Xue Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8719314/publications.pdf

Version: 2024-02-01

31	3,593	22	32
papers	citations	h-index	g-index
34	34	34	5282
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature, 2018, 556, 57-63.	27.8	1,195
2	Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2868-2873.	7.1	495
3	Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature, 2018, 553, 217-221.	27.8	412
4	The role of distant mutations and allosteric regulation on LovD active site dynamics. Nature Chemical Biology, 2014, 10, 431-436.	8.0	166
5	Cyclization of fungal nonribosomal peptides by a terminal condensation-like domain. Nature Chemical Biology, 2012, 8, 823-830.	8.0	161
6	Fungal Indole Alkaloid Biosynthesis: Genetic and Biochemical Investigation of the Tryptoquialanine Pathway in <i>Penicillium aethiopicum</i> Journal of the American Chemical Society, 2011, 133, 2729-2741.	13.7	140
7	Genome editing of mutant KRAS through supramolecular polymer-mediated delivery of Cas9 ribonucleoprotein for colorectal cancer therapy. Journal of Controlled Release, 2020, 322, 236-247.	9.9	83
8	Short Pathways to Complexity Generation: Fungal Peptidyl Alkaloid Multicyclic Scaffolds from Anthranilate Building Blocks. ACS Chemical Biology, 2013, 8, 1366-1382.	3.4	80
9	Directed Evolution and Structural Characterization of a Simvastatin Synthase. Chemistry and Biology, 2009, 16, 1064-1074.	6.0	79
10	Uncovering the Enzymes that Catalyze the Final Steps in Oxytetracycline Biosynthesis. Journal of the American Chemical Society, 2013, 135, 7138-7141.	13.7	78
11	Engineered polyketide biosynthesis and biocatalysis in Escherichia coli. Applied Microbiology and Biotechnology, 2010, 88, 1233-1242.	3.6	72
12	Complexity Generation in Fungal Peptidyl Alkaloid Biosynthesis: Oxidation of Fumiquinazoline A to the Heptacyclic Hemiaminal Fumiquinazoline C by the Flavoenzyme Af12070 from <i>Aspergillus fumigatus</i> . Biochemistry, 2011, 50, 8756-8769.	2.5	55
13	Single C-to-T substitution using engineered APOBEC3G-nCas9 base editors with minimum genome- and transcriptome-wide off-target effects. Science Advances, 2020, 6, eaba1773.	10.3	55
14	Assembly of Asperlicin Peptidyl Alkaloids from Anthranilate and Tryptophan: A Two-Enzyme Pathway Generates Heptacyclic Scaffold Complexity in Asperlicin E. Journal of the American Chemical Society, 2012, 134, 17444-17447.	13.7	54
15	Complexity Generation in Fungal Peptidyl Alkaloid Biosynthesis: A Two-Enzyme Pathway to the Hexacyclic MDR Export Pump Inhibitor Ardeemin. ACS Chemical Biology, 2013, 8, 741-748.	3.4	49
16	Unraveling Terminal C-Domain-Mediated Condensation in Fungal Biosynthesis of Imidazoindolone Metabolites. Biochemistry, 2011, 50, 5668-5679.	2.5	48
17	Heterologous Expression and Manipulation of Three Tetracycline Biosynthetic Pathways. Angewandte Chemie - International Edition, 2012, 51, 11136-11140.	13.8	46
18	Amplificationâ€Free Detection of SARSâ€CoVâ€2 and Respiratory Syncytial Virus Using CRISPR Cas13a and Graphene Fieldâ€Effect Transistors. Angewandte Chemie - International Edition, 2022, 61, .	13.8	43

#	Article	IF	CITATIONS
19	A Dual-Plasmid CRISPR/Cas System for Mycotoxin Elimination in Polykaryotic Industrial Fungi. ACS Synthetic Biology, 2020, 9, 2087-2095.	3.8	40
20	Complexity generation during natural product biosynthesis using redox enzymes. Current Opinion in Chemical Biology, 2012, 16, 362-369.	6.1	37
21	Rational improvement of simvastatin synthase solubility in <i>Escherichia coli</i> leads to higher wholeâ€cell biocatalytic activity. Biotechnology and Bioengineering, 2009, 102, 20-28.	3.3	31
22	Multiplex base- and prime-editing with drive-and-process CRISPR arrays. Nature Communications, 2022, 13, 2771.	12.8	30
23	Advances in genome editing for genetic hearing loss. Advanced Drug Delivery Reviews, 2021, 168, 118-133.	13.7	24
24	Systematic decomposition of sequence determinants governing CRISPR/Cas9 specificity. Nature Communications, 2022, 13, 474.	12.8	23
25	An Iterative, Bimodular Nonribosomal Peptide Synthetase that Converts Anthranilate and Tryptophan into Tetracyclic Asperlicins. Chemistry and Biology, 2013, 20, 870-878.	6.0	20
26	Genetic characterization of enzymes involved in the priming steps of oxytetracycline biosynthesis in Streptomyces rimosus. Microbiology (United Kingdom), 2011, 157, 2401-2409.	1.8	18
27	Structural basis of the stereoselective formation of the spirooxindole ring in the biosynthesis of citrinadins. Nature Communications, 2021, 12, 4158.	12.8	17
28	Quinolactacin Biosynthesis Involves Nonâ€Ribosomalâ€Peptideâ€Synthetaseâ€Catalyzed Dieckmann Condensation to Form the Quinoloneâ€Î³â€lactam Hybrid. Angewandte Chemie - International Edition, 2020, 59, 19108-19114.	13.8	14
29	A general theoretical framework to design base editors with reduced bystander effects. Nature Communications, 2021, 12, 6529.	12.8	10
30	Quinolactacin Biosynthesis Involves Nonâ€Ribosomalâ€Peptideâ€Synthetaseâ€Catalyzed Dieckmann Condensation to Form the Quinoloneâ€Î³â€Iactam Hybrid. Angewandte Chemie, 2020, 132, 19270-19276.	2.0	5
31	Amplificationâ€Free Detection of SARSâ€CoVâ€2 and Respiratory Syncytial Virus Using CRISPR Cas13a and Graphene Fieldâ€Effect Transistors. Angewandte Chemie, 2022, 134, .	2.0	5