Patrick Georges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/871857/publications.pdf

Version: 2024-02-01

556 papers 11,566 citations

23567 58 h-index 85 g-index

560 all docs 560 docs citations

560 times ranked 5801 citing authors

#	Article	IF	CITATIONS
1	On thermal effects in solid-state lasers: The case of ytterbium-doped materials. Progress in Quantum Electronics, 2006, 30, 89-153.	7.0	316
2	Femtosecond laser excitation of the semiconductorâ€metal phase transition in VO2. Applied Physics Letters, 1994, 65, 1507-1509.	3.3	227
3	47-fs diode-pumped Yb^3+:CaGdAlO_4 laser. Optics Letters, 2006, 31, 119.	3.3	207
4	Detection of Single Photoluminescent Diamond Nanoparticles in Cells and Study of the Internalization Pathway. Small, 2008, 4, 2236-2239.	10.0	199
5	High-power diode-pumped Yb^3+:CaF_2 femtosecond laser. Optics Letters, 2004, 29, 2767.	3.3	176
6	Diode-pumped Yb:Sr_3Y(BO_3)_3 femtosecond laser. Optics Letters, 2002, 27, 197.	3.3	173
7	The Apollon 10ÂPW laser: experimental and theoretical investigation of the temporal characteristics. High Power Laser Science and Engineering, 2016, 4, .	4.6	156
8	Generation of 90-fs pulses from a mode-locked diode-pumped Yb^3+:Ca_4GdO(BO_3)_3 laser. Optics Letters, 2000, 25, 423.	3.3	141
9	On Yb:CaF_2 and Yb:SrF_2: review of spectroscopic and thermal properties and their impact on femtosecond and high power laser performance [Invited]. Optical Materials Express, 2011, 1, 489.	3.0	140
10	32-fs Kerr-lens mode-locked Yb:CaGdAlO_4 oscillator optically pumped by a bright fiber laser. Optics Letters, 2014, 39, 6001.	3.3	139
11	Diode-pumped Yb:GGG laser: comparison with Yb:YAG. Optical Materials, 2003, 22, 99-106.	3.6	137
12	Efficient laser action of Yb:LSO and Yb:YSO oxyorthosilicates crystals under high-power diode-pumping. Applied Physics B: Lasers and Optics, 2005, 80, 171-176.	2.2	136
13	High-power tunable diode-pumped Yb^3+:CaF_2 laser. Optics Letters, 2004, 29, 1879.	3.3	133
14	Design and current progress of the ApollonÂ10ÂPWÂproject. High Power Laser Science and Engineering, 2015, 3, .	4.6	132
15	Single-shot measurement of a 52-fs pulse. Applied Optics, 1987, 26, 4528.	2.1	130
16	Perylene- and pyrromethene-doped xerogel for a pulsed laser. Applied Optics, 1995, 34, 428.	2.1	128
17	Efficient diode-pumped Yb^3+:Y_2SiO_5 and Yb^3+:Lu_2SiO_5 high-power femtosecond laser operation. Optics Letters, 2006, 31, 1555.	3.3	122
18	Efficient tunable solid-state laser near 630 nm using sulforhodamine 640-doped silica gel. Optics Letters, 1989, 14, 785.	3.3	117

#	Article	IF	CITATIONS
19	Toward millions of laser pulses with pyrromethene- and perylene-doped xerogels. Applied Optics, 1997, 36, 6760.	2.1	116
20	Thermal lensing in diode-pumped ytterbium Lasers-Part I: theoretical analysis and wavefront measurements. IEEE Journal of Quantum Electronics, 2004, 40, 1217-1234.	1.9	106
21	491 nm generation by sum-frequency mixing of diode pumped neodymium lasers. Optics Express, 2005, 13, 5653.	3.4	105
22	Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers. Optics Letters, 2011, 36, 621.	3.3	102
23	Microjoule femtosecond fiber laser at 16 î¼m for corneal surgery applications. Optics Letters, 2009, 34, 1991.	3.3	101
24	Dual-color deep-tissue three-photon microscopy with a multiband infrared laser. Light: Science and Applications, 2018, 7, 12.	16.6	91
25	Yb:YAG single crystal fiber power amplifier for femtosecond sources. Optics Letters, 2013, 38, 109.	3.3	90
26	Nonlinear temporal compression in multipass cells: theory. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1340.	2.1	90
27	New green self-frequency-doubling diode-pumped Nd:Ca 4 GdO(BO 3) 3 laser. Applied Physics B: Lasers and Optics, 1998, 67, 533-535.	2.2	88
28	Continuous-wave and femtosecond laser operation of Yb:CaGdAlO_4 under high-power diode pumping. Optics Letters, 2007, 32, 1962.	3.3	87
29	Spectroscopy and efficient laser action from diode pumping of a new broadly tunable crystal: Yb^3+:Sr_3 Y(BO_3)_3. Journal of the Optical Society of America B: Optical Physics, 2002, 19, 1083.	2.1	86
30	New laser crystals for the generation of ultrashort pulses. Comptes Rendus Physique, 2007, 8, 153-164.	0.9	85
31	Nonlinear pulse compression based on a gas-filled multipass cell. Optics Letters, 2018, 43, 2252.	3.3	83
32	Reverse saturable absorption in solid xerogel matrices. Applied Physics Letters, 1993, 62, 1721-1723.	3.3	82
33	Femtosecond fiber chirped- and divided-pulse amplification system. Optics Letters, 2013, 38, 106.	3.3	82
34	Spectroscopic properties and laser performances of Yb:YCOB and potential of the Yb:LaCOB material. Optical Materials, 2001, 16, 181-188.	3.6	81
35	Heterogeneity of Diffusion Inside Microbial Biofilms Determined by Fluorescence Correlation Spectroscopy Under Two-photon Excitation¶. Photochemistry and Photobiology, 2002, 75, 570.	2.5	81
36	Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers. Optics Letters, 2008, 33, 107.	3.3	80

#	Article	IF	Citations
37	Femtosecond Yb:CaGdAlO_4 thin-disk oscillator. Optics Letters, 2012, 37, 3984.	3.3	78
38	250ÂW single-crystal fiber Yb:YAG laser. Optics Letters, 2012, 37, 2898.	3.3	78
39	High-brightness fiber laser-pumped 68  fs–23  W Kerr-lens mode-locked Yb:CaF_2 oscillator. Letters, 2013, 38, 4008.	Optics	73
40	Apatite-structure crystal, Yb^3+:SrY_4(SiO_4)_3O, for the development of diode-pumped femtosecond lasers. Optics Letters, 2002, 27, 1914.	3.3	72
41	Highly efficient Nd:YVO_4 laser by direct in-band diode pumping at 914 nm. Optics Letters, 2009, 34, 2159.	3.3	72
42	Theoretical and experimental investigations of a diode-pumped quasi-three-level laser: the Yb/sup 3+/-doped Ca/sub 4/GdO(BO/sub 3/)/sub 3/ (Yb:GdCOB) laser. IEEE Journal of Quantum Electronics, 2000, 36, 598-606.	1.9	71
43	Visible supercontinuum generation controlled by intermodal four-wave mixing in microstructured fiber. Optics Letters, 2007, 32, 2173.	3.3	71
44	Femtosecond laser excitation dynamics of the semiconductorâ€metal phase transition in VO2. Journal of Applied Physics, 1996, 79, 2404-2408.	2.5	70
45	Simultaneous dual-band ultra-high resolution full-field optical coherence tomography. Optics Express, 2008, 16, 19434.	3.4	70
46	High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique. Optics Letters, 2006, 31, 3468.	3.3	67
47	Thermo-optic characterization of Yb:CaGdAlO_4 laser crystal. Optical Materials Express, 2014, 4, 2241.	3.0	66
48	Generation of 63 fs 41 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit. Optics Letters, 2007, 32, 2520.	3.3	65
49	Thermal behaviour of ytterbium-doped fluorite crystals under high power pumping. Optics Express, 2008, 16, 10098.	3.4	65
50	High power laser operation with crystal fibers. Applied Physics B: Lasers and Optics, 2009, 97, 263-273.	2.2	65
51	Ultra-short-pulsed and highly-efficient diode-pumped Yb:SYS mode-locked oscillators. Optics Express, 2004, 12, 5005.	3.4	64
52	Diode-pumped 99 fs Yb:CaF_2 oscillator. Optics Letters, 2009, 34, 1474.	3.3	64
53	High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers in cylindrical polarization. Optics Letters, 2015, 40, 2517.	3.3	64
54	Z-scan measurements of the nonlinear refractive indices of novel Yb-doped laser crystal hosts. Applied Physics B: Lasers and Optics, 2005, 80, 199-201.	2.2	63

#	Article	IF	Citations
55	Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO:LiNbO3 waveguide. Optics Express, 2005, 13, 6974.	3.4	63
56	Temperature dependence of the emission cross section of Nd:YVO_4 around 1064Ânm and consequences on laser operation. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 972.	2.1	63
57	Thermal lensing in diode-pumped ytterbium Lasers-Part II: evaluation of quantum efficiencies and thermo-optic coefficients. IEEE Journal of Quantum Electronics, 2004, 40, 1235-1243.	1.9	61
58	Multiwatt, tunable, diode-pumped CW Yb:GdCOB laser. Applied Physics B: Lasers and Optics, 2001, 72, 389-393.	2.2	60
59	Efficient, tunable, zero-line diode-pumped, continuous-wave Yb^3+:Ca_4LnO(BO_3)_3 (Ln = Gd, Y) lasers at room temperature and application to miniature lasers. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 18.	2.1	59
60	Design and Simulation of Next-Generation High-Power, High-Brightness Laser Diodes. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 993-1008.	2.9	56
61	Ultrashort pulse laser surgery of the cornea and the sclera. Journal of Optics (United Kingdom), 2010, 12, 084002.	2.2	56
62	Nd:GdVO4 as a three-level laser at 879 nm. Optics Letters, 2006, 31, 2731.	3.3	54
63	Laser performance of diode-pumped Yb:CaF_2 optical ceramics synthesized using an energy-efficient process. Optica, 2015, 2, 288.	9.3	53
64	Coherent beam combining with an ultrafast multicore Yb-doped fiber amplifier. Optics Express, 2015, 23, 5406.	3.4	51
65	34 W continuous wave Nd:YAG single crystal fiber laser emitting at 946 nm. Applied Physics B: Lasers and Optics, 2011, 104, 1-4.	2.2	50
66	Passively Q-switched diode-pumped Er:YAG solid-state laser. Optics Letters, 2013, 38, 938.	3.3	50
67	Single-shot characterization of ultrashort light pulses. Journal Physics D: Applied Physics, 1991, 24, 1225-1233.	2.8	49
68	Overview of the laser and non-linear optical properties of calcium-gadolinium-oxo-borate Ca4GdO(BO3)3. Journal of Alloys and Compounds, 2000, 303-304, 401-408.	5.5	49
69	Passively Q-switched diode-pumped Cr4+:YAG/Nd3+:GdVO4 monolithic microchip laser. Optics Communications, 2006, 259, 816-819.	2.1	49
70	Light-emitting diode pumped luminescent concentrators: a new opportunity for low-cost solid-state lasers. Optica, 2016, 3, 465.	9.3	49
71	Supercontinuum-seeded few-cycle mid-infrared OPCPA system. Optics Express, 2016, 24, 26494.	3.4	49
72	High-energy few-cycle Yb-doped fiber amplifier source based on a single nonlinear compression stage. Optics Express, 2017, 25, 7530.	3.4	49

#	Article	IF	Citations
73	Fiber optical parametric chirped-pulse amplification in the femtosecond regime. Optics Express, 2006, 14, 2783.	3.4	48
74	Thermal conductivity measurements of laser crystals by infrared thermography. Application to Nd:doped crystals. Optics Express, 2008, 16, 8995.	3.4	48
75	High-contrast 10  fs OPCPA-based front end for multi-PW laser chains. Optics Letters, 2017, 42, 3530.	3.3	47
76	Efficient and tunable continuous-wave diode-pumped Yb^3+:Ca_4GdO(BO_3)_3 laser. Applied Optics, 1999, 38, 976.	2.1	46
77	Short-pulse and high-repetition-rate diode-pumped Yb:CaF_2 regenerative amplifier. Optics Letters, 2010, 35, 2415.	3.3	46
78	Characteristics of laser operation at 1064 nm in Nd:YVO_4 under diode pumping at 808 and 914 nm. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 52.	2.1	46
79	Complete measurement of fiber modal content by wavefront analysis. Optics Express, 2012, 20, 4074.	3.4	46
80	Nd:GdCOB: overview of its infrared, green and blue laser performances. Optical Materials, 2001, 16, 213-220.	3.6	44
81	Thermal lensing measurements in diode-pumped Yb-doped GdCOB, YCOB, YSO, YAG and KGW. Optical Materials, 2003, 22, 129-137.	3.6	44
82	Passively mode-locked diode-pumped Nd:YVO_4 oscillator operating at an ultralow repetition rate. Optics Letters, 2003, 28, 1838.	3.3	42
83	Direct and absolute temperature mapping and heat transfer measurements in diode-end-pumped Yb:YAG. Applied Physics B: Lasers and Optics, 2004, 79, 221-224.	2.2	42
84	Femtosecond laser Fourier transform absorption spectroscopy. Optics Letters, 2007, 32, 1677.	3.3	42
85	Narrow-line coherently combined tapered laser diodes in a Talbot external cavity with a volume Bragg grating. Applied Physics Letters, 2008, 93, 211102.	3 . 3	42
86	High-power two-cycle ultrafast source based on hybrid nonlinear compression. Optics Express, 2019, 27, 1958.	3.4	42
87	High energy, single-mode, narrow-linewidth fiber laser source using stimulated Brillouin scattering beam cleanup. Optics Express, 2007, 15, 6464.	3.4	41
88	Highly efficient, high-power, broadly tunable, cryogenically cooled and diode-pumped Yb:CaF_2. Optics Letters, 2010, 35, 3757.	3.3	41
89	Nd:YAG single-crystal fiber as high peak power amplifier of pulses below one nanosecond. Optics Express, 2011, 19, 11667.	3.4	41
90	Imaging in diffuse media with ultrafast degenerate optical parametric amplification. Optics Letters, 1995, 20, 231.	3.3	40

#	Article	IF	CITATIONS
91	Single-frequency cw vertical external cavity surface emitting semiconductor laser at 1003Ânm and 501Ânm by intracavity frequency doubling. Applied Physics B: Lasers and Optics, 2007, 86, 503-510.	2.2	40
92	Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser. Optics Letters, 2009, 34, 196.	3.3	40
93	Extreme light infrastructure: laser architecture and major challenges. Proceedings of SPIE, 2010, , .	0.8	40
94	High-efficiency multipass Ti:sapphire amplifiers for a continuous-wave single-mode laser. Optics Letters, 1991, 16, 144.	3.3	39
95	All-optical gel memory. Optics Letters, 1992, 17, 218.	3.3	39
96	Numerical and experimental study of gain narrowing in ytterbium-based regenerative amplifiers. IEEE Journal of Quantum Electronics, 2005, 41, 415-425.	1.9	39
97	Theoretical and experimental investigations of small-signal gain for a diode-pumped Q-switched Cr:LiSAF laser. IEEE Journal of Quantum Electronics, 1997, 33, 269-278.	1.9	38
98	Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers. Optics Letters, 2011, 36, 4023.	3.3	38
99	High peak-power stretcher-free femtosecond fiber amplifier using passive spatio-temporal coherent combining. Optics Express, 2012, 20, 21627.	3.4	38
100	Magic mode switching in Yb:CaGdAlO_4 laser under high pump power. Optics Letters, 2013, 38, 4138.	3.3	38
101	Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber. Optics Express, 2015, 23, 7416.	3.4	38
102	Motion artifact suppression in full-field optical coherence tomography. Applied Optics, 2010, 49, 1480.	2.1	37
103	Sub-100-fs Yb:CALGO nonlinear regenerative amplifier. Optics Letters, 2013, 38, 5180.	3.3	37
104	Diode-pumped self-frequency-doubling Nd:GdCa_4O(BO_3)_3 lasers: toward green microchip lasers. Journal of the Optical Society of America B: Optical Physics, 2000, 17, 1526.	2.1	36
105	First diode-pumped Yb-doped solid-state laser continuously tunable between 1000 and 1010�nm. Applied Physics B: Lasers and Optics, 2004, 78, 13-18.	2.2	36
106	Fluorescence lifetime imaging with a low-repetition-rate passively mode-locked diode-pumped Nd:YVO_4 oscillator. Optics Letters, 2005, 30, 168.	3.3	36
107	Phase and amplitude control of a multimode LMA fiber beam by use of digital holography. Optics Express, 2009, 17, 13000.	3.4	36
108	Yb:YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique. Optics Letters, 2016, 41, 1628.	3.3	36

#	Article	IF	Citations
109	1064 nm Nd:YVO_4 laser intracavity pumped at 912 nm and sum-frequency mixing for an emission at 491 nm. Optics Letters, 2008, 33, 1632.	3.3	35
110	Yb:CaGdAlO_4 thin-disk laser. Optics Letters, 2011, 36, 4134.	3.3	35
111	All-solid-state continuous-wave tunable blue-light source by intracavity doubling of a diode-pumped Cr:LiSAF laser. Optics Letters, 1995, 20, 1274.	3.3	34
112	Efficient cross polarized wave generation for compact, energy-scalable, ultrashort laser sources. Optics Express, 2011, 19, 93.	3.4	34
113	Efficient cw operation of diode-pumped Nd:YLF lasers at 1312.0 and 1322.6 nm for a silver atom optical clock. Optics Communications, 2003, 217, 357-362.	2.1	33
114	Probing interface magnetism in the FeMn/NiFe exchange bias system using magnetic second-harmonic generation. Europhysics Letters, 2003, 63, 819-825.	2.0	33
115	Energy scaling of a nonlinear compression setup using passive coherent combining. Optics Letters, 2013, 38, 4437.	3.3	33
116	Revisiting of LED pumped bulk laser: first demonstration of Nd:YVO_4 LED pumped laser. Optics Letters, 2014, 39, 6731.	3.3	33
117	High-repetition-rate 300-ps pulsed ultraviolet source with a passively Q-switched microchip laser and a multipass amplifier. Optics Letters, 1999, 24, 499.	3.3	32
118	Fluorescence-lifetime imaging with a multifocal two-photon microscope. Optics Letters, 2004, 29, 2884.	3.3	32
119	Direct amplification of ultrashort pulses in $\hat{l}\frac{1}{4}$ -pulling-down Yb:YAG single crystal fibers. Optics Letters, 2011, 36, 748.	3.3	32
120	Apollon-10P: Status and implementation. AIP Conference Proceedings, 2012, , .	0.4	32
121	Passive coherent combination of two ultrafast rod type fiber chirped pulse amplifiers. Optics Letters, 2012, 37, 1460.	3.3	32
122	LED-pumped alexandrite laser oscillator and amplifier. Optics Letters, 2017, 42, 4191.	3.3	32
123	Organic-inorganic solids by sol-gel processing: optical applications. Journal of Optics, 1998, 7, 169-177.	0.5	31
124	Observation of magneto-optical second-harmonic generation with surface plasmon excitation in ultrathin Au/Co/Au films. Applied Physics Letters, 1999, 75, 190-192.	3.3	31
125	Diode-pumped Nd:YAG laser emitting at 899 nm and below. Optics Letters, 2007, 32, 799.	3.3	31
126	Yb3+ doped (Ca,Sr,Ba)F2 for high power laser applications. Laser Physics, 2010, 20, 533-536.	1.2	31

#	Article	IF	Citations
127	Light-emitting diodes: a new paradigm for Ti:sapphire pumping. Optica, 2018, 5, 1236.	9.3	31
128	Femtosecond Yb:YCOB laser pumped by narrow-stripe laser diode and passively modelocked using ion implanted saturable-absorber mirror. Electronics Letters, 2000, 36, 1621.	1.0	30
129	New Materials for Short-Pulse Amplifiers. IEEE Photonics Journal, 2011, 3, 268-273.	2.0	29
130	Low-Noise Dual-Frequency Laser for Compact Cs Atomic Clocks. Journal of Lightwave Technology, 2014, 32, 3817-3823.	4.6	29
131	Impregnated SiO2 gels used as dye laser matrix hosts. Journal of Non-Crystalline Solids, 1992, 147-148, 636-640.	3.1	28
132	High-power diode-pumped cryogenically cooled Yb:CaF_2 laser with extremely low quantum defect. Optics Letters, 2011, 36, 1602.	3.3	28
133	Hybrid master oscillator power amplifier high-power narrow-linewidth nanosecond laser source at 257Ânm. Optics Letters, 2013, 38, 995.	3.3	28
134	Yb:CaF_2 thin-disk laser. Optics Express, 2014, 22, 1524.	3.4	28
135	Performances of Cr:LiSrAlF_6 and Cr:LiSrGaF_6 for continuous-wave diode-pumped Q-switched operation. Optics Letters, 1997, 22, 387.	3.3	27
136	High-power diode-pumped Yb:GdCOB laser: from continuous-wave to femtosecond regime. Optical Materials, 2002, 19, 73-80.	3.6	27
137	High-energy chirped- and divided-pulse Sagnac femtosecond fiber amplifier. Optics Letters, 2015, 40, 89.	3.3	27
138	Nonlinear Optics in Multipass Cells. Laser and Photonics Reviews, 2021, 15, 2100220.	8.7	27
139	Generation of 0.6 μJ pulses of 16 fs duration through highâ€repetition rate amplification of selfâ€phase modulated pulses. Applied Physics Letters, 1988, 53, 823-825.	3.3	26
140	Perylene, pyrromethene and grafted rhodamine-doped xerogels for tunable solid state laser. , 1994, , .		26
141	A new 3D multipass amplifier based on Nd:YAG or Nd:YVO 4 crystals. Applied Physics B: Lasers and Optics, 2002, 75, 481-485.	2.2	26
142	Pulse-compression down to 20 fs using a photonic crystal fiber seeded by a diode-pumped Yb:SYS laser at 1070 nm. Optics Express, 2004, 12, 3383.	3.4	26
143	Third-order spectral phase compensation in parabolic pulse compression. Optics Express, 2007, 15, 9372.	3.4	26
144	Energy-scalable temporal cleaning device for femtosecond laser pulses based on cross-polarized wave generation. Review of Scientific Instruments, 2013, 84, 043106.	1.3	26

#	Article	IF	Citations
145	Laser demonstration with highly doped Yb:Gd_2O_3 and Yb:Y_2O_3 crystals grown by an original flux method. Optics Letters, 2013, 38, 4146.	3.3	26
146	Laser mode manipulation by intracavity dynamic holography: Application to mode selection. Applied Physics B: Lasers and Optics, 1999, 69, 155-157.	2.2	25
147	Numerical modeling of a continuous-wave Yb-doped bulk crystal laser emitting on a three-level laser transition near 980 nm. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 572.	2.1	25
148	Mode-locked operation of a diode-pumped femtosecond Yb:SrF_2 laser. Optics Letters, 2009, 34, 2354.	3.3	25
149	Coherent combination of ultrafast fiber amplifiers. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 062004.	1.5	25
150	Self-compression in a multipass cell. Optics Letters, 2018, 43, 5643.	3.3	25
151	High-repetition-rate eyesafe intracavity optical parametric oscillator. Applied Physics B: Lasers and Optics, 1998, 67, 181-183.	2.2	24
152	Passive coherent beam combining of quantum-cascade lasers with a Dammann grating. Optics Letters, 2011, 36, 3810.	3.3	24
153	High-fidelity front-end for high-power, high temporal quality few-cycle lasers. Applied Physics B: Lasers and Optics, 2011, 102, 769-774.	2.2	24
154	Amplification of cylindrically polarized laser beams in single crystal fiber amplifiers. Optics Express, 2013, 21, 11376.	3.4	24
155	Design of a high gain single stage and single pass Nd:YVO_4 passive picosecond amplifier. Journal of the Optical Society of America B: Optical Physics, 2012, 29, 2339.	2.1	23
156	Time-resolved saturated absorption recovery in malachite green-doped xerogel. Chemical Physics Letters, 1991, 176, 495-498.	2.6	22
157	Improvement of the spatial beam quality of laser sources with an intracavity Bragg grating. Optics Letters, 2003, 28, 242.	3.3	22
158	Directly diode-pumped Yb^3+:SrY_4(SiO_4)_3O regenerative amplifier. Optics Letters, 2003, 28, 2195.	3.3	22
159	Diode-pumped continuous-wave and femtosecond laser operations of a heterocomposite crystal Yb^3+:SrY_4(SiO_4)_3O?Y_2Al_5O_12. Optics Letters, 2005, 30, 857.	3.3	22
160	Diode-pumped passively mode-locked Nd:YVO4 laser at 914 nm. Optics Letters, 2006, 31, 214.	3.3	22
161	Time-gated total internal reflection fluorescence microscopy with a supercontinuum excitation source. Applied Optics, 2009, 48, 553.	2.1	22
162	Pure and Yb3+ doped fluorites (Ca, Sr, Ba)F2: A renewal for the future high intensity laser chains. Journal of Luminescence, 2013, 133, 276-281.	3.1	22

#	Article	IF	Citations
163	3ÂW, 300 μJ, 25Âns pulsed 473Ânm blue laser based on actively Q-switched Nd:YAG single-crystal fiber oscillator at 946Ânm. Optics Letters, 2013, 38, 3013.	3.3	22
164	Enhanced extreme ultraviolet high-harmonic generation from chromium-doped magnesium oxide. Applied Physics Letters, 2021, 118, .	3.3	22
165	Multipass cells: 1D numerical model and investigation of spatio-spectral couplings at high nonlinearity. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 993.	2.1	22
166	Quasi-continuous-wave and actively mode-locked diode-pumped Cr^3+:LiSrAlF_6 laser. Optics Letters, 1993, 18, 1730.	3.3	21
167	Self-starting self-mode-locked femtosecond diode-pumped Cr:LiSAF laser. Optics Letters, 1995, 20, 1874.	3.3	21
168	Laser crystals for the production of ultra-short laser pulses. Annales De Chimie: Science Des Materiaux, 2003, 28, 47-72.	0.4	21
169	Blue-green single-frequency laser based on intracavity frequency doubling of a diode-pumped Ytterbium-doped laser. Optics Express, 2005, 13, 2345.	3.4	21
170	Diode-pumped laser with Yb:YAG single-crystal fiber grown byÂtheÂmicro-pulling down technique. Applied Physics B: Lasers and Optics, 2009, 94, 203-207.	2.2	21
171	Yb-doped Lu3Al5O12 fibers single crystals grown under stationary stable state for laser application. Journal of Crystal Growth, 2009, 312, 125-130.	1.5	21
172	Nd:YAG laser diode-pumped directly into the emitting level at 938 nm. Optics Express, 2009, 17, 10091.	3.4	21
173	Numerical and Experimental Analysis of Nonlinear Regenerative Amplifiers Overcoming the Gain Bandwidth Limitation. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 212-219.	2.9	21
174	Title is missing!. Journal of Fluorescence, 2000, 10, 413-419.	2.5	20
175	Linear and non-linear magneto-optical studies of Pt/Co/Pt thin films. Journal of Physics Condensed Matter, 2001, 13, 9867-9878.	1.8	20
176	Diffraction-limited polarized emission from a multimode ytterbium fiber amplifier after a nonlinear beam converter. Optics Letters, 2004, 29, 989.	3.3	20
177	Broadband high-energy diode-pumped Yb:KYW multipass amplifier. Optics Letters, 2011, 36, 3816.	3.3	20
178	High-repetition-rate cw-pumped Cr^3+:LiSrAlF_6 femtosecond regenerative amplifier. Optics Letters, 1993, 18, 1250.	3.3	19
179	Tunable single-frequency operation of a diode-pumped vertical external-cavity laser at the cesium D2 line. Applied Physics B: Lasers and Optics, 2009, 95, 315-321.	2.2	19
180	Distributed nonlinear fiber chirped-pulse amplifier system. Optics Express, 2009, 17, 10835.	3.4	19

#	Article	IF	Citations
181	Wavefront control of a multicore ytterbium-doped pulse fiber amplifier by digital holography. Optics Letters, 2010, 35, 1428.	3.3	19
182	Coherent Dual-Frequency Emission of a Vertical External-Cavity Semiconductor Laser at the Cesium \$\{m D_{2}\\$ Line. IEEE Photonics Technology Letters, 2012, 24, 1218-1220.	2.5	19
183	Magnetization-induced second-harmonic generation enhanced by surface plasmons in ultrathin Au/Co/Au metallic films. Applied Physics B: Lasers and Optics, 1999, 68, 545-548.	2.2	18
184	Continuous-wave laser at 440 nm based on frequency-doubled diode-pumped Nd:GdVO_4 crystal. Optics Letters, 2008, 33, 1957.	3.3	18
185	Compensation of Gain Narrowing by Self-Phase Modulation in High-Energy Ultrafast Fiber Chirped-Pulse Amplifiers. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15, 182-186.	2.9	18
186	Er:YAG fiber-shaped laser crystals (single crystal fibers) grown by micro-pulling down: Characterization and laser operation. Optical Materials, 2010, 32, 1251-1255.	3.6	18
187	Pulse propagation near zero group-velocity dispersion in a femtosecond dye laser. Optics Letters, 1990, 15, 1374.	3.3	17
188	Video rate depth-resolved two-dimensional imaging through turbid media by femtosecond parametric amplification. Optics Letters, 2000, 25, 353.	3.3	17
189	Nd:YLF laser at 13 µm for calcium atom optical clocks and precision spectroscopy of hydrogenic systems. Applied Optics, 2003, 42, 4867.	2.1	17
190	Ca4REO(BO3)3 crystals for green and blue microchip laser generation: from crystal growth to laser and nonlinear optical properties. Optical Materials, 2004, 26, 431-436.	3.6	17
191	Nonlinear compression in a rod-type fiber for high energy ultrashort pulse generation. Optics Express, 2009, 17, 11155.	3.4	17
192	Coherent beam superposition of ten diode lasers with a Dammann grating. Optics Letters, 2010, 35, 1515.	3.3	17
193	Spectral and spatial full-bandwidth correlation analysis of bulk-generated supercontinuum in the mid-infrared. Optics Letters, 2015, 40, 673.	3.3	17
194	High-radiance light sources with LED-pumped luminescent concentrators applied to pump Nd:YAG passively Q-switched laser. Optics and Laser Technology, 2017, 96, 7-12.	4.6	17
195	Tunable blue light source by intracavity frequency doubling of a Crâ€doped LiSrAlF6laser. Applied Physics Letters, 1992, 61, 2381-2382.	3.3	16
196	Largely tunable diode-pumped sub-100-fs Yb:BOYS laser. Applied Physics B: Lasers and Optics, 2002, 74, s201-s203.	2.2	16
197	Compact, simple, and robust cross polarized wave generation source of few-cycle, high-contrast pulses for seeding petawatt-class laser systems. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2607.	2.1	16
198	Coherent combining of high brightness tapered amplifiers for efficient non-linear conversion. Optics Express, 2019, 27, 928.	3.4	16

#	Article	IF	CITATIONS
199	Picosecond laser source at 1 MHz with continuous tunability in the visible red band. Optics Communications, 2003, 220, 187-192.	2.1	15
200	Blue laser emission by intracavity second harmonic generation in Nd:ASL pumped by a tapered amplifier laser diode stabilized by a volume Bragg grating. Applied Physics B: Lasers and Optics, 2008, 92, 189-193.	2.2	15
201	Direct amplification of a nanosecond laser diode in a high gain diode-pumped Nd:YVO_4 amplifier. Optics Letters, 2014, 39, 997.	3.3	15
202	Simple Yb:YAG femtosecond booster amplifier using divided-pulse amplification. Optics Express, 2016, 24, 9896.	3.4	15
203	Simulation and experimental investigation of beam distortions in end-pumped laser rod amplifiers. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 3004.	2.1	15
204	Optically active doped xerogel. Journal of Non-Crystalline Solids, 1992, 147-148, 627-630.	3.1	14
205	Impregnated ORMOSIL matrices for efficient solid state optical gain media. Optics Communications, 1994, 110, 125-130.	2.1	14
206	Mechanical, thermal and laser properties of Yb:(Sr1 \hat{a} 'xCax)3Y(BO3)3 (Yb:CaBOYS) for 1 \hat{l} 4m laser applications. Optical Materials, 2003, 24, 385-392.	3.6	14
207	Efficient laser operation of an Yb:S-FAP crystal at 985 nm. Applied Optics, 2003, 42, 4883.	2.1	14
208	Self-Compression and Raman Soliton Generation in a Photonic Crystal Fiber of 100-fs Pulses Produced by a Diode-Pumped Yb-Doped Oscillator. Applied Optics, 2003, 42, 6768.	2.1	14
209	Wavelength stabilization of extended-cavity tapered lasers with volume Bragg gratings. Applied Physics B: Lasers and Optics, 2008, 91, 493-498.	2.2	14
210	Efficient versatile-repetition-rate picosecond source for material processing applications. Applied Optics, 2008, 47, 967.	2.1	14
211	Deep-UV 2365  nm laser by fourth-harmonic generation of a single-crystal fiber Nd:YAG oscillator. Optics Letters, 2014, 39, 2236.	3.3	14
212	Analysis of Limitations in Divided-Pulse Nonlinear Compression and Amplification. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 619-623.	2.9	14
213	High Repetition Rate Yb:CaF ₂ Multipass Amplifiers Operating in the 100- <roman>mJ</roman> Range. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21, 464-474.	2.9	14
214	Tunable picosecond UV source at 10 kHz based on an all-solid-state diode-pumped laser system. Applied Physics B: Lasers and Optics, 1997, 65, 255-258.	2.2	13
215	Diode-pumped Nd:YVO_4/Yb:S-FAP laser emitting at 985 and 4925 nm. Optics Letters, 2008, 33, 1234.	3.3	13
216	Impact of spectral phase mismatch on femtosecond coherent beam combining systems. Optics Letters, 2012, 37, 650.	3.3	13

#	Article	IF	CITATIONS
217	Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers. Optics Letters, 2013, 38, 5430.	3.3	13
218	Harnessing subcellular-resolved organ distribution of cationic copolymer-functionalized fluorescent nanodiamonds for optimal delivery of active siRNA to a xenografted tumor in mice. Nanoscale, 2021, 13, 9280-9292.	5 . 6	13
219	CEP-stable high-energy ytterbium-doped fiber amplifier. Optics Letters, 2019, 44, 3909.	3.3	13
220	Single shot measurement of the optical Kerr effect kinetics. Applied Optics, 1988, 27, 777.	2.1	12
221	New Yb-doped crystals for high-power and ultrashort lasers. , 2006, , .		12
222	Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation. Optical Materials, 2007, 30, 82-84.	3.6	12
223	Design of a low-threshold VECSEL emitting at 852Ânm for Cesium atomic clocks. Optical and Quantum Electronics, 2008, 40, 167-173.	3.3	12
224	Impact of self-phase modulation on coherently combined fiber chirped-pulse amplifiers. Optics Letters, 2010, 35, 1293.	3.3	12
225	Line competition in an intracavity diode-pumped Yb:KYW laser operating at 981nm. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 115.	2.1	12
226	Volume Bragg grating external cavities for the passive phase locking of high-brightness diode laser arrays: theoretical and experimental study. Journal of the Optical Society of America B: Optical Physics, 2011, 28, 1289.	2.1	12
227	Design update and recent results of the Apollon 10 PW facility. Proceedings of SPIE, 2017, , .	0.8	12
228	Spatio-spectral structures in high harmonic generation driven by tightly focused high repetition rate lasers. Journal of the Optical Society of America B: Optical Physics, 2018, 35, A6.	2.1	12
229	Coherent beam combining of high power quasi continuous wave tapered amplifiers. Optics Express, 2019, 27, 27891.	3.4	12
230	Femtosecond pulses at 800 nm by passive mode locking of Rhodamine 700. Optics Letters, 1990, 15, 446.	3.3	11
231	High-power continuous-wave diode-pumped Nd:YAlO_3 laser that emits on low-gain 1378- and 1385-nm transitions. Applied Optics, 2001, 40, 3019.	2.1	11
232	Crystal growth, optical spectroscopy and laser experiments on new Yb3+-doped borates and silicates. Optical Materials, 2003, 22, 81-83.	3.6	11
233	Pulsed blue laser at 491nm by nonlinear cavity dumping. Optics Express, 2008, 16, 19419.	3.4	11
234	Diode-pumped Yb:CaF \$\$_2\$\$ 2 multipass amplifier producing 50 mJ with dynamic analysis for high repetition rate operation. Applied Physics B: Lasers and Optics, 2014, 117, 597-603.	2.2	11

#	Article	IF	Citations
235	Rear-side resonator architecture for the passive coherent combining of high-brightness laser diodes. Optics Letters, 2016, 41, 950.	3.3	11
236	Direct measurement of saturation fluence in Ti:Al2O3. Optics Communications, 1989, 72, 235-238.	2.1	10
237	Generation of 36-fsec pulses near 775 nm from a colliding-pulse passively mode-locked dye laser. Optics Letters, 1989, 14, 940.	3.3	10
238	Nonreciprocal phase shifts in a femtosecond dye laser. Optics Letters, 1990, 15, 906.	3.3	10
239	Small-signal gain investigations for a continuous-wave diode-pumped Q-switched Cr:LiSAF laser. Optics Letters, 1996, 21, 1253.	3.3	10
240	Stable mode-locked operation of a low repetition rate diode-pumped Nd:GdVO4laser by combining quadratic polarisation switching and a semiconductor saturable absorber mirror. Optics Express, 2006, 14, 7093.	3.4	10
241	Three-dimensional time-resolved fluorescence imaging by multifocal multiphoton microscopy for a photosensitizer study in living cells. Applied Optics, 2007, 46, 8045.	2.1	10
242	Temporal cleaning of a high-energy fiber-based ultrafast laser using cross-polarized wave generation. Optics Letters, 2011, 36, 1830.	3.3	10
243	Megawatt peak power, 1ÂkHz, 266Ânm sub nanosecond laser source based on single-crystal fiber amplifier. Applied Physics B: Lasers and Optics, 2013, 111, 573-576.	2.2	10
244	1617  nm emission control of an Er:YAG laser by a corrugated single-layer resonant grating mirror. Optics Letters, 2014, 39, 466.	3.3	10
245	Single crystal fiber for laser sources. Proceedings of SPIE, 2015, , .	0.8	10
246	Coherent beam combining architectures for high power tapered laser arrays. , 2017, , .		10
247	LED-pumped passively Q-switched Cr:LiSAF laser. Optics Letters, 2018, 43, 4489.	3.3	10
248	Nonlinear beam matching to gas-filled multipass cells. OSA Continuum, 2021, 4, 732.	1.8	10
249	Hybrid pulse propagation model and quasi-phase-matched four-wave mixing in multipass cells. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 2982.	2.1	10
250	Doubled single-frequency Nd:YLF ring laser coupled to a passive nonresonant cavity. Applied Optics, 2004, 43, 1773.	2.1	9
251	Active spectral phase control by use of an acousto-optic programmable filter in high-repetition-rate sub-80 fs nonlinear fiber amplifiers. Optics Letters, 2008, 33, 1431.	3.3	9
252	Simple and general method to calculate the dispersion properties of complex and aberrated stretchers-compressors. Journal of the Optical Society of America B: Optical Physics, 2008, 25, 754.	2.1	9

#	Article	IF	CITATIONS
253	Picosecond polarized supercontinuum generation controlled by intermodal four-wave mixing for fluorescence lifetime imaging microscopy. Optics Express, 2008, 16, 18844.	3.4	9
254	Characterizations of 0.4 and 1mm diameter Yb:YAG single-crystal fibers grown by the micro-pulling-down method for laser applications. Journal of Crystal Growth, 2009, 311, 4805-4811.	1.5	9
255	Single YVO_4:Eu nanoparticle emission spectra using direct Eu^3+ ion excitation with a sum-frequency 465-nm solid-state laser. Optics Express, 2014, 22, 20542.	3.4	9
256	Western classical music development: a statistical analysis of composers similarity, differentiation and evolution. Scientometrics, 2017, 112, 21-53.	3.0	9
257	Raman wavelength conversion in a multipass cell. Optics Letters, 2021, 46, 3380.	3.3	9
258	Enhancing brightness of Lambertian light sources with luminescent concentrators: the light extraction issue. Optics Express, 2019, 27, 11830.	3.4	9
259	58 fs pulse generation near 685 nm from a passively mode locked dye laser. Optics Communications, 1989, 69, 281-284.	2.1	8
260	Anisotropy of the optical and magneto-optical response of Au/Co/Au/Cu multilayers grown on vicinal Si (111) surfaces. Applied Physics B: Lasers and Optics, 2002, 74, 665-670.	2.2	8
261	Lowâ€wavelength emission of Ndâ€doped lasers. Laser and Photonics Reviews, 2011, 5, 659-676.	8.7	8
262	Generation of 150-fs pulses from a diode-pumped Yb:KYW nonlinear regenerative amplifier. Optics Express, 2014, 22, 9414.	3.4	8
263	Composer Similarities through "The Classical Music Navigator†Similarity Inference from Composer Influences. Empirical Studies of the Arts, 2014, 32, 205-229.	1.7	8
264	Hybrid high-energy high-power pulsewidth-tunable picosecond source. Optics Letters, 2015, 40, 5184.	3.3	8
265	High-power single-stage single-crystal Yb:YAG fiber amplifier for radially polarized ultrashort laser pulses. Applied Physics B: Lasers and Optics, 2017, 123, 1.	2.2	8
266	Spectral compression in a multipass cell. Optics Express, 2020, 28, 21571.	3.4	8
267	20 fs amplified pulses. Optics Communications, 1988, 67, 297-300.	2.1	7
268	<title>Femtosecond switching of the solid state phase transition in the smart-system material VO<formula><inf><roman>2</roman></inf></formula></title> ., 1994, 2189, 400.		7
269	Mechanically Q-switched codoped Er-Yb glass laser under Ti:sapphire and laser diode pumping. Electronics Letters, 1995, 31, 458-459.	1.0	7
270	Corrections to "Theoretical And Experimental Investigations Of Small-signal Gain For A Diode-pumped Q-switched Cr:LiSAF Laser". IEEE Journal of Quantum Electronics, 1997, 33, 1614-1614.	1.9	7

#	Article	IF	CITATIONS
271	Tunable picosecond blue and ultraviolet pulses from a diode-pumped laser system seeded by a gain-switched laser diode. Applied Optics, 1998, 37, 4876.	2.1	7
272	 $$ <		7
273	Spectrally Narrowed Amplified Spontaneous Emission Source at 977 nm Based on a Single-Mode Ytterbium-Doped Fiber. IEEE Photonics Technology Letters, 2004, 16, 2021-2023.	2.5	7
274	Spectral beam combining of a single-mode 980-nm laser array for pumping of erbium-doped fiber amplifiers. IEEE Photonics Technology Letters, 2005, 17, 738-740.	2.5	7
275	Single-frequency operation of diode-pumped Yb:KYW at 1003.4Ânm and 501.7Ânm by intracavity second harmonic generation. Applied Physics B: Lasers and Optics, 2006, 85, 69-72.	2.2	7
276	Review of photorefractive materials: an application to laser beam cleanup. Comptes Rendus Physique, 2007, 8, 234-242.	0.9	7
277	Nonlinear optical properties of interconnected gold nanoparticles on silicon. Journal of Applied Physics, 2008, 104, 124310.	2.5	7
278	Diode-pumped regenerative Yb:SrF2 amplifier. Applied Physics B: Lasers and Optics, 2012, 106, 823-827.	2.2	7
279	Study on the influence of repetition rate and pulse duration on ablation efficiency using a new generation of high power ytterbium doped fiber ultrafast laser. Proceedings of SPIE, 2013, , .	0.8	7
280	New LED-based high-brightness incoherent light source in the SWIR. Optics Express, 2018, 26, 9353.	3.4	7
281	3D luminescent concentrators. Optics Express, 2021, 29, 6915.	3.4	7
282	Tunable UV source based on an LED-pumped cavity-dumped Cr:LiSAF laser. Optics Express, 2019, 27, 23446.	3.4	7
283	Optical probing of SiO2 gel characteristics. Journal of Materials Science Letters, 1991, 10, 615-618.	0.5	6
284	Dense Xerogel Matrices and Films for Optical Memory. Materials Research Society Symposia Proceedings, 1992, 271, 663.	0.1	6
285	CANDELA photo-injector experimental results with a dispenser photocathode. , 0, , .		6
286	Magnetization-induced second-harmonic generation of light by exchange-coupled magnetic layers. Journal of the Optical Society of America B: Optical Physics, 2005, 22, 119.	2.1	6
287	High power femtosecond chirped pulse amplification in large mode area photonic bandgap Bragg fibers. Applied Physics B: Lasers and Optics, 2011, 103, 615-621.	2.2	6
288	Resonant diode-pumping of Er:YAC single crystal fiber operating at 1617 nm., 2012,,.		6

#	Article	IF	CITATIONS
289	High average power 600 Î⅓J ultrafast fiber laser for micromachining application. Journal of Laser Applications, 2015, 27, S29301.	1.7	6
290	Coherent combining efficiency in strongly saturated divided-pulse amplification systems. Optics Express, 2016, 24, 25329.	3.4	6
291	Visualizing music similarity: clustering and mapping 500 classical music composers. Scientometrics, 2019, 120, 975-1003.	3.0	6
292	LED-pumped femtosecond Cr:LiSAF regenerative amplifier system. Optics Letters, 2021, 46, 2421.	3.3	6
293	12-mJ, 350-fs Yb:GdCOB regenerative amplifier. Optics Communications, 2001, 199, 181-187.	2.1	5
294	High-resolution absolute temperature mapping of laser crystals in diode-end-pumped configuration. , 2005, , .		5
295	Impact of BaB2O4 growth method on frequency conversion to the deep ultra-violet. Solid State Sciences, 2015, 50, 97-100.	3.2	5
296	Thermally-induced-anisotropy issues in oriented cubic laser crystals, the cryogenically cooled Yb:CaF2 case. Applied Physics B: Lasers and Optics, 2018, 124, 1.	2.2	5
297	Light recycling in LED-pumped Ce:YAG luminescent concentrators. Optics Express, 2021, 29, 25302.	3.4	5
298	Single-frequency tunable VECSEL around the cesium D 2 line. , 2008, , .		5
299	A 265W and 782 fs amplified radially polarized beam emitted by a thin-disk multipass amplifier. , 2015, , .		5
300	Improved Sol-Gel Materials for Efficient Solid State Dye Lasers. Materials Research Society Symposia Proceedings, 1993, 329, 279.	0.1	5
301	Quest of athermal solid state laser: case of Yb:CaGdAlO 4. , 2006, 6190, 19.		4
302	High power multimode fiber amplifier with wavefront reshaping for high beam quality recovery. Comptes Rendus Physique, 2006, 7, 233-243.	0.9	4
303	High-energy femtosecond fiber laser at 1.6 microns for corneal surgery. , 2010, , .		4
304	Photonic bandgap fibre oscillators and amplifiers. Optical Fiber Technology, 2010, 16, 419-427.	2.7	4
305	250 W single crystal fiber Yb:YAG laser. , 2012, , .		4
306	Parameters of influence in surface ablation of metals with using a high power tunable ultrafast laser. , 2013, , .		4

#	Article	IF	Citations
307	Comment on â€~Dual-wavelength Q-switched Er:YAG laser around 1.6 <i>Î⅓</i> m for methane differential absorption lidar'. Laser Physics Letters, 2014, 11, 048001.	1.4	4
308	Statistical tests for â€related records' search results. Scientometrics, 2015, 105, 1665-1677.	3.0	4
309	Similarity Indices for 500 Classical Music Composers. Empirical Studies of the Arts, 2015, 33, 61-94.	1.7	4
310	Simple carrier-envelope phase control and stabilization scheme for difference frequency generation-based systems. Optics Express, 2021, 29, 16261.	3.4	4
311	Single-stage Yb:YAG booster amplifier producing 2.3 mJ, 520 fs pulses at 10 kHz., 2015, , .		4
312	Comparison of multi-pass and regenerative strategies for energetic high-gain amplifiers based on Yb:CaF ₂ . Optics Letters, 2020, 45, 4408.	3.3	4
313	Apollon-10P Facility. The Review of Laser Engineering, 2014, 42, 127.	0.0	4
314	Complex pulse evolution in a femtosecond laser with spectral windowing. Optics Communications, 1990, 79, 443-447.	2.1	3
315	Seeding of a titanium sapphire oscillator by a verticalâ€cavity surfaceâ€emitting laser in the nanosecond range. Applied Physics Letters, 1994, 65, 804-806.	3.3	3
316	Pyrromethene-doped xerogels for solid state dye laser systems. , 1996, 2698, 2.		3
317	Intracavity testing of KTiOPO_4 crystals for second-harmonic generation at 532 nm. Applied Optics, 1999, 38, 2536.	2.1	3
318	High-power laser with Nd:YAG single-crystal fiber grown by micro-pulling down technique. Proceedings of SPIE, 2008, , .	0.8	3
319	Frequency conversion from near-infrared to mid-infrared in highly nonlinear optical fibres. , 2010, , .		3
320	Oxide crystal-fibers grown by micro-pulling-down technique and applications for lasers and scintillators. Proceedings of SPIE, 2012, , .	0.8	3
321	Third harmonic generation at 343nm in nonlinear Ca_5(BO_3)_3F (CBF) crystals. Optical Materials Express, 2013, 3, 1798.	3.0	3
322	Mechanical phase matching of birefringent non-linear crystals. Optics Express, 2014, 22, 23315.	3.4	3
323	Separate phase-locking and coherent combining of two laser diodes in a Michelson cavity. Proceedings of SPIE, 2015, , .	0.8	3
324	Coherent combining architectures for high-brightness laser diodes. , 2017, , .		3

#	Article	IF	CITATIONS
325	Low-index quantum-barrier single-pass tapered semiconductor optical amplifiers for efficient coherent beam combining. Semiconductor Science and Technology, 2020, 35, 065018.	2.0	3
326	Music information visualization and classical composers discovery: an application of network graphs, multidimensional scaling, and support vector machines. Scientometrics, 2022, 127, 2277-2311.	3.0	3
327	CANDELA photo-injector: the drive laser. , 0, , .		2
328	Diode-pumped femtosecond oscillators using ultra-broad-band Yb-doped crystals and modelocked using low-temperature grown or ion implanted saturable-absorber mirrors. EPJ Applied Physics, 2002, 20, 177-182.	0.7	2
329	SHG anisotropy in Au/Co/Au/Cu/vicinal Si(111). Journal of Magnetism and Magnetic Materials, 2002, 240, 532-535.	2.3	2
330	Time-resolved multifocal multiphoton microscopy., 2003,,.		2
331	Theoretical and experimental investigations of a single-mode 976-nm Yb-doped fiber amplifier. , 2004, 5460, 23.		2
332	Diffraction-limited polarized emission from a multimode Yb-doped fiber amplifier after nonlinear beam cleanup. , 2004, , .		2
333	Crystal Chemistry Approach in Yb Doped Laser Materials. Materials Science Forum, 2005, 494, 259-264.	0.3	2
334	Single-frequency high-power continuous-wave oscillation at 1003 nm of an optically pumped semiconductor laser., 2006, 6184, 575.		2
335	ILE 25PW single laser beamline: The French step for the European Extreme Light Infrastructure (ELI). , 2007, , .		2
336	Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique. Proceedings of SPIE, 2009, , .	0.8	2
337	Diode-pumped Yb:KYW laser emitting at 981 nm by intracavity pumping. Proceedings of SPIE, 2009, , .	0.8	2
338	High-power diode-pumped Er3 ⁺ :YAG single-crystal fiber laser. Proceedings of SPIE, 2011, , .	0.8	2
339	Evaluation of the single-frequency operation of a short vertical external-cavity semiconductor laser at 852 nm., 2012, , .		2
340	The BRIDLE project: High brilliance diode lasers for industrial applications. , 2013, , .		2
341	High-power operation of coherently coupled tapered laser diodes in an external cavity. , 2016, , .		2
342	Efficient and high-throughput ablation of platinum using high-repetition rate radially and azimuthally polarized sub-picosecond laser pulses. Optics Express, 2021, 29, 19551.	3.4	2

#	Article	IF	CITATIONS
343	Agile solid state dye lasers. European Physical Journal Special Topics, 1994, 04, C4-369-C4-372.	0.2	2
344	Mesure directe de la distribution de temp \tilde{A} ©rature dans un cristal laser par thermographie infrarouge. European Physical Journal Special Topics, 2004, 119, 183-184.	0.2	2
345	All-Silica Photonic Bandgap Fiber Oscillators and Amplifiers. , 2011, , .		2
346	Light Extraction and Brightness Enhancement of Luminescent Rectangular Slabs. Advanced Photonics Research, 2022, 3, .	3.6	2
347	Xerogel matrix influence on malachite-green absorption saturation relaxation. , 1992, 1758, 538.		1
348	Yb3+-doped laser materials for high-power or ultrafast applications. , 2004, 5460, 145.		1
349	High-power CW diode-pumped laser operation of Yb3+:CaF 2 crystal. , 2004, 5460, 83.		1
350	Single-frequency operation at 1003.4 nm with Yb:YSO: toward the first diode-pumped solid state aquamarine (501.7 nm) laser. , 2005, , .		1
351	Diode-pumped cw and fs laser based on Yb:CaF 2. , 2005, 5714, 186.		1
352	Development of a TIRF-FLIM microscope for biomedical applications. , 2007, , 6630_10.		1
353	High Energy, Single-Mode, Narrow-Linewidth Fiber Laser Source with Stimulated Brillouin Scattering Multimode to Single Mode Beam Converter. Fiber and Integrated Optics, 2008, 27, 407-421.	2.5	1
354	Diode pumping of Yb ³⁺ :CaGdAlO 4. Proceedings of SPIE, 2008, , .	0.8	1
355	Low wavelength emissions with Nd doped lasers. , 2008, , .		1
356	First indirectly diode pumped Yb:SFAP laser, reaching the watt level at 985 nm., 2008, , .		1
357	Quasi-diffraction limited emission from an array of tapered laser diodes in volume Bragg grating external cavities., 2009,,.		1
358	Amplification of femtosecond pulses in large mode area Bragg fibers. , 2010, , .		1
359	Greffes de cornée automatisées par laser femtoseconde optimisé et systÃ"me de contrÃ1e aberrométrique. Irbm, 2010, 31, 97-100.	5.6	1
360	Mid-Infrared Supercontinuum Generation in Lead-Bismuth-Gallium Oxide Glass Photonic Crystal Fiber. , 2010, , .		1

#	Article	IF	Citations
361	Amplification of Femtosecond Pulses in Large Mode Area Photonic Bandgap Bragg Fiber. , 2010, , .		1
362	Mid-IR Supercontinuum in a Fluorozirconate Fiber Pumped by a Femtosecond CPA System at $1.6 \hat{A} \mu m.$, 2010, , .		1
363	Yb-doped ultrafast solid state lasers. , 2011, , .		1
364	Diode-pumped, cryogenically cooled Yb:CaF 2 for high efficient and high power laser. Proceedings of SPIE, 2011, , .	0.8	1
365	Preliminary experimental and simulation results of the ESA QOMA project: a new DPSS laser source suitable for space applications. Proceedings of SPIE, 2013, , .	0.8	1
366	1 mJ, 380 fs ultrashort pulses from an Yb:YAG single crystal fiber power amplifier. , 2013, , .		1
367	Diode pumped Er:YAG single crystal fiber laser passively Q-switched with Cr:ZnSe saturable absorber emitting at $1645~\mathrm{nm}$ or $1617~\mathrm{nm}$., 2013 , , .		1
368	Wavelength selection, spatial filtering and polarization control of an Er:YAG laser cavity by resonant-grating mirror. , 2013, , .		1
369	Diode-pumped laser demonstration with Yb:CaF2 nanopowder-based ceramics. , 2014, , .		1
370	Diode-pumped and passively Q-switched Er:YAG laser emitting at 1617 nm. Proceedings of SPIE, 2014, , .	0.8	1
371	Spectral pulse synthesis in large-scale ultrafast coherent combining systems. European Physical Journal: Special Topics, 2015, 224, 2545-2549.	2.6	1
372	High-power Yb:YAG single-crystal fiber amplifiers for femtosecond lasers. , 2015, , .		1
373	Contradiction within wave optics and its solution within a particle picture: comment. Optics Express, 2016, 24, 2106.	3.4	1
374	$10\hat{1}^1\!\!/\!\!4$ j, ultrashort sub-100 fs FCPA synthesizer. Proceedings of SPIE, 2016, , .	0.8	1
375	Alexandrite laser LED-pumped via Ce-doped luminescent concentrators. , 2017, , .		1
376	High Power Ultrashort Amplifiers Based on Yb Doped Single Crystal Fibers. , 2018, , .		1
377	Soliton Compression in a Multipass Cell. , 2019, , .		1
378	Generation of optically synchronized pump–signal beams for ultrafast OPCPA via the optical Kerr effect. Optics Letters, 2021, 46, 2035.	3.3	1

#	Article	IF	Citations
379	Microlasers autodoubleurs en Nd:GdCOB. European Physical Journal Special Topics, 2002, 12, 233-235.	0.2	1
380	First demonstration of laser emission from an Yb:YAG single crystal fiber grown by the micro-pulling down technique. , 2008, , .		1
381	Coherent combining of high brightness tapered lasers in master oscillator power amplifier configuration. , $2018, \ldots$		1
382	Magnetization-induced second harmonic generation in ultrathin Au/Co/Au films. , 1999, , .		1
383	Second harmonic generation at 515 nm in RTP with temperature insensitive and non-critical phase-matching. , 2013, , .		1
384	Thermal lensing measurements in diode-pumped Yb-doped materials., 2002,,.		1
385	High-efficiency mid-IR nanosecond cascaded optical parametric oscillators based on diffusion-bonded walk-off-compensated KTP and ZGP crystals. , 2002, , .		1
386	Intense laser emission at 981 nm in an Ytterbium-doped KY(WO4)2 crystal., 2005,,.		1
387	2.5 mJ, sub-nanosecond pulses from single-crystal fiber amplifier in a kHz MOPA system. , 2011, , .		1
388	High energy and efficient cross polarized wave generation for high contrast ultrashort laser sources. , $2011, , .$		1
389	High power Yb:CALGO thin-disk lasers in cw and fs regime. , 2013, , .		1
390	High power single crystal fiber amplifiers for linearly and cylindrically polarized picosecond lasers. , 2015, , .		1
391	LED-pumped Alexandrite laser oscillator and amplifier. , 2017, , .		1
392	Recent progress in brightness scaling by coherent beam combining of tapered amplifiers for efficient high power frequency doubling. , 2019, , .		1
393	Hybrid master oscillator power amplifier single-frequency, nanosecond, multi-mJ, 5 kHz at 1030 nm. , 2020, , .		1
394	LED-pumped Cr:LiSAF laser system operating at 100â€Hz based on a multipass amplifier. Optics Letters, 2022, 47, 3543.	3.3	1
395	Measurement of the nonlinear index n_2 of BSO crystals. Applied Optics, 1988, 27, 2812.	2.1	0
396	<title>Generation of femtosecond pulses in the near infrared from a colliding pulse passively mode locked dye laser</title> ., 1990, 1268, 58.		0

#	Article	IF	CITATIONS
397	OPTOGELs: optically active xerogels. , 1992, , .		O
398	$$ $$ $$ $$ $$ $$ $$ $$ $$		0
399	<title>LiSAF regenerative amplifier for femtosecond pulses operating at 5-kHz repetition rate</title> ., 1994, 2041, 88.		0
400	<title>Diode-pumped solid state laser sources of picosecond UV pulses for photobiology</title> ., 1998, 3404, 260.		0
401	<title>New generation of very high repetition rate subnanosecond pulsed UV sources</title> ., 1999,,.		0
402	Cr4+:YAG laser pumped erbium-doped fibre amplifier with improved power characteristics. Optics and Laser Technology, 1999, 31, 341-343.	4.6	0
403	<title>Magnetization-induced second-harmonic generation imaging of buried magnetic interfaces</title> ., 1999, 3749, 595.		0
404	Développement de lasers visibles pompés par diode à base de cristaux de NdGdCOB autodoubleurs de fréquence. Comptes Rendus Physique, 2000, 1, 609-614.	0.1	0
405	<title>Characterization of the diffusion of fluorophores within microbial biofilms by flourescence correlation microscopy under two-photon excitation</title> .,2001,,.		0
406	<title>Intracavity self-adapted photorefractive Fabry-Perot</title> ., 2001, 4353, 138.		0
407	Continuous-wave diode-pumped solid-state laser with an intracavity fiber Bragg grating. Applied Optics, 2002, 41, 6356.	2.1	0
408	Diode-pumped Yb-doped large-core fiber amplifier with a multimode-to-singlemode photorefractive converter., 2003,,.		0
409	Diode pumped femtosecond oscillators based on new ytterbium doped borates crystals., 2003,,.		0
410	Amplification à 980 nm dans une fibre dopée à l'ytterbium. European Physical Journal Special Topics, 2004, 119, 137-138.	0.2	0
411	Optical and magneto-optical study of the Au/Co/Au/Cu multilayer grown on vicinal Si (111) surfaces. Physica Status Solidi C: Current Topics in Solid State Physics, 2004, 1, 1620-1624.	0.8	0
412	Diffraction-limited polarized emission from a multimode Yb-doped fiber amplifier after nonlinear beam cleanup., 2004, 5620, 13.		0
413	Fluorescence lifetime imaging with a multifocal two-photon microscope., 2004, 5323, 99.		0
414	High-brightness spectrally combined array of 980-nm single-mode emitters. , 2005, , .		0

#	Article	IF	CITATIONS
415	20 fs pulse compression using a photonic crystal fiber seeded by a diode pumped Yb:SYS laser (Invited) Tj ETQq1	1 0.78431	4 _o gBT /Ove
416	Generation of continuous-wave blue light by sum-frequency mixing of diode pumped dual-wavelength lasers. , 2005, , .		0
417	Méthodes de remise en forme de faisceau par effet Brillouin pour amplificateur de puissance à fibre multimode. European Physical Journal Special Topics, 2006, 135, 321-322.	0.2	O
418	Lasers â€aquamarine" pour la spectroscopie de l2 et la métrologie. European Physical Journal Special Topics, 2006, 135, 195-196.	0.2	0
419	Laser Nd:YVO4 impulsionnel à 914 nm pompé par diode. European Physical Journal Special Topics, 2006, 135, 249-250.	0.2	О
420	47 fs in diode-pumped Yb:CaGdAlO 4. , 2006, , .		0
421	Generation of 47-fs pulses from a diode-pumped Yb3+:CaGdAlO 4 femtosecond laser., 2006, 6100, 139.		O
422	Efficient versatile-repetition-ate ps source for material processing applications. , 2007, , .		0
423	High power laser based on Nd:YAG single-crystal fiber grown by micro-pulling-down technique. , 2007,		O
424	Supercontinuum generation in a highly birefringent photonic crystal fibre seeded by a low-repetition rate picosecond infrared laser., 2007,,.		0
425	Theoretical and experimental evaluation of a wavelength-stabilized Talbot cavity with a volume Bragg grating., 2008,,.		O
426	Direct Amplification of Femtosecond Pulses in Ytterbium-Doped Fiber Amplifiers. Fiber and Integrated Optics, 2008, 27, 467-483.	2.5	0
427	Intracavity pumped Yb:SFAP crystal emitting at 985 nm and second harmonic generation., 2008,,.		0
428	Efficient coherent combining and wavelength stabilization of tapered lasers with a volume Bragg grating., 2008,,.		0
429	Diode pumping of Nd:ASL and its frequency doubling for blue emission around 450 nm. Proceedings of SPIE, 2008, , .	0.8	O
430	Parabolic fiber amplifier beyond the gain bandwidth limits. Proceedings of SPIE, 2008, , .	0.8	0
431	Direct pulse compression of yb-doped fiber amplified pulses by use of a dazzler., 2008,,.		O
432	FRET detection in the plasma membrane using Total Internal Reflection Fluorescence Lifetime Imaging Microscopy. , 2008, , .		0

#	Article	IF	CITATIONS
433	High-energy direct amplification of femtosecond pulses in the nonlinear regime. , 2008, , .		O
434	Low-repetition-rate femtosecond operation in long cavity modelocked Yb:CALGO laser. , 2008, , .		0
435	Wavelength-stabilized tapered laser diodes in an external Talbot cavity: simulations and experiments. , 2009, , .		0
436	Three-level operation in a diode-pumped Nd:GdVO 4 laser and CW 440-nm generation. , 2009, , .		0
437	Modal conversion of a phase-locked extended-cavity diode laser array into a single lobe. Proceedings of SPIE, 2010, , .	0.8	0
438	Pulsed single-mode Yb-doped fibre amplifier around 976 nm: numerical modelling and experimental study. Proceedings of SPIE, 2010, , .	0.8	0
439	Coherent fiber combining by digital holography. , 2010, , .		0
440	Wavefront control by digital holography in an Yb-doped multi-core fiber amplifier. , 2010, , .		0
441	Dual-pumping scheme for high-energy femtosecond Er-doped fiber laser at 1.6 µm. , 2010, , .		0
442	Broadband Yb:CaF 2 regenerative amplifier for millijoule range ultrashort pulse amplification. Proceedings of SPIE, 2010, , .	0.8	0
443	Amplification of femtosecond pulses in two-stage chirped pulse amplification system based on large mode area photonic bandgap fibres. , 2010, , .		0
444	Full-field optical coherence tomography at 800 nm and 1300 nm simultaneously. , 2010, , .		0
445	Study and suppression of motion artifacts in full-field optical coherence tomography. Proceedings of SPIE, 2010, , .	0.8	0
446	Amplification of a passively Q-switched Nd:YAG microlaser in a crystal fiber. , 2010, , .		0
447	Front-end of the ILE Project: A design study for a 100 mJ sub-10 fs laser. , 2010, , .		0
448	High-power diode-pumped Q-switched Er ³⁺ :YAG single-crystal fiber laser. Proceedings of SPIE, 2011, , .	0.8	0
449	High-fidelity Frontend Based on XPW Filter for High-contrast Few-cycle OPCPAs. , 2011, , .		0
450	On the potential of 914 nm pumping of Nd:YVO4 for laser operation at 1064 nm. , 2011, , .		0

#	Article	IF	CITATIONS
451	Diode-pumped Yb:CaF 2 regenerative amplifier. Proceedings of SPIE, 2011, , .	0.8	O
452	Coherent combining of quantum-cascade lasers with a binary phase grating., 2011,,.		0
453	Passive coherent beam combining of two femtosecond fiber chirped-pulse amplifiers. , 2012, , .		0
454	Yb:CaGdAlO4 thin-disk. Proceedings of SPIE, 2012, , .	0.8	0
455	Femtosecond fiber chirped- and divided-pulse amplification. , 2013, , .		0
456	High power single-crystal fiber CW 946 nm laser and blue generation based on rubidium-doped PPKTP. , 2013, , .		0
457	Yb:CALGO thin-disk femtosecond oscillator. , 2013, , .		0
458	Narrow-linewidth UV laser source at 257 nm., 2013,,.		0
459	Yb :CALGO as material for high power ultrafast laser and focus on thermal conductivity variation. , 2013, , .		0
460	High power amplification in Yb:YAG single crystal fibers. , 2013, , .		0
461	Nonlinear properties of non-hygroscopic Ca5(BO3)3F crystal at 343 nm., 2013, , .		0
462	Passively Q-switched, Er:YAG Single Crystal Fiber Laser Diode-Pumped at 1470 nm., 2013, , .		0
463	Energy scaling of ultrafast fiber systems using chirped and divided pulse amplification., 2013,,.		0
464	Ultra-broadband Front-end Laser Development for the Apollon 10PW Laser. , 2013, , .		0
465	Tunable high-purity microwave signal generation from a dual-frequency VECSEL at 852 nm. Proceedings of SPIE, 2013, , .	0.8	0
466	Investigation on repetition rate and pulse duration influences on ablation efficiency of metals using a high average power Yb-doped ultrafast laser. MATEC Web of Conferences, 2013, 8, 04010.	0.2	0
467	High-purity microwave signal from a dual-frequency semiconductor laser for CPT atomic clocks. , 2014, , .		0
468	Divided-pulse nonlinear compression. , 2014, , .		0

#	Article	IF	CITATIONS
469	Spectral synthesis to overcome gain-narrowing in femtosecond fiber amplifiers. , 2014, , .		O
470	High average power and energetic femtosecond fiber laser using chirped- and divided-pulse amplification. , $2014, \ldots$		0
471	Optimizing Yb:CaGdAlO4 crystal for high power lasers. , 2014, , .		O
472	High-energy post-compression in hypocycloid-core Kagome fiber. , 2014, , .		0
473	Passively Q-switched Er:YAG laser operating at 1617  nm at low pump power level. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 3131.	2.1	O
474	Generation of sub-100-fs pulses in an Yb: CaGdAlO4 regenerative amplifier by tailored control of linear and nonlinear phase. , 2014 , , .		0
475	Yb:CaGdAlO4laser under high pumping power: high performances and singularities. , 2014, , .		O
476	Energetic and high average power femtosecond fiber laser using chirped- and divided-pulse amplification. , 2014, , .		0
477	Generation of high-purity microwave signals from a dual-frequency OP-VECSEL. Proceedings of SPIE, 2014, , .	0.8	O
478	Passive coherent combining of two tapered laser diodes in an interferometric external cavity. , 2015, , .		0
479	LED side-pumped Nd ³⁺ :YVO ₄ laser at room temperature. Proceedings of SPIE, 2015, , .	0.8	O
480	Nonlinear compression of ultrafast industrial lasers in hypocyloid-core Kagome hollow-core fiber. , 2015, , .		0
481	Evaluation of the noise properties of a dual-frequency VECSEL for compact Cs atomic clocks. Proceedings of SPIE, 2015, , .	0.8	О
482	High-energy, 34 fs, fiber source via nonlinear compression in hypocycloid-core Kagome fiber. , 2015, , .		0
483	Chirped and divided-pulse Sagnac fiber amplifier. Proceedings of SPIE, 2015, , .	0.8	О
484	New scheme for pumping solid-state lasers based on LED-pumped luminescent concentrators. , 2016, , .		0
485	High energy pulsewidth tunable CPA free picosecond source. Proceedings of SPIE, 2016, , .	0.8	О
486	High power mid-IR OPCPA system pumped by a femtosecond Yb-doped fiber amplifier. , 2017, , .		0

#	Article	IF	CITATIONS
487	Generation of few cycle pulses from a bandwidth-optimized high energy Yb-doped fiber laser source. , 2017, , .		О
488	Thermal anisotropy in $[110]$ and $[111]$ oriented cubic crystals for laser application. , 2017, , .		0
489	Coherent beam combining of high-power tapered amplifiers. , 2017, , .		О
490	High Efficiency, High Energy Few-Cycle Driver at $1-\hat{l}\sqrt[4]{4}$ m. , 2019, , .		0
491	CEP-Stable 100 kHz Nonlinearly Compressed YDFA Source for HHG. , 2019, , .		0
492	Coherent beam combining of tapered amplifiers under QCW regime. , 2019, , .		0
493	Thermal Effects in a Single-Frequency Optical Parametric Oscillator Pumped by a Master Oscillator Fiber Amplifier Laser. , 2019, , .		O
494	LED Pumped Transition Metal Lasers. , 2019, , .		0
495	Compact module for high power coherent beam combining of tapered amplifiers. , 2019, , .		O
496	Raman conversion in a multipass cell., 2021,,.		0
497	100 fs LED-pumped Cr:LiSAF regenerative amplifier. , 2021, , .		O
498	Efficient, tunable, zero-line-diode-pumped, continuous-wave Yb3+:Ca4GdO(BO3)3 laser., 2000,,.		0
499	Imagerie 2D résolue en profondeur à cadence vidéo à travers un milieu diffusant par amplification paramétrique optique en régime femtoseconde. European Physical Journal Special Topics, 2000, 10, Pr8-209.	0.2	O
500	Microlasers visibles \tilde{A} base d'un cristal autodoubleur de Nd:GdCOB. European Physical Journal Special Topics, 2000, 10, Pr 8 -121.	0.2	0
501	12-mJ, 350-fs, Yb:GdCOB regenerative amplifier. , 2001, , .		O
502	New 3 D multipass diode-pumped amplification scheme. , 2002, , .		0
503	CW and femtosecond regime of a new very broadband Yb-doped BOYS crystal. , 2002, , .		0
504	Laser Nd:YVO ₄ à réseau de Bragg fibré intracavité. European Physical Journal Special Topics, 2002, 12, 347-350.	0.2	0

#	Article	IF	CITATIONS
505	Un nouveau cristal laser largement accordable le BOYS dopé à l'ytterbium. European Physical Journal Special Topics, 2002, 12, 355-357.	0.2	O
506	Oscillateurs laser femtosecondes à base de cristaux de borates inédits dopés aux ions ytterbium. European Physical Journal Special Topics, 2002, 12, 351-353.	0.2	0
507	Dye Doped Xerogels for Tunable Lasers. , 2004, , .		0
508	Femtosecond Parametric Generation and Amplification in the Visible Spectrum., 2004,,.		0
509	Theoretical and experimental study of the amplification of a 976-nm laser diode in a single-mode ytterbium-doped fiber. , 2004, , .		0
510	Ultra-long cavity passively mode-locked diode-pumped Nd:YVO4 laser. , 2004, , .		0
511	Efficient Diode-Pumped LiSAF Laser in Continuous Wave and Actively Mode-Locked Regime. , 2004, , .		0
512	Laser picoseconde à cavité géante. European Physical Journal Special Topics, 2004, 119, 253-254.	0.2	0
513	Laser Yb : YSO, pompé par diode, continu et accordable dans la plage 1000-1010 nm, pour la définition d'un étalon secondaire de fréquences. European Physical Journal Special Topics, 2004, 119, 203-204.	0.2	0
514	Single-mode Yb-doped fiber laser at 980 nm for efficient frequency-doubling., 2005,,.		0
515	Lasers solides pompés par diode émettant des impulsions picosecondes à haute cadence dans l'ultraviolet. European Physical Journal Special Topics, 2005, 127, 15-19.	0.2	0
516	Laser bleu continu à 491 nm par somme de fréquence intracavité. European Physical Journal Special Topics, 2006, 135, 191-192.	0.2	0
517	First laser operation at 899 nm and below in a diode end-pumped Nd:YAG. , 2007, , .		0
518	First demonstration of neodymium true three level laser emitting at 879 nm., 2007,,.		0
519	Yb:SFAP crystal, Intracavity and indirectly diode-pumped at 914 nm, For a cw laser emission at 985 nm. , 2008, , .		0
520	High power laser with Yb:YAG single crystal fibers directly grown by the micro-pulling down technique. , 2009, , .		0
521	Broadband regenerative amplification in the millijoule regime for sub-100fs based on Yb:CaF2. , 2010, , .		0
522	High-energy femtosecond Er-doped fiber laser at 1.6 \hat{l} 4m: influence of pumping scheme. , 2010, , .		0

#	Article	IF	CITATIONS
523	Yb doped Fluorides for High Power and Short-Pulse Laser Applications. , 2011, , .		O
524	Er:YAG single-crystal fiber laser in Q-switched operation. , 2011, , .		O
525	High gain single stage and single pass Nd:YVO4 passive amplifier for picosecond pulses. , 2012, , .		O
526	Frequency conversion in the visible and UV regions of a high average power and high peak power ultrafast fiber amplifier. , 2012, , .		0
527	2 GW peak power ultrafast fiber system using passive coherent beam combining. , 2012, , .		О
528	Coherent combining of two femtosecond chirped-pulse amplifiers in a passive architecture., 2012,,.		0
529	High power Nd:YAG single crystal fiber emitting at 946 nm and 938 nm. , 2012, , .		О
530	Diode-pumped 1617 nm Er:YAG laser with micro-pulling down single-crystal fibers. , 2012, , .		0
531	Resonant Grating Mirror for emision control of Er:YAG laser at 1617 nm., 2013,,.		O
532	Potential of RbTiOPO4 for second harmonic generation of Yb-doped lasers. , 2013, , .		0
533	"Magic―mode switching in Yb:CALGO laser under 200-W pump-power. , 2013, , .		O
534	Yb:YAG Single Crystal Fiber Amplifiers For Cylindrically Polarized Laser Beams., 2013,,.		0
535	57-mJ 20-Hz multipass laser amplifier based on Yb:CaF2 crystals. , 2013, , .		O
536	Power and energy scaling of ultrafast fiber systems using chirped and divided pulse amplification for high end applications. , 2013, , .		0
537	Third harmonic generation at 343 nm in nonlinear Ca5(BO3)3F (CBF). , 2013, , .		О
538	High-power sub-50 fs, Kerr-lens mode-locked Yb:CaF2 oscillator pumped by high-brightness fiber-laser. , 2014, , .		0
539	Generation of sub-100 fs pulses in a Yb:CALGO regenerative amplifier. , 2014, , .		0
540	Generation and Amplification of Femtosecond Pulses at 800 nm. Springer Series in Chemical Physics, 1990, , 48-50.	0.2	0

#	Article	IF	Citations
541	Generation of Sub-100-fs Pulses Directly from a Passively Mode-Locked Titanium:Sapphire Laser. , 1991, , .		О
542	PICOSECOND AND FEMTOSECOND Ti:SAPPHIRE LASERS. European Physical Journal Special Topics, 1991, 01, C7-271-C7-274.	0.2	0
543	All solid-state diode-pumped LiSAF laser. European Physical Journal Special Topics, 1994, 04, C4-517-C4-520.	0.2	0
544	Comparison between Cr:LiSAF and Cr:LiSGaF for cw diode-pumped Q-switched operation., 1997,,.		0
545	Two-dimensional real-time imaging through turbid media using fs-time-gated parametric amplification in reflection configuration. , 1999 , , .		0
546	Pump beam propagation and absorption distribution in single crystal fibers. , 2015, , .		0
547	Polarization and Crystal-Orientation Dependency of Thermal Effects in Cryogenically Cooled Yb:CaF2. , 2016, , .		0
548	Singly Resonant Optical Parametric Oscillator Pumped By a Nanosecond-to-Microsecond Pulsewidth-Tunable Source. , $2016, , .$		0
549	Hybrid Yb-doped-fiber/Yb:YAG architecture for high-energy, high-power, picosecond source tunable in duration. , 2016, , .		0
550	LED-pumping of solid state lasers. , 2018, , .		0
551	LED-pumped Alexandrite laser oscillator and amplifier. , 2018, , .		0
552	Compact, high-efficiency, ultrafast 2-cycles sources at 1030nm., 2019, , .		0
553	High-efficiency nonlinear compression using a gas-filled multipass cell. , 2019, , .		0
554	Coherent beam combining architectures for high-power laser diodes. , 2019, , 37-87.		0
555	Incoherent light source exceeding the brightness of $18\mathrm{suns}$ using light recycling in LED-pumped luminescent concentrators. , $2021,$, .		0
556	High repetition rate CEP-stable Yb-doped fiber amplifier. , 2020, , .		0