and Polymers, 2016, 13, 678-689.	3.0	20
28	Where physics meets chemistry: Thin film deposition from reactive plasmas. Frontiers of Chemical Science and Engineering, 2016, 10, 441-458.	4.4	20
29	Furfuryl methacrylate plasma polymers for biomedical applications. Biointerphases, 2016, 11, 031014.	1.6	3
30	Single-Step Assembly of Multifunctional Poly(tannic acid)–Graphene Oxide Coating To Reduce Biofouling of Forward Osmosis Membranes. ACS Applied Materials & Distribution (1988) 17519-17528.	8.0	66
31	Hyperthermal Intact Molecular Ions Play Key Role in Retention of ATRP Surface Initiation Capability of Plasma Polymer Films from Ethyl α-Bromoisobutyrate. ACS Applied Materials & Samp; Interfaces, 2016, 8, 16493-16502.	8.0	16
32	Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage. Biosensors and Bioelectronics, 2016, 80, 47-53.	10.1	37
33	Effective in-situ chemical surface modification of forward osmosis membranes with polydopamine-induced graphene oxide for biofouling mitigation. Desalination, 2016, 385, 126-137.	8.2	91
34	Chemical and physical processes in the retention of functional groups in plasma polymers studied by plasma phase mass spectroscopy. Physical Chemistry Chemical Physics, 2016, 18, 4496-4504.	2.8	24
35	Combined effect of protein and oxygen on reactive oxygen and nitrogen species in the plasma treatment of tissue. Applied Physics Letters, 2015, 107, .	3.3	58
36	Structural Characterization of γâ€Terpinene Thin Films Using Mass Spectroscopy and Xâ€Ray Photoelectron Spectroscopy. Plasma Processes and Polymers, 2015, 12, 1085-1094.	3.0	26

3

#	Article	IF	CITATIONS
37	Facile Fabrication of Graphene Membranes with Readily Tunable Structures. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13745-13757.	8.0	39
38	Plasma Parameter Aspects in the Fabrication of Stable Amine Functionalized Plasma Polymer Films. Plasma Processes and Polymers, 2015, 12, 817-826.	3.0	23
39	Comparison of Plasma Polymerization under Collisional and Collision-Less Pressure Regimes. Journal of Physical Chemistry B, 2015, 119, 15359-15369.	2.6	20
40	The importance of ions in low pressure PECVD plasmas. Frontiers in Physics, 2015, 3, .	2.1	23
41	Gradient technologies for optimising biomaterials for cell screening. Cytotherapy, 2015, 17, S72.	0.7	0
42	Fine-Tuning the Surface of Forward Osmosis Membranes via Grafting Graphene Oxide: Performance Patterns and Biofouling Propensity. ACS Applied Materials & Samp; Interfaces, 2015, 7, 18004-18016.	8.0	101
43	Free-standing composite hydrogel films for superior volumetric capacitance. Journal of Materials Chemistry A, 2015, 3, 15668-15674.	10.3	69
44	Delivering a cell therapy. Cytotherapy, 2015, 17, S14.	0.7	1
45	An Experimental and Analytical Study of an Asymmetric Capacitively Coupled Plasma Used for Plasma Polymerization. Plasma Processes and Polymers, 2014, 11, 833-841.	3.0	25
46	Approaches to Quantify Amine Groups in the Presence of Hydroxyl Functional Groups in Plasma Polymerized Thin Films. Plasma Processes and Polymers, 2014, 11, 888-896.	3.0	27
47	Deposition of nonfouling plasma polymers to a thermoplastic silicone elastomer for microfluidic and biomedical applications. Journal of Applied Polymer Science, 2014, 131, .	2.6	3
48	Development of polymer composites using modified, high-structural integrity graphene platelets. Composites Science and Technology, 2014, 91, 82-90.	7.8	136
49	Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. Journal of Materials Chemistry A, 2014, 2, 20382-20392.	10.3	22
50	Processable 3-nm thick graphene platelets of high electrical conductivity and their epoxy composites. Nanotechnology, 2014, 25, 125707.	2.6	119
51	The link between mechanisms of deposition and the physico-chemical properties of plasma polymer films. Soft Matter, 2013, 9, 6167.	2.7	43
52	Nanoscale deposition of chemically functionalised films via plasma polymerisation. RSC Advances, 2013, 3, 13540.	3.6	94
53	On the effects of atmospheric-pressure microplasma array treatment on polymer and biological materials. RSC Advances, 2013, 3, 13437.	3.6	24
54	The influence of substrate stiffness gradients on primary human dermal fibroblasts. Biomaterials, 2013, 34, 5070-5077.	11.4	90

#	Article	IF	Citations
55	Covalently bonded interfaces for polymer/graphene composites. Journal of Materials Chemistry A, 2013, 1, 4255.	10.3	163
56	Melt compounding with graphene to develop functional, high-performance elastomers. Nanotechnology, 2013, 24, 165601.	2.6	124
57	Defining Plasma Polymerization: New Insight Into What We Should Be Measuring. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5387-5391.	8.0	30
58	On the Effect of Monomer Chemistry on Growth Mechanisms of Nonfouling PEG-like Plasma Polymers. Langmuir, 2013, 29, 2595-2601.	3.5	41
59	Variability in Plasma Polymerization Processes – An International Roundâ€ <scp>R</scp> obin Study. Plasma Processes and Polymers, 2013, 10, 767-778.	3.0	40
60	Gradient Technology for High-Throughput Screening of Interactions between Cells and Nanostructured Materials. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	20
61	pH-tunable gradients of wettability and surface potential. Soft Matter, 2012, 8, 8399.	2.7	57
62	From carbon nanotubes and silicate layers to graphene platelets for polymer nanocomposites. Nanoscale, 2012, 4, 4578.	5.6	181
63	A Facile Approach to Chemically Modified Graphene and its Polymer Nanocomposites. Advanced Functional Materials, 2012, 22, 2735-2743.	14.9	244
64	Role of Positive Ions in Determining the Deposition Rate and Film Chemistry of Continuous Wave Hexamethyl Disiloxane Plasmas. Langmuir, 2011, 27, 11943-11950.	3.5	42
65	Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling. Journal of Membrane Science, 2011, 369, 420-428.	8.2	241
66	Surface Morphology in the Early Stages of Plasma Polymer Film Growth from Amine ontaining Monomers. Plasma Processes and Polymers, 2011, 8, 367-372.	3.0	73
67	High conductivity PEDOT resulting from glycol/oxidant complex and glycol/polymer intercalation during vacuum vapour phase polymerisation. Polymer, 2011, 52, 1725-1730.	3.8	7 3
68	Versatile gradients of chemistry, bound ligands and nanoparticles on alumina nanopore arrays. Nanotechnology, 2011, 22, 415601.	2.6	10
69	Tailoring the surface functionalities of titania nanotube arrays. Biomaterials, 2010, 31, 532-540.	11.4	184
70	Early Stages of Growth of Plasma Polymer Coatings Deposited from Nitrogen―and Oxygenâ€Containing Monomers. Plasma Processes and Polymers, 2010, 7, 824-835.	3.0	84
71	Substrate influence on the initial growth phase of plasma-deposited polymer films. Chemical Communications, 2009, , 3600.	4.1	101
72	The interaction of linear polyphosphates with zincite surfaces. International Journal of Mineral Processing, 2003, 68, 1-16.	2.6	16

#	Article	IF	CITATIONS
73	COLLECTION AND CHARACTERIZATION OF FREE GOLD PARTICLES FROM LOW GRADE COPPER CONCENTRATOR STREAMS AND METHODS TO IMPROVE THEIR RECOVERY. Canadian Metallurgical Quarterly, 2003, 42, 261-270.	1.2	5
74	Control of slime coatings by the use of anionic phosphates: A fundamental study. Minerals Engineering, 2000, 13, 1059-1069.	4.3	32
75	The effect of deposition of negatively charged particles on the electrokinetic behaviour of oppositely charged surfaces. PhysChemComm, 2000, 3, 24.	0.8	9
76	The interaction of linear polyphosphates with titanium dioxide surfaces. Physical Chemistry Chemical Physics, 2000, 2, 2985-2992.	2.8	79