## Raushan T Kurmasheva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8718534/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Venetoclax responses of pediatric ALL xenografts reveal sensitivity of MLL-rearranged leukemia.<br>Blood, 2016, 128, 1382-1395.                                                                                                         | 1.4  | 148       |
| 2  | The Insulin-like Growth Factor-1 Receptor–Targeting Antibody, CP-751,871, Suppresses Tumor-Derived<br>VEGF and Synergizes with Rapamycin in Models of Childhood Sarcoma. Cancer Research, 2009, 69,<br>7662-7671.                       | 0.9  | 143       |
| 3  | IGF-I mediated survival pathways in normal and malignant cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2006, 1766, 1-22.                                                                                                     | 7.4  | 111       |
| 4  | Genomic Profiling of Childhood Tumor Patient-Derived Xenograft Models to Enable Rational Clinical<br>Trial Design. Cell Reports, 2019, 29, 1675-1689.e9.                                                                                | 6.4  | 103       |
| 5  | Synergistic Activity of PARP Inhibition by Talazoparib (BMN 673) with Temozolomide in Pediatric Cancer<br>Models in the Pediatric Preclinical Testing Program. Clinical Cancer Research, 2015, 21, 819-832.                             | 7.0  | 100       |
| 6  | Initial testing (stage 1) of tazemetostat (EPZâ€6438), a novel EZH2 inhibitor, by the Pediatric Preclinical<br>Testing Program. Pediatric Blood and Cancer, 2017, 64, e26218.                                                           | 1.5  | 86        |
| 7  | Predicted mechanisms of resistance to mTOR inhibitors. British Journal of Cancer, 2006, 95, 955-960.                                                                                                                                    | 6.4  | 82        |
| 8  | Initial testing (stage 1) of eribulin, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 1325-1332.                                                                    | 1.5  | 77        |
| 9  | IRS-1: Auditing the effectiveness of mTOR inhibitors. Cancer Cell, 2006, 9, 153-155.                                                                                                                                                    | 16.8 | 70        |
| 10 | Cell and Molecular Determinants of <i>In Vivo</i> Efficacy of the BH3 Mimetic ABT-263 against<br>Pediatric Acute Lymphoblastic Leukemia Xenografts. Clinical Cancer Research, 2014, 20, 4520-4531.                                      | 7.0  | 67        |
| 11 | Initial testing (stage 1) of the PARP inhibitor BMN 673 by the pediatric preclinical testing program:<br><i>PALB2</i> mutation predicts exceptional <i>in vivo</i> response to BMN 673. Pediatric Blood and<br>Cancer, 2015, 62, 91-98. | 1.5  | 65        |
| 12 | Potent Inhibition of Angiogenesis by the IGF-1 Receptor-Targeting Antibody SCH717454 Is Reversed by IGF-2. Molecular Cancer Therapeutics, 2012, 11, 649-659.                                                                            | 4.1  | 60        |
| 13 | Broad Spectrum Activity of the Checkpoint Kinase 1 Inhibitor Prexasertib as a Single Agent or<br>Chemopotentiator Across a Range of Preclinical Pediatric Tumor Models. Clinical Cancer Research,<br>2019, 25, 2278-2289.               | 7.0  | 57        |
| 14 | Initial testing of the MDM2 inhibitor RG7112 by the pediatric preclinical testing program. Pediatric<br>Blood and Cancer, 2013, 60, 633-641.                                                                                            | 1.5  | 55        |
| 15 | The B7-H3–Targeting Antibody–Drug Conjugate m276-SL-PBD Is Potently Effective Against Pediatric<br>Cancer Preclinical Solid Tumor Models. Clinical Cancer Research, 2021, 27, 2938-2946.                                                | 7.0  | 55        |
| 16 | Evaluation of Alternative <i>In Vivo</i> Drug Screening Methodology: A Single Mouse Analysis.<br>Cancer Research, 2016, 76, 5798-5809.                                                                                                  | 0.9  | 52        |
| 17 | ΔNp63 Promotes Pediatric Neuroblastoma and Osteosarcoma by Regulating Tumor Angiogenesis. Cancer<br>Research, 2014, 74, 320-329.                                                                                                        | 0.9  | 51        |
| 18 | Development, Characterization, and Reversal of Acquired Resistance to the MEK1 Inhibitor Selumetinib<br>(AZD6244) in an <i>In Vivo</i> Model of Childhood Astrocytoma. Clinical Cancer Research, 2013, 19,<br>6716-6729.                | 7.0  | 50        |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | AKR1C3 is a biomarker of sensitivity to PR-104 in preclinical models of T-cell acute lymphoblastic leukemia. Blood, 2015, 126, 1193-1202.                                                                                                          | 1.4 | 50        |
| 20 | Evaluation of the <i>In Vitro</i> and <i>In Vivo</i> Efficacy of the JAK Inhibitor AZD1480 against JAK-Mutated Acute Lymphoblastic Leukemia. Molecular Cancer Therapeutics, 2015, 14, 364-374.                                                     | 4.1 | 49        |
| 21 | Differential regulation of vascular endothelial growth factor by Akt and mammalian target of<br>rapamycin inhibitors in cell lines derived from childhood solid tumors. Molecular Cancer<br>Therapeutics, 2007, 6, 1620-1628.                      | 4.1 | 47        |
| 22 | Initial testing (stage 1) of the poloâ€like kinase inhibitor volasertib (BI 6727), by the Pediatric Preclinical<br>Testing Program. Pediatric Blood and Cancer, 2014, 61, 158-164.                                                                 | 1.5 | 46        |
| 23 | Effective Targeting of the P53–MDM2 Axis in Preclinical Models of Infant <i>MLL</i> -Rearranged Acute<br>Lymphoblastic Leukemia. Clinical Cancer Research, 2015, 21, 1395-1405.                                                                    | 7.0 | 43        |
| 24 | Initial testing (stage 1) of the histone deacetylase inhibitor, quisinostat (JNJ-26481585), by the Pediatric<br>Preclinical Testing Program. Pediatric Blood and Cancer, 2014, 61, 245-252.                                                        | 1.5 | 37        |
| 25 | Testing of the Akt/PKB inhibitor MKâ€⊋206 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 518-524.                                                                                                             | 1.5 | 36        |
| 26 | Initial testing (stage 1) of glembatumumab vedotin (CDX-011) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1816-1821.                                                                                        | 1.5 | 35        |
| 27 | Initial testing of the multitargeted kinase inhibitor pazopanib by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2012, 59, 586-588.                                                                                       | 1.5 | 33        |
| 28 | Initial testing (stage 1) by the pediatric preclinical testing program of RO4929097, a γâ€secretase inhibitor<br>targeting notch signaling. Pediatric Blood and Cancer, 2012, 58, 815-818.                                                         | 1.5 | 31        |
| 29 | Initial testing (stage 1) of the tubulin binding agent nanoparticle albuminâ€bound ( <i>nab</i> ) paclitaxel<br>(Abraxane <sup>A®</sup> ) by the Pediatric Preclinical Testing Program (PPTP). Pediatric Blood and<br>Cancer, 2015, 62, 1214-1221. | 1.5 | 29        |
| 30 | Pharmacodynamic and genomic markers associated with response to the XPO1/CRM1 inhibitor<br>selinexor (KPTâ€330): A report from the pediatric preclinical testing program. Pediatric Blood and<br>Cancer, 2016, 63, 276-286.                        | 1.5 | 28        |
| 31 | Initial testing (Stage 1) of the antibody-maytansinoid conjugate, IMGN901 (Lorvotuzumab mertansine),<br>by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 1860-1867.                                             | 1.5 | 27        |
| 32 | Initial Testing (Stage 1) of MKâ€8242—A Novel MDM2 Inhibitor—by the Pediatric Preclinical Testing<br>Program. Pediatric Blood and Cancer, 2016, 63, 1744-1752.                                                                                     | 1.5 | 27        |
| 33 | Upstream CpG island methylation of thePAX3 gene in human rhabdomyosarcomas. Pediatric Blood and Cancer, 2005, 44, 328-337.                                                                                                                         | 1.5 | 26        |
| 34 | Inhibition of MDM2 by RG7388 confers hypersensitivity to Xâ€radiation in xenograft models of childhood sarcoma. Pediatric Blood and Cancer, 2015, 62, 1345-1352.                                                                                   | 1.5 | 23        |
| 35 | Initial testing of JNJâ€26854165 (Serdemetan) by the pediatric preclinical testing program. Pediatric Blood<br>and Cancer, 2012, 59, 329-332.                                                                                                      | 1.5 | 22        |
| 36 | Initial testing (stage 1) of M6620 (formerly VXâ€970), a novel ATR inhibitor, alone and combined with<br>cisplatin and melphalan, by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer,<br>2018, 65, e26825.                   | 1.5 | 21        |

| #  | Article                                                                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Acute Sensitivity of Ph-like Acute Lymphoblastic Leukemia to the SMAC-Mimetic Birinapant. Cancer<br>Research, 2016, 76, 4579-4591.                                                                                                                                         | 0.9  | 20        |
| 38 | Initial testing of VS-4718, a novel inhibitor of focal adhesion kinase (FAK), against pediatric tumor<br>models by the Pediatric Preclinical Testing Program. Pediatric Blood and Cancer, 2017, 64, e26304.                                                                | 1.5  | 20        |
| 39 | Proapoptotic compound ARC targets Akt and N-myc in neuroblastoma cells. Oncogene, 2008, 27, 694-699.                                                                                                                                                                       | 5.9  | 19        |
| 40 | Initial testing (stage 1) of the phosphatidylinositol 3′ kinase inhibitor, SAR245408 (XL147) by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 791-798.                                                                                  | 1.5  | 19        |
| 41 | Initial testing (stage 1) of the investigational mTOR kinase inhibitor MLN0128 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1486-1489.                                                                                              | 1.5  | 19        |
| 42 | Preclinical activity of the antibodyâ€drug conjugate denintuzumab mafodotin (SGN D19A) against<br>pediatric acute lymphoblastic leukemia xenografts. Pediatric Blood and Cancer, 2019, 66, e27765.                                                                         | 1.5  | 19        |
| 43 | Nanoformulation of Talazoparib Increases Maximum Tolerated Doses in Combination With<br>Temozolomide for Treatment of Ewing Sarcoma. Frontiers in Oncology, 2019, 9, 1416.                                                                                                 | 2.8  | 17        |
| 44 | Quantitative Phosphotyrosine Profiling of Patient-Derived Xenografts Identifies Therapeutic Targets<br>in Pediatric Leukemia. Cancer Research, 2016, 76, 2766-2777.                                                                                                        | 0.9  | 16        |
| 45 | Bioluminescence Imaging Enhances Analysis of Drug Responses in a Patient-Derived Xenograft Model of Pediatric ALL. Clinical Cancer Research, 2017, 23, 3744-3755.                                                                                                          | 7.0  | 16        |
| 46 | Evaluation of entinostat alone and in combination with standardâ€ofâ€care cytotoxic agents against rhabdomyosarcoma xenograft models. Pediatric Blood and Cancer, 2019, 66, e27820.                                                                                        | 1.5  | 16        |
| 47 | Inhibition of MEK confers hypersensitivity to X-radiation in the context of BRAF mutation in a model of childhood astrocytoma. Pediatric Blood and Cancer, 2015, 62, 1768-1774.                                                                                            | 1.5  | 15        |
| 48 | Initial testing (stage 1) of the curaxin CBL0137 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2017, 64, e26263.                                                                                                                               | 1.5  | 15        |
| 49 | Initial testing (stage 1) of the antiâ€microtubule agents cabazitaxel and docetaxel, by the Pediatric<br>Preclinical Testing Program. Pediatric Blood and Cancer, 2015, 62, 1897-1905.                                                                                     | 1.5  | 14        |
| 50 | Preclinical Childhood Sarcoma Models: Drug Efficacy Biomarker Identification and Validation.<br>Frontiers in Oncology, 2015, 5, 193.                                                                                                                                       | 2.8  | 14        |
| 51 | In vivo evaluation of the lysineâ€specific demethylase (KDM1A/LSD1) inhibitor SPâ€2577 (Seclidemstat)<br>against pediatric sarcoma preclinical models: A report from the Pediatric Preclinical Testing<br>Consortium (PPTC). Pediatric Blood and Cancer, 2021, 68, e29304. | 1.5  | 14        |
| 52 | Pediatric oncology. Current Opinion in Chemical Biology, 2007, 11, 424-432.                                                                                                                                                                                                | 6.1  | 13        |
| 53 | Initial testing (stage 1) of temozolomide by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2013, 60, 783-790.                                                                                                                                     | 1.5  | 13        |
| 54 | Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacological Reviews, 2019, 71, 671-697.                                                                                                                                                            | 16.0 | 13        |

| #  | Article                                                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Preclinical evaluation of the combination of AZD1775 and irinotecan against selected pediatric solid<br>tumors: A Pediatric Preclinical Testing Consortium report. Pediatric Blood and Cancer, 2020, 67,<br>e28098.                                                                               | 1.5  | 13        |
| 56 | FANCD2 Is a Potential Therapeutic Target and Biomarker in Alveolar Rhabdomyosarcoma Harboring the PAX3–FOXO1 Fusion Gene. Clinical Cancer Research, 2014, 20, 3884-3895.                                                                                                                          | 7.0  | 12        |
| 57 | Identifying novel therapeutic agents using xenograft models of pediatric cancer. Cancer<br>Chemotherapy and Pharmacology, 2016, 78, 221-232.                                                                                                                                                      | 2.3  | 12        |
| 58 | Prospective use of the single-mouse experimental design for the evaluation of PLX038A. Cancer Chemotherapy and Pharmacology, 2020, 85, 251-263.                                                                                                                                                   | 2.3  | 12        |
| 59 | Comprehensive Surfaceome Profiling to Identify and Validate Novel Cell-Surface Targets in<br>Osteosarcoma. Molecular Cancer Therapeutics, 2022, 21, 903-913.                                                                                                                                      | 4.1  | 12        |
| 60 | Evaluation of Eribulin Combined with Irinotecan for Treatment of Pediatric Cancer Xenografts.<br>Clinical Cancer Research, 2020, 26, 3012-3023.                                                                                                                                                   | 7.0  | 11        |
| 61 | Recent Developments in Nanomedicine for Pediatric Cancer. Journal of Clinical Medicine, 2021, 10, 1437.                                                                                                                                                                                           | 2.4  | 11        |
| 62 | The application of radiation therapy to the pediatric preclinical testing program (PPTP): Results of a pilot study in rhabdomyosarcoma. Pediatric Blood and Cancer, 2013, 60, 377-382.                                                                                                            | 1.5  | 10        |
| 63 | A Very Long-Acting PARP Inhibitor Suppresses Cancer Cell Growth in DNA Repair-Deficient Tumor<br>Models. Cancer Research, 2021, 81, 1076-1086.                                                                                                                                                    | 0.9  | 10        |
| 64 | Initial testing (stage 1) of BAL101553, a novel tubulin binding agent, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2015, 62, 1106-1109.                                                                                                                             | 1.5  | 9         |
| 65 | Evaluation of patritumab with or without erlotinib in combination with standard cytotoxic agents against pediatric sarcoma xenograft models. Pediatric Blood and Cancer, 2018, 65, e26870.                                                                                                        | 1.5  | 9         |
| 66 | Doseâ€response effect of eribulin in preclinical models of osteosarcoma by the pediatric preclinical testing consortium. Pediatric Blood and Cancer, 2020, 67, e28606.                                                                                                                            | 1.5  | 9         |
| 67 | Evaluation of VTPâ€50469, a meninâ€MLL1 inhibitor, against Ewing sarcoma xenograft models by the pediatric preclinical testing consortium. Pediatric Blood and Cancer, 2020, 67, e28284.                                                                                                          | 1.5  | 9         |
| 68 | In vivo evaluation of the EZH2 inhibitor (EPZ011989) alone or in combination with standard of care<br>cytotoxic agents against pediatric malignant rhabdoid tumor preclinical models—A report from the<br>Pediatric Preclinical Testing Consortium. Pediatric Blood and Cancer, 2021, 68, e28772. | 1.5  | 9         |
| 69 | PCAT: an integrated portal for genomic and preclinical testing data of pediatric cancer patient-derived xenograft models. Nucleic Acids Research, 2021, 49, D1321-D1327.                                                                                                                          | 14.5 | 9         |
| 70 | Evaluation of arsenic trioxide by the pediatric preclinical testing program with a focus on Ewing sarcoma. Pediatric Blood and Cancer, 2012, 59, 753-755.                                                                                                                                         | 1.5  | 8         |
| 71 | Initial in vivo testing of a multitarget kinase inhibitor, regorafenib, by the Pediatric Preclinical Testing<br>Consortium. Pediatric Blood and Cancer, 2020, 67, e28222.                                                                                                                         | 1.5  | 8         |
| 72 | Initial solid tumor testing (Stage 1) of AZD1480, an inhibitor of Janus kinases 1 and 2 by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 1972-1979.                                                                                                            | 1.5  | 7         |

Raushan T Kurmasheva

| #  | Article                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Initial testing (stage 1) of the topoisomerase II inhibitor pixantrone, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 922-924.                                                                                                                         | 1.5 | 6         |
| 74 | Initial testing (stage 1) of the notch inhibitor PFâ€03084014, by the pediatric preclinical testing program.<br>Pediatric Blood and Cancer, 2014, 61, 1493-1496.                                                                                                                             | 1.5 | 6         |
| 75 | Abstract LB-353: Pediatric Preclinical Testing Program (PPTP) stage 1 evaluation of cabozantinib<br>Cancer Research, 2013, 73, LB-353-LB-353.                                                                                                                                                | 0.9 | 6         |
| 76 | Initial testing (Stage 1) of TAK-701, a humanized hepatocyte growth factor binding antibody, by the pediatric preclinical testing program. Pediatric Blood and Cancer, 2014, 61, 380-382.                                                                                                    | 1.5 | 5         |
| 77 | Abstract LB-217: Preclinical evaluation of trastuzumab deruxtecan (T-DXd; DS-8201a), a HER2 antibody-drug conjugate, in pediatric solid tumors by the Pediatric Preclinical Testing Consortium (PPTC). , 2020, , .                                                                           |     | 4         |
| 78 | Developing new agents for the treatment of childhood cancer. Current Opinion in Investigational Drugs, 2005, 6, 1215-27.                                                                                                                                                                     | 2.3 | 4         |
| 79 | Developing New Agents for Treatment of Childhood Cancer: Challenges and Opportunities for Preclinical Testing. Journal of Clinical Medicine, 2021, 10, 1504.                                                                                                                                 | 2.4 | 3         |
| 80 | Birinapant (TL32711), a Small Molecule Smac Mimetic, Induces Regressions in Childhood Acute<br>Lymphoblastic Leukemia (ALL) Xenografts That Express TNFα and Synergizes with TNFα in Vitro – A Report<br>From the Pediatric Preclinical Testing Program (PPTP). Blood, 2012, 120, 3565-3565. | 1.4 | 3         |
| 81 | PEGylated talazoparib enhances therapeutic window of its combination with temozolomide in Ewing sarcoma. IScience, 2022, 25, 103725.                                                                                                                                                         | 4.1 | 3         |
| 82 | The Use of Pediatric Patient-Derived Xenografts for Identifying Novel Agents and Combinations.<br>Molecular and Translational Medicine, 2017, , 133-159.                                                                                                                                     | 0.4 | 2         |
| 83 | Dual Inhibition of JAK/STAT and MAPK Pathways Results in Synergistic Cell Killing of JAK-Mutated<br>Pediatric Acute Lymphoblastic Leukemia. Blood, 2012, 120, 3562-3562.                                                                                                                     | 1.4 | 2         |
| 84 | Approaches to identifying drug resistance mechanisms to clinically relevant treatments in childhood<br>rhabdomyosarcoma. Cancer Drug Resistance (Alhambra, Calif ), 2022, 5, 80-89.                                                                                                          | 2.1 | 2         |
| 85 | Regulation of TORC1 by MAPK Signaling Determines Sensitivity and Acquired Resistance to Trametinib<br>in Pediatric <i>BRAFV600E</i> Brain Tumor Models. Clinical Cancer Research, 2022, 28, 3836-3849.                                                                                       | 7.0 | 2         |
| 86 | Effective Targeting Of The P53/MDM2 Axis In Preclinical Models Of Infant MLL-Rearranged Acute<br>Lymphoblastic Leukemia. Blood, 2013, 122, 71-71.                                                                                                                                            | 1.4 | 1         |
| 87 | Molecular Therapy for Rhabdomyosarcoma. , 2010, , 425-458.                                                                                                                                                                                                                                   |     | 0         |
| 88 | Preclinical models of childhood cancer for the development of targeted therapies. Drug Discovery<br>Today: Disease Models, 2016, 21, 3-9.                                                                                                                                                    | 1.2 | 0         |
| 89 | Initial Testing of NSC 750854, a Novel Purine Analog, Against Pediatric Tumor Models by the Pediatric<br>Preclinical Testing Program. Pediatric Blood and Cancer, 2016, 63, 443-450.                                                                                                         | 1.5 | 0         |
| 90 | The application of radiotherapy to the pediatric preclinical testing program: Results of a pilot study<br>Journal of Clinical Oncology, 2012, 30, 9544-9544.                                                                                                                                 | 1.6 | 0         |

| #  | Article                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Targeted Cancer Therapy in High-Risk Pediatric Leukemia Using Global Phosphotyrosine Profiling.<br>Blood, 2014, 124, 969-969. | 1.4 | 0         |