Michel Menetrier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8719717/publications.pdf

Version: 2024-02-01

43 papers

3,392 citations

28 h-index 243625 44 g-index

44 all docs

44 docs citations

times ranked

44

4246 citing authors

#	Article	IF	CITATIONS
1	Electrochemical characterization of Li10SnP2S12: An electrolyte or a negative electrode for solid state Li-ion batteries?. Solid State Ionics, 2016, 296, 18-25.	2.7	33
2	Structural and electrochemical studies of a new Tavorite composition: LiVPO ₄ OH. Journal of Materials Chemistry A, 2016, 4, 11030-11045.	10.3	19
3	Revealing Defects in Crystalline Lithium-lon Battery Electrodes by Solid-State NMR: Applications to LiVPO ₄ F. Chemistry of Materials, 2015, 27, 5212-5221.	6.7	47
4	Elucidating the origins of phase transformation hysteresis during electrochemical cycling of Li–Sb electrodes. Journal of Materials Chemistry A, 2015, 3, 18928-18943.	10.3	48
5	Insight into the Atomic Structure of Cycled Lithium-Rich Layered Oxide Li _{1.20} Mn _{0.54} Co _{0.13} Ni _{0.13} O ₂ Using HAADF STEM and Electron Nanodiffraction. Journal of Physical Chemistry C, 2015, 119, 75-83.	3.1	117
6	Different oxygen redox participation for bulk and surface: A possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. Journal of Power Sources, 2013, 236, 250-258.	7.8	280
7	Reversible Oxygen Participation to the Redox Processes Revealed for Li _{1.20} Mn _{0.54} Co _{0.13} Ni _{0.13} O ₂ . Journal of the Electrochemical Society, 2013, 160, A786-A792.	2.9	313
8	Lithium secondary batteries working at very high temperature: Capacity fade and understanding of aging mechanisms. Journal of Power Sources, 2013, 236, 265-275.	7.8	134
9	DFT+U Calculations and XAS Study: Further Confirmation of the Presence of CoO5 Square-Based Pyramids with IS-Co3+ in Li-Overstoichiometric LiCoO2. Journal of Physical Chemistry C, 2013, 117, 26493-26500.	3.1	17
10	Promising Nanometric Spinel Cobalt Oxides for Electrochemical Energy Storage: Investigation of Li and H Environments by NMR. Journal of Physical Chemistry C, 2012, 116, 26598-26607.	3.1	7
11	Multinuclear NMR Study of the Solid Electrolyte Interface on the Li-FeSn ₂ Negative Electrodes for Li-lon Batteries. Journal of Physical Chemistry C, 2012, 116, 2390-2398.	3.1	19
12	Simulation of NMR Fermi Contact Shifts for Lithium Battery Materials: The Need for an Efficient Hybrid Functional Approach. Journal of Physical Chemistry C, 2012, 116, 17393-17402.	3.1	30
13	Li _{1.20} Mn _{0.54} Co _{0.13} Ni _{0.13} O ₂ with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium-Ion Batteries: Insights into Their Structure. Journal of Physical Chemistry C, 2012, 116, 13497-13506.	3.1	162
14	Structural Polymorphism in Li2CoSiO4 Intercalation Electrodes: A Combined Diffraction and NMR Study. Chemistry of Materials, 2010, 22, 1892-1900.	6.7	74
15	One-step precipitation of nanometric LiMO2 powders (M=Co, Fe) in alcoholic media. Solid State Ionics, 2010, 181, 623-630.	2.7	6
16	⁷ Li NMR Knight Shifts in Liâ^'Sn Compounds: MAS NMR Measurements and Correlation with DFT Calculations. Journal of Physical Chemistry C, 2010, 114, 6749-6754.	3.1	33
17	Al-doped ZnO powdered materials: Al solubility limit and IR absorption properties. Solid State Sciences, 2009, 11, 1192-1197.	3.2	121
18	Improvement by heating of the electronic conductivity of cobalt spinel phases, electrochemically synthesized in various electrolytes. Journal of Solid State Chemistry, 2009, 182, 1273-1280.	2.9	20

#	Article	IF	CITATIONS
19	Sodium Ion Mobility in Na _{<i>x</i>} CoO ₂ (0.6 < <i>x</i> < 0.75) Cobaltites Studied by ²³ Na MAS NMR. Inorganic Chemistry, 2009, 48, 7018-7025.	4.0	37
20	⁶ Li MAS NMR Investigation of Electrochemical Lithiation of RuO ₂ : Evidence for an Interfacial Storage Mechanism. Chemistry of Materials, 2009, 21, 856-861.	6.7	64
21	Reinvestigation of the magnetic behavior of O3–LiCoO2. Journal of Applied Physics, 2009, 106, .	2.5	16
22	Effect of Thermal Treatment on the Electronic Conductivity Properties of Cobalt Spinel Phases Synthesized by Electro-Oxidation in Ternary Alkaline Electrolyte (KOH, LiOH, NaOH). Chemistry of Materials, 2008, 20, 6880-6888.	6.7	19
23	DFT Modeling of NMR Contact Shift Mechanism in the Ideal LiNi ₂ O ₄ Spinel and Application to Thermally Treated Layered Li _{0.5} NiO ₂ . Chemistry of Materials, 2007, 19, 4166-4173.	6.7	17
24	New Spinel Cobalt Oxides, Potential Conductive Additives for the Positive Electrode of Niâ^'MH Batteries. Chemistry of Materials, 2006, 18, 5840-5851.	6.7	40
25	n- and p-Type behaviour of the gold-substituted type-I clathrate, Ba8AuxSi46–x (xÂ=Â5.4 and 5.9). Comptes Rendus Chimie, 2005, 8, 39-46.	0.5	37
26	6/7Li NMR study of the Li1-zNi1+zO2 phases. Magnetic Resonance in Chemistry, 2005, 43, 849-857.	1.9	30
27	Iron Substitution in Lithium-Overstoichiometric "Li1.1CoO2â€ı Combined57Fe Mössbauer and7Li NMR Spectroscopies Studies. Chemistry of Materials, 2005, 17, 4653-4659.	6.7	17
28	On the clathrate form of elemental silicon, Si136: preparation and characterisation of NaxSi136 (xâ†'0). Solid State Sciences, 2004, 6, 393-400.	3.2	102
29	59Co, 23Na NMR and electric field gradient calculations in the layered cobalt oxides NaCoO2 and HCoO2. Solid State Nuclear Magnetic Resonance, 2003, 23, 243-262.	2.3	22
30	Oxygen Vacancies and Intermediate Spin Trivalent Cobalt Ions in Lithium-Overstoichiometric LiCoO2. Chemistry of Materials, 2003, 15, 348-354.	6.7	132
31	On the structure of Li3Ti2(PO4)3. Journal of Materials Chemistry, 2002, 12, 2971-2978.	6.7	176
32	A brief overview on low sodium content silicides: are they mainly clathrates, fullerenes, intercalation compounds or Zintl phases?. Solid State Sciences, 2002, 4, 723-729.	3.2	31
33	59Co and6,7Li MAS NMR in Polytypes O2 and O3 of LiCoO2. Journal of Physical Chemistry B, 2001, 105, 4166-4174.	2.6	39
34	7Li MAS NMR study of electrochemically deintercalated LixNi0.30Co0.70O2 phases: evidence of electronic and ionic mobility, and redox processes. Journal of Materials Chemistry, 2001, 11, 594-603.	6.7	72
35	Synthesis and characterization of boron-substituted carbons. Carbon, 2000, 38, 1461-1467.	10.3	212
36	Polydimethylsiloxane-based ORMOSIL microstructure: correlation with compressive behavior. Materials Letters, 2000, 42, 305-310.	2.6	20

3

#	Article	IF	CITATION
37	Aggregation of the doping salt in B2S3–Li2S–LiI glasses, effect on the dynamical properties. Solid State lonics, 1999, 116, 35-45.	2.7	15
38	The insulator-metal transition upon lithium deintercalation from LiCoO2: electronic properties and 7Li NMR study. Journal of Materials Chemistry, 1999, 9, 1135-1140.	6.7	437
39	Structural investigation of oxygen insertion within the Ce2Sn2O7–Ce2Sn2O8 pyrochlore solid solution by means of in situ neutron diffraction experiments. Journal of Materials Chemistry, 1999, 9, 3131-3136.	6.7	24
40	Relationship between Chemical Bonding Nature and Electrochemical Property of LiMn2O4 Spinel Oxides with Various Particle Sizes:  "Electrochemical Grafting―Concept. Journal of Physical Chemistry B, 1999, 103, 2100-2106.	2.6	137
41	Redox processes in LixNi1â^'yCoyO2 cobalt-rich phases. Journal of Materials Chemistry, 1997, 7, 2505-2511.	6.7	76
42	6Li and 7Li NMR in the LiNi1-yCoyO2 Solid Solution (O .ltoreq. y .ltoreq. 1). Inorganic Chemistry, 1995, 34, 1773-1778.	4.0	122
43	X-ray photoelectron spectrum of glassy B2S3. Experimental and theoretical study. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 93.	1.7	14