
A J Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8719874/publications.pdf Version: 2024-02-01

ΔΙΗΛΟΡΙς

#	Article	IF	CITATIONS
1	Genome size evolution of the extant lycophytes and ferns. Plant Diversity, 2022, 44, 141-152.	3.7	10
2	The genome of the Paleogene relic tree <i>Bretschneidera sinensis</i> : insights into trade-offs in gene family evolution, demographic history, and adaptive SNPs. DNA Research, 2022, 29, .	3.4	5
3	Phylogenomics and biogeography of <i>Torreya</i> (Taxaceae)—Integrating data from three organelle genomes, morphology, and fossils and a practical method for reducing missing data from RADâ€seq. Journal of Systematics and Evolution, 2022, 60, 1241-1262.	3.1	7
4	Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (Poaceae), based on full-length isoform sequencing and de novo assembly from short reads. Journal of Plant Physiology, 2022, 271, 153630.	3.5	2
5	Socio-Ecological Effects on the Patterns of Non-native Plant Distributions on Hainan Island. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	1
6	Wealth and land use drive the distribution of urban green space in the tropical coastal city of Haikou, China. Urban Forestry and Urban Greening, 2022, 71, 127554.	5.3	19
7	Closing the Gap: Horizontal Transfer of Mariner Transposons between Rhus Gall Aphids and Other Insects. Biology, 2022, 11, 731.	2.8	3
8	Comparative transcriptomic analysis of genes in the triterpene saponin biosynthesis pathway in leaves and roots of <i>Ardisia kteniophylla</i> A. DC., a plant used in traditional Chinese medicine. Ecology and Evolution, 2022, 12, .	1.9	1
9	A consensus view of the proteome of the last universal common ancestor. Ecology and Evolution, 2022, 12, .	1.9	10
10	Tracing the Diploid Ancestry of the Cultivated Octoploid Strawberry. Molecular Biology and Evolution, 2021, 38, 478-485.	8.9	50
11	Lihengia : A new genus of Asteraceae distinct from Dubyaea. Taxon, 2021, 70, 620-634.	0.7	1
12	Spatial phylogenetics of the native woody plant species in Hainan, China. Ecology and Evolution, 2021, 11, 2100-2109.	1.9	14
13	The very early evolution of protein translocation across membranes. PLoS Computational Biology, 2021, 17, e1008623.	3.2	13
14	Population genetic structure and evolutionary history of <i>Psammochloa villosa</i> (Trin.) Bor (Poaceae) revealed by AFLP marker. Ecology and Evolution, 2021, 11, 10258-10276.	1.9	8
15	Primulina clausa, a new species of Gesneriaceae from northern Guangxi, China. Phytotaxa, 2021, 510, .	0.3	1
16	Positive relationships among aboveground biomass, tree species diversity, and urban greening management in tropical coastal city of Haikou. Ecology and Evolution, 2021, 11, 12204-12219.	1.9	14
17	Anthropogenic factors are stronger drivers of patterns of endemic plant diversity on Hainan Island of China than natural environmental factors. PLoS ONE, 2021, 16, e0257575.	2.5	6
18	Inferring the Potential Geographic Distribution and Reasons for the Endangered Status of the Tree Fern, Sphaeropteris lepifera, in Lingnan, China Using a Small Sample Size. Horticulturae, 2021, 7, 496.	2.8	2

A J HARRIS

#	Article	IF	CITATIONS
19	Development of SSR Markers for Psammochloa villosa (Trin.) Bor (Poaceae), a Dominant Species in the Inner Mongolian Plateau. Cytology and Genetics, 2021, 55, 576-582.	0.5	0
20	A fossil-calibrated phylogeny reveals the biogeographic history of the Cladrastis clade, an amphi-Pacific early-branching group in papilionoid legumes. Molecular Phylogenetics and Evolution, 2020, 143, 106673.	2.7	15
21	Phylogenomics, co-evolution of ecological niche and morphology, and historical biogeography of buckeyes, horsechestnuts, and their relatives (Hippocastaneae, Sapindaceae) and the value of RAD-Seq for deep evolutionary inferences back to the Late Cretaceous. Molecular Phylogenetics and Evolution, 2020, 145, 106726.	2.7	24
22	Hybrid Speciation and Introgression Both Underlie the Genetic Structures and Evolutionary Relationships of Three Morphologically Distinct Species of Lilium (Liliaceae) Forming a Hybrid Zone Along an Elevational Gradient. Frontiers in Plant Science, 2020, 11, 576407.	3.6	7
23	Origins of cultivars of Chrysanthemum —Evidence from the chloroplast genome and nuclear LFY gene. Journal of Systematics and Evolution, 2020, 58, 925-944.	3.1	30
24	Chloroplast Phylogenomics Reveals the Intercontinental Biogeographic History of the Liquorice Genus (Leguminosae: Glycyrrhiza). Frontiers in Plant Science, 2020, 11, 793.	3.6	18
25	The complex phylogenetic relationships of a 4mC/6mA DNA methyltransferase in prokaryotes. Molecular Phylogenetics and Evolution, 2020, 149, 106837.	2.7	8
26	Allopolyploid Speciation Accompanied by Gene Flow in a Tree Fern. Molecular Biology and Evolution, 2020, 37, 2487-2502.	8.9	17
27	Nuclear and Chloroplast Sequences Resolve the Enigmatic Origin of the Concord Grape. Frontiers in Plant Science, 2020, 11, 263.	3.6	17
28	Chloroplast phylogenomics and biogeography of liquorice (Leguminosae: Glycyrrhiza). , 2020, , .		0
29	Nuclear loci developed from multiple transcriptomes yield high resolution in phylogeny of scaly tree ferns (Cyatheaceae) from China and Vietnam. Molecular Phylogenetics and Evolution, 2019, 139, 106567.	2.7	13
30	A population genetics perspective on the evolutionary histories of three clonal, endemic, and dominant grass species of the Qinghai–Tibet Plateau: <i>Orinus</i> (Poaceae). Ecology and Evolution, 2019, 9, 6014-6037.	1.9	11
31	Species Boundaries and Parapatric Speciation in the Complex of Alpine Shrubs, Rosa sericea (Rosaceae), Based on Population Genetics and Ecological Tolerances. Frontiers in Plant Science, 2019, 10, 321.	3.6	19
32	Congruent phylogenetic relationships of Melaphidina aphids (Aphididae: Eriosomatinae: Fordini) according to nuclear and mitochondrial DNA data with taxonomic implications on generic limits. PLoS ONE, 2019, 14, e0213181.	2.5	17
33	Untangling the taxonomy of the <i>Cladrastis</i> clade (Leguminosae: Papilionoideae) by integrating phylogenetics and ecological evidence. Taxon, 2019, 68, 1189-1203.	0.7	11
34	Phylogeography of Orinus (Poaceae), a dominant grass genus on the Qinghai-Tibet Plateau. Botanical Journal of the Linnean Society, 2018, 186, 202-223.	1.6	18
35	The complete chloroplast genome of vulnerable Aesculus wangii (Sapindaceae), a narrowly endemic tree in Yunnan, China. Conservation Genetics Resources, 2018, 10, 335-338.	0.8	9
36	Phylogenetic Reconstruction Shows Independent Evolutionary Origins of Mitochondrial Transcription Factors from an Ancient Family of RNA Methyltransferase Proteins. Journal of Molecular Evolution, 2018, 86, 277-282.	1.8	3

A J HARRIS

#	Article	IF	CITATIONS
37	Genetic Structure of the Bacterial Endosymbiont Buchnera aphidicola from Its Host Aphid Schlechtendalia chinensis and Evolutionary Implications. Current Microbiology, 2018, 75, 309-315.	2.2	7
38	A detailed study of leaf micromorphology and anatomy of New World <i>Vitis</i> L. subgenus <i>Vitis</i> within a phylogenetic and ecological framework reveals evolutionary convergence. Journal of Systematics and Evolution, 2018, 56, 309-330.	3.1	13
39	Assessing the maternal origin in the polyploid complex of Camellia reticulata based on the chloroplast rpl16 intron sequences: implications for camellia cross breeding. Molecular Breeding, 2018, 38, 1.	2.1	7
40	New infrageneric classification of <i>Abies</i> in light of molecular phylogeny and high diversity in western North America. Journal of Systematics and Evolution, 2018, 56, 562-572.	3.1	11
41	Continents as Units for the Study of Floristic Assembly and Biodiversity: Focus on North America. Journal of Systematics and Evolution, 2018, 56, 401-404.	3.1	Ο
42	Contributions toward understanding the biodiversity of <i>Passiflora</i> in North America: Updates and a new combination from the Baja California Peninsula, Mexico and vicinity. Journal of Systematics and Evolution, 2018, 56, 550-561.	3.1	6
43	Chloroplast phylogenomics of the New World grape species (<i>Vitis</i> , Vitaceae). Journal of Systematics and Evolution, 2018, 56, 297-308.	3.1	89
44	Long distance dispersal in the assembly of floras: A review of progress and prospects in North America. Journal of Systematics and Evolution, 2018, 56, 430-448.	3.1	22
45	The effects of taxonomic rank on climatic calibrations: A test using extant floras of United States counties. Review of Palaeobotany and Palynology, 2017, 244, 316-324.	1.5	5
46	A molecular phylogeny of Staphyleaceae: Implications for generic delimitation and classical biogeographic disjunctions in the family. Journal of Systematics and Evolution, 2017, 55, 124-141.	3.1	17
47	Another look at the phylogenetic relationships and intercontinental biogeography of eastern Asian – North American Rhus gall aphids (Hemiptera: Aphididae: Eriosomatinae): Evidence from mitogenome sequences via genome skimming. Molecular Phylogenetics and Evolution, 2017, 117, 102-110.	2.7	32
48	Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Molecular Ecology, 2017, 26, 6414-6429.	3.9	74
49	Development of SSR markers from transcriptomes for <i>Orinus</i> (Poaceae), an endemic of the Qinghai–Tibetan Plateau. Applications in Plant Sciences, 2017, 5, 1700029.	2.1	3
50	Developing integrative systematics in the informatics and genomic era, and calling for a global Biodiversity Cyberbank. Journal of Systematics and Evolution, 2017, 55, 308-321.	3.1	43
51	The Utility of Single-Copy Nuclear Genes for Phylogenetic Resolution of <i>Acer</i> and <i>Dipteronia</i> (Acereae, Sapindaceae). Annales Botanici Fennici, 2017, 54, 209-222.	0.1	11
52	Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity. Genome Biology and Evolution, 2017, 9, 1646-1657.	2.5	67
53	On merging Acer sections Rubra and Hyptiocarpa: Molecular and morphological evidence. PhytoKeys, 2017, 86, 9-42.	1.0	15
54	Complete mitochondrial genome of the <i>Rhus</i> gall aphid <i>Schlechtendalia chinensis</i> (Hemiptera: Aphididae: Eriosomatinae). Mitochondrial DNA Part B: Resources, 2016, 1, 849-850.	0.4	15

A J HARRIS

#	Article	IF	CITATIONS
55	Latitudinal trends in genus richness of vascular plants in the Eocene and Oligocene of North America. Plant Diversity, 2016, 38, 133-141.	3.7	4
56	Testing the monophyly of Aesculus L. and Billia Peyr., woody genera of tribe Hippocastaneae of the Sapindaceae. Molecular Phylogenetics and Evolution, 2016, 102, 145-151.	2.7	12
57	RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Molecular Phylogenetics and Evolution, 2015, 87, 46-49.	2.7	1,049
58	Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization. BMC Evolutionary Biology, 2015, 15, 147.	3.2	42
59	The utility of the morphological variation of pollen for resolving the evolutionary history of <i>Billia</i> (subfam. Hippocastanoideae, Sapindaceae). Journal of Systematics and Evolution, 2015, 53, 228-238.	3.1	5
60	Estimating paleoenvironments using ecological niche models of nearest living relatives: A case study of Eocene <i>Aesculus</i> L. Journal of Systematics and Evolution, 2014, 52, 16-34.	3.1	7
61	Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with orogenies of the Q–T plateau and the Hengduan Mountains. Molecular Phylogenetics and Evolution, 2013, 68, 443-460.	2.7	97
62	Inferring the biogeographic origins of interâ€continental disjunct endemics using a Bayesâ€DIVA approach. Journal of Systematics and Evolution, 2013, 51, 117-133.	3.1	62
63	A new species in the genus Nomocharis Franchet (Liliaceae): evidence that brings the genus Nomocharis into Lilium. Plant Systematics and Evolution, 2012, 298, 69-85.	0.9	39
64	Phylogeny, origin, and biogeographic history of <i>Aesculus</i> L. (Sapindales) – an update from combined analysis of DNA sequences, morphology, and fossils. Taxon, 2009, 58, 108-126.	0.7	52
65	Estimating ancestral distributions of lineages with uncertain sister groups: a statistical approach to Dispersal–Vicariance Analysis and a case using <i>Aesculus</i> L. (Sapindaceae) including fossils. Journal of Systematics and Evolution, 2009, 47, 349-368	3.1	79