A J Harris

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8719874/publications.pdf

Version: 2024-02-01

65	2,291	16	45
papers	citations	h-index	g-index
67	67	67	3235
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	RASP (Reconstruct Ancestral State in Phylogenies): A tool for historical biogeography. Molecular Phylogenetics and Evolution, 2015, 87, 46-49.	2.7	1,049
2	Evolutionary events in Lilium (including Nomocharis, Liliaceae) are temporally correlated with orogenies of the Q–T plateau and the Hengduan Mountains. Molecular Phylogenetics and Evolution, 2013, 68, 443-460.	2.7	97
3	Chloroplast phylogenomics of the New World grape species (<i>Vitis</i> , Vitaceae). Journal of Systematics and Evolution, 2018, 56, 297-308.	3.1	89
4	Estimating ancestral distributions of lineages with uncertain sister groups: a statistical approach to Dispersal–Vicariance Analysis and a case using ⟨i⟩Aesculus⟨ i⟩ L. (Sapindaceae) including fossils. Journal of Systematics and Evolution, 2009, 47, 349-368.	3.1	79
5	Both temperature fluctuations and East Asian monsoons have driven plant diversification in the karst ecosystems from southern China. Molecular Ecology, 2017, 26, 6414-6429.	3.9	74
6	Plastid Phylogenomics Resolve Deep Relationships among Eupolypod II Ferns with Rapid Radiation and Rate Heterogeneity. Genome Biology and Evolution, 2017, 9, 1646-1657.	2.5	67
7	Inferring the biogeographic origins of interâ€continental disjunct endemics using a Bayesâ€DIVA approach. Journal of Systematics and Evolution, 2013, 51, 117-133.	3.1	62
8	Phylogeny, origin, and biogeographic history of <i>Aesculus</i> L. (Sapindales) – an update from combined analysis of DNA sequences, morphology, and fossils. Taxon, 2009, 58, 108-126.	0.7	52
9	Tracing the Diploid Ancestry of the Cultivated Octoploid Strawberry. Molecular Biology and Evolution, 2021, 38, 478-485.	8.9	50
10	Developing integrative systematics in the informatics and genomic era, and calling for a global Biodiversity Cyberbank. Journal of Systematics and Evolution, 2017, 55, 308-321.	3.1	43
11	Morphological and ecological divergence of Lilium and Nomocharis within the Hengduan Mountains and Qinghai-Tibetan Plateau may result from habitat specialization and hybridization. BMC Evolutionary Biology, 2015, 15, 147.	3.2	42
12	A new species in the genus Nomocharis Franchet (Liliaceae): evidence that brings the genus Nomocharis into Lilium. Plant Systematics and Evolution, 2012, 298, 69-85.	0.9	39
13	Another look at the phylogenetic relationships and intercontinental biogeography of eastern Asian – North American Rhus gall aphids (Hemiptera: Aphididae: Eriosomatinae): Evidence from mitogenome sequences via genome skimming. Molecular Phylogenetics and Evolution, 2017, 117, 102-110.	2.7	32
14	Origins of cultivars of Chrysanthemum â€"Evidence from the chloroplast genome and nuclear LFY gene. Journal of Systematics and Evolution, 2020, 58, 925-944.	3.1	30
15	Phylogenomics, co-evolution of ecological niche and morphology, and historical biogeography of buckeyes, horsechestnuts, and their relatives (Hippocastaneae, Sapindaceae) and the value of RAD-Seq for deep evolutionary inferences back to the Late Cretaceous. Molecular Phylogenetics and Evolution. 2020. 145. 106726.	2.7	24
16	Long distance dispersal in the assembly of floras: A review of progress and prospects in North America. Journal of Systematics and Evolution, 2018, 56, 430-448.	3.1	22
17	Species Boundaries and Parapatric Speciation in the Complex of Alpine Shrubs, Rosa sericea (Rosaceae), Based on Population Genetics and Ecological Tolerances. Frontiers in Plant Science, 2019, 10, 321.	3.6	19
18	Wealth and land use drive the distribution of urban green space in the tropical coastal city of Haikou, China. Urban Forestry and Urban Greening, 2022, 71, 127554.	5.3	19

#	Article	IF	CITATIONS
19	Phylogeography of Orinus (Poaceae), a dominant grass genus on the Qinghai-Tibet Plateau. Botanical Journal of the Linnean Society, 2018, 186, 202-223.	1.6	18
20	Chloroplast Phylogenomics Reveals the Intercontinental Biogeographic History of the Liquorice Genus (Leguminosae: Glycyrrhiza). Frontiers in Plant Science, 2020, 11, 793.	3.6	18
21	A molecular phylogeny of Staphyleaceae: Implications for generic delimitation and classical biogeographic disjunctions in the family. Journal of Systematics and Evolution, 2017, 55, 124-141.	3.1	17
22	Congruent phylogenetic relationships of Melaphidina aphids (Aphididae: Eriosomatinae: Fordini) according to nuclear and mitochondrial DNA data with taxonomic implications on generic limits. PLoS ONE, 2019, 14, e0213181.	2.5	17
23	Allopolyploid Speciation Accompanied by Gene Flow in a Tree Fern. Molecular Biology and Evolution, 2020, 37, 2487-2502.	8.9	17
24	Nuclear and Chloroplast Sequences Resolve the Enigmatic Origin of the Concord Grape. Frontiers in Plant Science, 2020, 11, 263.	3.6	17
25	Complete mitochondrial genome of the <i>Rhus</i> gall aphid <i>Schlechtendalia chinensis</i> (Hemiptera: Aphididae: Eriosomatinae). Mitochondrial DNA Part B: Resources, 2016, 1, 849-850.	0.4	15
26	A fossil-calibrated phylogeny reveals the biogeographic history of the Cladrastis clade, an amphi-Pacific early-branching group in papilionoid legumes. Molecular Phylogenetics and Evolution, 2020, 143, 106673.	2.7	15
27	On merging Acer sections Rubra and Hyptiocarpa: Molecular and morphological evidence. PhytoKeys, 2017, 86, 9-42.	1.0	15
28	Spatial phylogenetics of the native woody plant species in Hainan, China. Ecology and Evolution, 2021, 11, 2100-2109.	1.9	14
29	Positive relationships among aboveground biomass, tree species diversity, and urban greening management in tropical coastal city of Haikou. Ecology and Evolution, 2021, 11, 12204-12219.	1.9	14
30	A detailed study of leaf micromorphology and anatomy of New World <i>Vitis</i> L. subgenus <i>Vitis</i> within a phylogenetic and ecological framework reveals evolutionary convergence. Journal of Systematics and Evolution, 2018, 56, 309-330.	3.1	13
31	Nuclear loci developed from multiple transcriptomes yield high resolution in phylogeny of scaly tree ferns (Cyatheaceae) from China and Vietnam. Molecular Phylogenetics and Evolution, 2019, 139, 106567.	2.7	13
32	The very early evolution of protein translocation across membranes. PLoS Computational Biology, 2021, 17, e1008623.	3.2	13
33	Testing the monophyly of Aesculus L. and Billia Peyr., woody genera of tribe Hippocastaneae of the Sapindaceae. Molecular Phylogenetics and Evolution, 2016, 102, 145-151.	2.7	12
34	The Utility of Single-Copy Nuclear Genes for Phylogenetic Resolution of <i>Acer</i> and <i>Dipteronia</i> (Acereae, Sapindaceae). Annales Botanici Fennici, 2017, 54, 209-222.	0.1	11
35	New infrageneric classification of <i>Abies</i> in light of molecular phylogeny and high diversity in western North America. Journal of Systematics and Evolution, 2018, 56, 562-572.	3.1	11
36	A population genetics perspective on the evolutionary histories of three clonal, endemic, and dominant grass species of the Qinghai–Tibet Plateau: ⟨i⟩Orinus⟨/i⟩ (Poaceae). Ecology and Evolution, 2019, 9, 6014-6037.	1.9	11

#	Article	IF	Citations
37	Untangling the taxonomy of the <i>Cladrastis</i> clade (Leguminosae: Papilionoideae) by integrating phylogenetics and ecological evidence. Taxon, 2019, 68, 1189-1203.	0.7	11
38	Genome size evolution of the extant lycophytes and ferns. Plant Diversity, 2022, 44, 141-152.	3.7	10
39	A consensus view of the proteome of the last universal common ancestor. Ecology and Evolution, 2022, 12, .	1.9	10
40	The complete chloroplast genome of vulnerable Aesculus wangii (Sapindaceae), a narrowly endemic tree in Yunnan, China. Conservation Genetics Resources, 2018, 10, 335-338.	0.8	9
41	The complex phylogenetic relationships of a 4mC/6mA DNA methyltransferase in prokaryotes. Molecular Phylogenetics and Evolution, 2020, 149, 106837.	2.7	8
42	Population genetic structure and evolutionary history of <i>Psammochloa villosa</i> (Trin.) Bor (Poaceae) revealed by AFLP marker. Ecology and Evolution, 2021, 11, 10258-10276.	1.9	8
43	Estimating paleoenvironments using ecological niche models of nearest living relatives: A case study of Eocene <i>Aesculus</i> L Journal of Systematics and Evolution, 2014, 52, 16-34.	3.1	7
44	Genetic Structure of the Bacterial Endosymbiont Buchnera aphidicola from Its Host Aphid Schlechtendalia chinensis and Evolutionary Implications. Current Microbiology, 2018, 75, 309-315.	2.2	7
45	Assessing the maternal origin in the polyploid complex of Camellia reticulata based on the chloroplast rpl16 intron sequences: implications for camellia cross breeding. Molecular Breeding, 2018, 38, 1.	2.1	7
46	Hybrid Speciation and Introgression Both Underlie the Genetic Structures and Evolutionary Relationships of Three Morphologically Distinct Species of Lilium (Liliaceae) Forming a Hybrid Zone Along an Elevational Gradient. Frontiers in Plant Science, 2020, 11, 576407.	3.6	7
47	Phylogenomics and biogeography of <i>Torreya</i> (Taxaceae)—Integrating data from three organelle genomes, morphology, and fossils and a practical method for reducing missing data from RADâ€seq. Journal of Systematics and Evolution, 2022, 60, 1241-1262.	3.1	7
48	Contributions toward understanding the biodiversity of <i>Passiflora</i> in North America: Updates and a new combination from the Baja California Peninsula, Mexico and vicinity. Journal of Systematics and Evolution, 2018, 56, 550-561.	3.1	6
49	Anthropogenic factors are stronger drivers of patterns of endemic plant diversity on Hainan Island of China than natural environmental factors. PLoS ONE, 2021, 16, e0257575.	2.5	6
50	The utility of the morphological variation of pollen for resolving the evolutionary history of <i>Billia</i> (subfam. Hippocastanoideae, Sapindaceae). Journal of Systematics and Evolution, 2015, 53, 228-238.	3.1	5
51	The effects of taxonomic rank on climatic calibrations: A test using extant floras of United States counties. Review of Palaeobotany and Palynology, 2017, 244, 316-324.	1.5	5
52	The genome of the Paleogene relic tree <i>Bretschneidera sinensis</i> : insights into trade-offs in gene family evolution, demographic history, and adaptive SNPs. DNA Research, 2022, 29, .	3.4	5
53	Latitudinal trends in genus richness of vascular plants in the Eocene and Oligocene of North America. Plant Diversity, 2016, 38, 133-141.	3.7	4
54	Development of SSR markers from transcriptomes for <i>Orinus</i> (Poaceae), an endemic of the Qinghai–Tibetan Plateau. Applications in Plant Sciences, 2017, 5, 1700029.	2.1	3

#	Article	IF	CITATIONS
55	Phylogenetic Reconstruction Shows Independent Evolutionary Origins of Mitochondrial Transcription Factors from an Ancient Family of RNA Methyltransferase Proteins. Journal of Molecular Evolution, 2018, 86, 277-282.	1.8	3
56	Closing the Gap: Horizontal Transfer of Mariner Transposons between Rhus Gall Aphids and Other Insects. Biology, 2022, 11, 731.	2.8	3
57	Inferring the Potential Geographic Distribution and Reasons for the Endangered Status of the Tree Fern, Sphaeropteris lepifera, in Lingnan, China Using a Small Sample Size. Horticulturae, 2021, 7, 496.	2.8	2
58	Identification of genes involved in drought tolerance in seedlings of the desert grass, Psammochloa villosa (Poaceae), based on full-length isoform sequencing and de novo assembly from short reads. Journal of Plant Physiology, 2022, 271, 153630.	3. 5	2
59	Lihengia : A new genus of Asteraceae distinct from Dubyaea. Taxon, 2021, 70, 620-634.	0.7	1
60	Primulina clausa, a new species of Gesneriaceae from northern Guangxi, China. Phytotaxa, 2021, 510, .	0.3	1
61	Socio-Ecological Effects on the Patterns of Non-native Plant Distributions on Hainan Island. Frontiers in Ecology and Evolution, 2022, 10, .	2.2	1
62	Comparative transcriptomic analysis of genes in the triterpene saponin biosynthesis pathway in leaves and roots of $\langle i \rangle$ Ardisia kteniophylla $\langle i \rangle$ A. DC., a plant used in traditional Chinese medicine. Ecology and Evolution, 2022, 12, .	1.9	1
63	Continents as Units for the Study of Floristic Assembly and Biodiversity: Focus on North America. Journal of Systematics and Evolution, 2018, 56, 401-404.	3.1	O
64	Chloroplast phylogenomics and biogeography of liquorice (Leguminosae: Glycyrrhiza)., 2020,,.		0
65	Development of SSR Markers for Psammochloa villosa (Trin.) Bor (Poaceae), a Dominant Species in the Inner Mongolian Plateau. Cytology and Genetics, 2021, 55, 576-582.	0.5	O