Muriel Thoby-Brisson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8719407/publications.pdf

Version: 2024-02-01

56 papers

3,042 citations

201674 27 h-index 50 g-index

64 all docs

64 docs citations

times ranked

64

1812 citing authors

#	Article	IF	Citations
1	A Rodent Model of Mild Neonatal Hypoxic Ischemic Encephalopathy. Frontiers in Neurology, 2021, 12, 637947.	2.4	3
2	Obstructive Apneas in a Mouse Model of Congenital Central Hypoventilation Syndrome. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1200-1210.	5 . 6	11
3	Synergistic interaction between sensory inputs and propriospinal signalling underlying quadrupedal locomotion. Journal of Physiology, 2021, 599, 4477-4496.	2.9	O
4	Modulation of respiratory network activity by forelimb and hindlimb locomotor generators. European Journal of Neuroscience, 2020, 52, 3181-3195.	2.6	10
5	Neural mechanisms for sigh generation during prenatal development. Journal of Neurophysiology, 2018, 120, 1162-1172.	1.8	3
6	Acute exposure to zinc oxide nanoparticles critically disrupts operation of the respiratory neural network in neonatal rat. NeuroToxicology, 2018, 67, 150-160.	3.0	13
7	Role of the K+-Cl– Cotransporter KCC2a Isoform in Mammalian Respiration at Birth. ENeuro, 2018, 5, ENEURO.0264-18.2018.	1.9	19
8	Functional limb muscle innervation prior to cholinergic transmitter specification during early metamorphosis in Xenopus. ELife, 2018, 7, .	6.0	9
9	The embryonic development of hindbrain respiratory networks is unaffected by mutation of the planar polarity protein Scribble. Neuroscience, 2017, 357, 160-171.	2.3	O
10	Mechanisms Underlying Adaptation of Respiratory Network Activity to Modulatory Stimuli in the Mouse Embryo. Neural Plasticity, 2016, 2016, 1-10.	2.2	6
11	Development of pacemaker properties and rhythmogenic mechanisms in the mouse embryonic respiratory network. ELife, 2016, 5, .	6.0	35
12	Role of Na+ and Ca2+ currents in computational model of in-vitro sigh generation. BMC Neuroscience, 2015, 16, .	1.9	0
13	Generation of BAC Transgenic Tadpoles Enabling Live Imaging of Motoneurons by Using the Urotensin II-Related Peptide (ust2b) Gene as a Driver. PLoS ONE, 2015, 10, e0117370.	2,5	10
14	Sigh and Eupnea Rhythmogenesis Involve Distinct Interconnected Subpopulations: A Combined Computational and Experimental Study. ENeuro, 2015, 2, ENEURO.0074-14.2015.	1.9	28
15	Remote Control of Respiratory Neural Network by Spinal Locomotor Generators. PLoS ONE, 2014, 9, e89670.	2.5	35
16	Emergence of sigh rhythmogenesis in the embryonic mouse. Journal of Physiology, 2014, 592, 2169-2181.	2.9	25
17	Respiratory circuits: development, function and models. Current Opinion in Neurobiology, 2012, 22, 676-685.	4.2	30
18	Brainstem Respiratory Oscillators Develop Independently of Neuronal Migration Defects in the Wnt/PCP Mouse Mutant looptail. PLoS ONE, 2012, 7, e31140.	2.5	6

#	Article	IF	CITATIONS
19	Prenatal development of central rhythm generation. Respiratory Physiology and Neurobiology, 2011, 178, 146-155.	1.6	31
20	Breathing without CO ₂ Chemosensitivity in Conditional <i>Phox2b</i> Neuroscience, 2011, 31, 12880-12888.	3.6	149
21	Hindbrain interneurons and axon guidance signaling critical for breathing. Nature Neuroscience, 2010, 13, 1066-1074.	14.8	206
22	Teashirt 3 Regulates Development of Neurons Involved in Both Respiratory Rhythm and Airflow Control. Journal of Neuroscience, 2010, 30, 9465-9476.	3.6	43
23	Phox2b, congenital central hypoventilation syndrome and the control of respiration. Seminars in Cell and Developmental Biology, 2010, 21, 814-822.	5.0	37
24	Genetic factors determining the functional organization of neural circuits controlling rhythmic movements. Progress in Brain Research, 2010, 187, 39-46.	1.4	4
25	Defective Respiratory Rhythmogenesis and Loss of Central Chemosensitivity in Phox2b Mutants Targeting Retrotrapezoid Nucleus Neurons. Journal of Neuroscience, 2009, 29, 14836-14846.	3.6	115
26	Developmental basis of the rostro-caudal organization of the brainstem respiratory rhythm generator. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2469-2476.	4.0	27
27	Embryonic emergence of the respiratory rhythm generator. Respiratory Physiology and Neurobiology, 2009, 168, 86-91.	1.6	32
28	Genetic identification of an embryonic parafacial oscillator coupling to the preBA¶tzinger complex. Nature Neuroscience, 2009, 12, 1028-1035.	14.8	186
29	Brainâ€derived neurotrophic factor enhances fetal respiratory rhythm frequency in the mouse preBötzinger complex <i>in vitro</i> . European Journal of Neuroscience, 2008, 28, 510-520.	2.6	31
30	Differential Modulation of Neural Network and Pacemaker Activity Underlying Eupnea and Sigh-Breathing Activities. Journal of Neurophysiology, 2008, 99, 2114-2125.	1.8	124
31	Anatomical and functional development of the pre-Bötzinger complex in prenatal rodents. Journal of Applied Physiology, 2008, 104, 1213-1219.	2.5	27
32	Genes and development of respiratory rhythm generation. , 2008, , 169-189.		0
33	Abnormal inspiratory depth in Phox2a haploinsufficient mice. Neuroscience, 2007, 145, 384-392.	2.3	7
34	Ontogeny of central rhythm generation in chicks and rodents. Respiratory Physiology and Neurobiology, 2006, 154, 37-46.	1.6	23
35	The pre-Bötzinger oscillator in the mouse embryo. Journal of Physiology (Paris), 2006, 100, 284-289.	2.1	3
36	Acute role of the brain-derived neurotrophic factor (BDNF) on the respiratory neural network activity in mice in vitro. Journal of Physiology (Paris), 2006, 100, 290-296.	2.1	3

#	Article	lF	CITATIONS
37	Title is missing!. Journal of Physiology (Paris), 2006, 100, 237-242.	2.1	O
38	Mice Lacking Brain/Kidney Phosphate-Activated Glutaminase Have Impaired Glutamatergic Synaptic Transmission, Altered Breathing, Disorganized Goal-Directed Behavior and Die Shortly after Birth. Journal of Neuroscience, 2006, 26, 4660-4671.	3.6	117
39	Vesicular Glutamate Transporter 2 Is Required for Central Respiratory Rhythm Generation But Not for Locomotor Central Pattern Generation. Journal of Neuroscience, 2006, 26, 12294-12307.	3.6	183
40	Emergence of the Pre-Botzinger Respiratory Rhythm Generator in the Mouse Embryo. Journal of Neuroscience, 2005, 25, 4307-4318.	3.6	124
41	Neural tube patterning by Krox20 and emergence of a respiratory control. Respiratory Physiology and Neurobiology, 2005, 149, 63-72.	1.6	27
42	BDNF Preferentially Targets Membrane Properties of Rhythmically Active Neurons in the pre-Bötzinger Complex in Neonatal Mice. Advances in Experimental Medicine and Biology, 2004, 551, 115-120.	1.6	4
43	Developmental gene control of brainstem function: views from the embryo. Progress in Biophysics and Molecular Biology, 2004, 84, 89-106.	2.9	39
44	From Hindbrain Segmentation to Breathing After Birth: Developmental Patterning in Rhombomeres 3 and 4. Molecular Neurobiology, 2003, 28, 277-294.	4.0	35
45	Emergence of neural net function during brain development. Journal of Physiology (Paris), 2003, 97, 1-3.	2.1	0
46	Developmental molecular switches regulating breathing patterns in CNS. Respiratory Physiology and Neurobiology, 2003, 135, 121-132.	1.6	17
47	Expression of Functional Tyrosine Kinase B Receptors by Rhythmically Active Respiratory Neurons in the Pre-BA¶tzinger Complex of Neonatal Mice. Journal of Neuroscience, 2003, 23, 7685-7689.	3.6	87
48	Early development of respiratory rhythm generation in mouse and chick. Respiratory Physiology and Neurobiology, 2002, 131, 5-13.	1.6	45
49	Long-Term Neuromodulatory Regulation of a Motor Pattern–Generating Network: Maintenance of Synaptic Efficacy and Oscillatory Properties. Journal of Neurophysiology, 2002, 88, 2942-2953.	1.8	53
50	Reconfiguration of the Central Respiratory Network Under Normoxic and Hypdxic Conditions. Advances in Experimental Medicine and Biology, 2001, 499, 171-178.	1.6	7
51	Identification of Two Types of Inspiratory Pacemaker Neurons in the Isolated Respiratory Neural Network of Mice. Journal of Neurophysiology, 2001, 86, 104-112.	1.8	173
52	Reconfiguration of the neural network controlling multiple breathing patterns: eupnea, sighs and gasps. Nature Neuroscience, 2000, 3, 600-607.	14.8	499
53	Role of Inspiratory Pacemaker Neurons in Mediating the Hypoxic Response of the Respiratory Network < i > In Vitro < /i > . Journal of Neuroscience, 2000, 20, 5858-5866.	3.6	92
54	The Role of the Hyperpolarization-Activated Current in Modulating Rhythmic Activity in the Isolated Respiratory Network of Mice. Journal of Neuroscience, 2000, 20, 2994-3005.	3.6	114

#	Article	IF	CITATIONS
55	Transition to Endogenous Bursting After Long-Term Decentralization Requires De Novo Transcription in a Critical Time Window. Journal of Neurophysiology, 2000, 84, 596-599.	1.8	36
56	Neuromodulatory Inputs Maintain Expression of a Lobster Motor Pattern-Generating Network in a Modulation-Dependent State: Evidence from Long-Term DecentralizationIn Vitro. Journal of Neuroscience, 1998, 18, 2212-2225.	3.6	99