Christian Dahmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/871767/publications.pdf

Version: 2024-02-01

38 papers 2,486 citations

20 h-index 36 g-index

39 all docs 39 docs citations

39 times ranked 2176 citing authors

#	Article	IF	CITATIONS
1	Distinct contributions of ECM proteins to basement membrane mechanical properties in <i>Drosophila</i> . Development (Cambridge), 2022, 149, .	2.5	19
2	Establishing compartment boundaries in Drosophila wing imaginal discs: An interplay between selector genes, signaling pathways and cell mechanics. Seminars in Cell and Developmental Biology, 2020, 107, 161-169.	5.0	18
3	Increased lateral tension is sufficient for epithelial folding in <i>Drosophila</i> . Development (Cambridge), 2020, 147, .	2.5	11
4	Tissue mechanical properties modulate cell extrusion in the <i>Drosophila</i> abdominal epidermis. Development (Cambridge), 2020, 147, .	2.5	24
5	Wingless counteracts epithelial folding by increasing mechanical tension at basal cell edges in <i>Drosophila</i> . Development (Cambridge), 2020, 147, .	2.5	5
6	Charting the unknown currents of cellular flows and forces. Development (Cambridge), 2020, 147, .	2.5	4
7	Cell-level 3D reconstruction and quantification of the Drosophila wing imaginal disc. International Journal of Bioinformatics Research and Applications, 2019, 15, 174.	0.2	1
8	Differential lateral and basal tension drive folding of Drosophila wing discs through two distinct mechanisms. Nature Communications, 2018, 9, 4620.	12.8	103
9	MoD Special Issue on the roles of physical forces in animal development. Mechanisms of Development, 2017, 144, 1.	1.7	O
10	The Selector Gene apterous and Notch Are Required to Locally Increase Mechanical Cell Bond Tension at the Drosophila Dorsoventral Compartment Boundary. PLoS ONE, 2016, 11, e0161668.	2.5	16
11	Regulating mechanical tension at compartment boundaries in <i>Drosophila</i> . Fly, 2016, 10, 204-209.	1.7	3
12	A Mutation in fat2ÂUncouples Tissue Elongation from Global Tissue Rotation. Cell Reports, 2016, 14, 2503-2510.	6.4	32
13	Memorizing Shape to Orient Cell Division. Developmental Cell, 2016, 36, 589-590.	7.0	3
14	Signals and mechanics shaping compartment boundaries in <i>Drosophila</i> . Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 407-417.	5.9	5
15	A local difference in Hedgehog signal transduction increases mechanical cell bond tension and biases cell intercalations along the <i>Drosophila</i> anteroposterior compartment boundary. Development (Cambridge), 2015, 142, 3845-3858.	2.5	31
16	An RNA Interference Screen for Genes Required to Shape the Anteroposterior Compartment Boundary in Drosophila Identifies the Eph Receptor. PLoS ONE, 2014, 9, e114340.	2.5	22
17	Local Increases in Mechanical Tension Shape Compartment Boundaries by Biasing Cell Intercalations. Current Biology, 2014, 24, 1798-1805.	3.9	85
18	Microtubule Polarity Predicts Direction of Egg Chamber Rotation in Drosophila. Current Biology, 2013, 23, 1472-1477.	3.9	66

#	Article	IF	CITATIONS
19	Physical Mechanisms Shaping the Drosophila Dorsoventral Compartment Boundary. Current Biology, 2012, 22, 967-976.	3.9	116
20	Modelling planar polarity of epithelia: the role of signal relay in collective cell polarization. Journal of the Royal Society Interface, 2011, 8, 1059-1063.	3.4	26
21	Boundary formation and maintenance in tissue development. Nature Reviews Genetics, 2011, 12, 43-55.	16. 3	301
22	Compartment boundaries. Fly, 2010, 4, 241-245.	1.7	16
23	Characterization of the Drosophila Ortholog of the Human Usher Syndrome Type 1G Protein Sans. PLoS ONE, 2009, 4, e4753.	2.5	13
24	Dpp signaling promotes the cuboidal-to-columnar shape transition of Drosophila wing disc epithelia by regulating Rho1. Journal of Cell Science, 2009, 122, 1362-1373.	2.0	88
25	The cadherin Fat2 is required for planar cell polarity in the <i>Drosophila </i> ovary. Development (Cambridge), 2009, 136, 4123-4132.	2.5	107
26	Increased Cell Bond Tension Governs Cell Sorting at the Drosophila Anteroposterior Compartment Boundary. Current Biology, 2009, 19, 1950-1955.	3.9	282
27	Expression patterns of cadherin genes in Drosophila oogenesis. Gene Expression Patterns, 2009, 9, 31-36.	0.8	22
28	Wingless signaling and the control of cell shape in Drosophila wing imaginal discs. Developmental Biology, 2009, 334, 161-173.	2.0	52
29	Hedgehog and Dpp signaling induce cadherin Cad86C expression in the morphogenetic furrow during Drosophila eye development. Mechanisms of Development, 2008, 125, 712-728.	1.7	29
30	Cad74A is regulated by BR and is required for robust dorsal appendage formation in Drosophila oogenesis. Developmental Biology, 2008, 322, 289-301.	2.0	16
31	Cadherin Cad99C is required for normal microvilli morphology in Drosophila follicle cells. Journal of Cell Science, 2006, 119, 1184-1195.	2.0	60
32	PDZ-domain-binding sites are common among cadherins. Development Genes and Evolution, 2006, 216, 737-741.	0.9	8
33	Extrusion of Cells with Inappropriate Dpp Signaling from Drosophila Wing Disc Epithelia. Science, 2005, 307, 1789-1790.	12.6	148
34	The role of Dpp signaling in maintaining the Drosophila anteroposterior compartment boundary. Developmental Biology, 2005, 279, 31-43.	2.0	30
35	Cadherin Cad99C is regulated by Hedgehog signaling in Drosophila. Developmental Biology, 2005, 279, 142-154.	2.0	26
36	Opposing Transcriptional Outputs of Hedgehog Signaling and Engrailed Control Compartmental Cell Sorting at the Drosophila A/P Boundary. Cell, 2000, 100, 411-422.	28.9	137

#	Article	IF	CITATIONS
37	Compartment boundaries: at the edge of development. Trends in Genetics, 1999, 15, 320-326.	6.7	196
38	S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Current Biology, 1995, 5, 1257-1269.	3.9	365