Michele Pagano List of Publications by Year in descending order Source: https://exaly.com/author-pdf/8717591/publications.pdf Version: 2024-02-01 186 papers 31,327 citations 9428 76 h-index 172 g-index 269 all docs 269 docs citations times ranked 269 34937 citing authors | # | Article | IF | Citations | |----|--|------|-----------| | 1 | EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell, 2022, 185, 169-183.e19. | 13.5 | 38 | | 2 | The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target. Cell Death and Differentiation, 2022, 29, 285-292. | 5.0 | 32 | | 3 | Discriminative SKP2 Interactions with CDK-Cyclin Complexes Support a Cyclin A-Specific Role in p27KIP1 Degradation. Journal of Molecular Biology, 2021, 433, 166795. | 2.0 | 10 | | 4 | Linking ubiquitin to actin dynamics during cell fusion. Developmental Cell, 2021, 56, 569-570. | 3.1 | 2 | | 5 | ORF10–Cullin-2–ZYG11B complex is not required for SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, . | 3.3 | 26 | | 6 | CRL4AMBRA1 is a master regulator of D-type cyclins. Nature, 2021, 592, 789-793. | 13.7 | 78 | | 7 | AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature, 2021, 592, 799-803. | 13.7 | 78 | | 8 | ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nature Cancer, 2021, 2, 503-514. | 5.7 | 72 | | 9 | Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chemical Biology, 2021, 28, 918-933. | 2.5 | 36 | | 10 | The Long-Lost Ligase: CRL4 ^{AMBRA1} Regulates the Stability of D-Type Cyclins. DNA and Cell Biology, 2021, 40, 1457-1461. | 0.9 | 4 | | 11 | Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Reports, 2021, 37, 109870. | 2.9 | 15 | | 12 | A Novel FBXO45-Gef-H1 Axis Controls Oncogenic Signaling in B-Cell Lymphoma. Blood, 2021, 138, 711-711. | 0.6 | 1 | | 13 | Epigenetic suppression of FBXL7 promotes metastasis. Molecular and Cellular Oncology, 2020, 7, 1833698. | 0.3 | 4 | | 14 | APC/CCdh1 is required for the termination of chromosomal passenger complex activity upon mitotic exit. Journal of Cell Science, 2020, 133 , . | 1.2 | 4 | | 15 | Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nature Cell Biology, 2020, 22, 1130-1142. | 4.6 | 28 | | 16 | Interaction between NSMCE4A and GPS1 links the SMC5/6 complex to the COP9 signalosome. BMC Molecular and Cell Biology, 2020, 21, 36. | 1.0 | 4 | | 17 | PHOTACs enable optical control of protein degradation. Science Advances, 2020, 6, eaay5064. | 4.7 | 185 | | 18 | FBXL5 Regulates IRP2 Stability in Iron Homeostasis via an Oxygen-Responsive [2Fe2S] Cluster. Molecular Cell, 2020, 78, 31-41.e5. | 4.5 | 87 | | # | Article | IF | Citations | |----|--|------|-----------| | 19 | Loss of the deubiquitinase OTULIN promotes hepatocellular carcinoma (HCC) in an mTOR-dependent manner. Cell Death and Differentiation, 2020, 27, 1455-1456. | 5.0 | 1 | | 20 | Genome-wide alterations of uracil distribution patterns in human DNA upon chemotherapeutic treatments. ELife, 2020, 9 , . | 2.8 | 13 | | 21 | Two Distinct E2F Transcriptional Modules Drive Cell Cycles and Differentiation. Cell Reports, 2019, 27, 3547-3560.e5. | 2.9 | 41 | | 22 | GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase. Nature Structural and Molecular Biology, 2019, 26, 628-636. | 3.6 | 56 | | 23 | Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1. Cell, 2019, 178, 316-329.e18. | 13.5 | 385 | | 24 | Cryptochromes-Mediated Inhibition of the CRL4Cop1-Complex Assembly Defines an Evolutionary Conserved Signaling Mechanism. Current Biology, 2019, 29, 1954-1962.e4. | 1.8 | 24 | | 25 | Cyclin F Controls Cell-Cycle Transcriptional Outputs by Directing the Degradation of the Three Activator E2Fs. Molecular Cell, 2019, 74, 1264-1277.e7. | 4.5 | 69 | | 26 | Mixed ubiquitin chains regulate DNA repair. Genes and Development, 2019, 33, 1615-1616. | 2.7 | 7 | | 27 | The F-Box Domain-Dependent Activity of EMI1 Regulates PARPi Sensitivity in Triple-Negative Breast Cancers. Molecular Cell, 2019, 73, 224-237.e6. | 4.5 | 58 | | 28 | Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541. | 5.0 | 4,036 | | 29 | \hat{l}^2 -TrCP- and Casein Kinase II-Mediated Degradation of Cyclin F Controls Timely Mitotic Progression. Cell Reports, 2018, 24, 3404-3412. | 2.9 | 37 | | 30 | NS5A Promotes Constitutive Degradation of IP3R3 to Counteract Apoptosis Induced by Hepatitis C Virus. Cell Reports, 2018, 25, 833-840.e3. | 2.9 | 20 | | 31 | PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading. ELife, 2018, 7, . | 2.8 | 37 | | 32 | The ULK1-FBXW5-SEC23B nexus controls autophagy. ELife, 2018, 7, . | 2.8 | 63 | | 33 | FEM1 proteins are ancient regulators of SLBP degradation. Cell Cycle, 2017, 16, 556-564. | 1.3 | 27 | | 34 | The G protein–coupled receptor GPR31 promotes membrane association of KRAS. Journal of Cell Biology, 2017, 216, 2329-2338. | 2.3 | 24 | | 35 | PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature, 2017, 546, 554-558. | 13.7 | 182 | | 36 | The TDH–GCN5L1–Fbxo15–KBP axis limits mitochondrial biogenesis in mouse embryonic stemÂcells.
Nature Cell Biology, 2017, 19, 341-351. | 4.6 | 41 | | # | Article | IF | Citations | |----|---|------|-----------| | 37 | Stability of Wake-Sleep Cycles Requires Robust Degradation of the PERIOD Protein. Current Biology, 2017, 27, 3454-3467.e8. | 1.8 | 44 | | 38 | GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK. Developmental Cell, 2017, 42, 130-142.e7. | 3.1 | 27 | | 39 | FBXO11 (F-box protein 11). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2017, , . | 0.1 | 0 | | 40 | Don't run biomedical science as a business. Nature, 2017, 547, 381-381. | 13.7 | 7 | | 41 | Cyclin F-Mediated Degradation of SLBP Limits H2A.X Accumulation and Apoptosis upon Genotoxic Stress in G2. Molecular Cell, 2016, 64, 507-519. | 4.5 | 64 | | 42 | TIMELESS Forms a Complex with PARP1 Distinct from Its Complex with TIPIN and Plays a Role in the DNA Damage Response. Cell Reports, 2015, 13, 451-459. | 2.9 | 67 | | 43 | The Integrator complex controls the termination of transcription at diverse classes of gene targets.
Cell Research, 2015, 25, 288-305. | 5.7 | 113 | | 44 | SPOP Mutations or ERG Rearrangements Result in Enhanced Levels of ERG to Promote Cell Invasion in Prostate Cancer. Molecular Cell, 2015, 59, 883-884. | 4.5 | 20 | | 45 | Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nature Cell Biology, 2015, 17, 31-43. | 4.6 | 69 | | 46 | Plk1 Protein Phosphorylates Phosphatase and Tensin Homolog (PTEN) and Regulates Its Mitotic Activity during the Cell Cycle. Journal of Biological Chemistry, 2014, 289, 14066-14074. | 1.6 | 43 | | 47 | SCF ubiquitin ligase-targeted therapies. Nature Reviews Drug Discovery, 2014, 13, 889-903. | 21.5 | 262 | | 48 | Cdh1, a Substrate-recruiting Component of Anaphase-promoting Complex/Cyclosome (APC/C) Ubiquitin E3 Ligase, Specifically Interacts with Phosphatase and Tensin Homolog (PTEN) and Promotes Its Removal from Chromatin. Journal of Biological Chemistry, 2014, 289, 17951-17959. | 1.6 | 19 | | 49 | Critical role for IL- $1\hat{l}^2$ in DNA damage-induced mucositis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E702-11. | 3.3 | 42 | | 50 | DRE-1/FBXO11-Dependent Degradation of BLMP-1/BLIMP-1 Governs C.Âelegans Developmental Timing and Maturation. Developmental Cell, 2014, 28, 697-710. | 3.1 | 72 | | 51 | The ubiquitin proteasome system — Implications for cell cycle control and the targeted treatment of cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 150-162. | 1.9 | 214 | | 52 | SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nature Cell Biology, 2013, 15, 72-81. | 4.6 | 76 | | 53 | A cyclin without cyclin-dependent kinases: cyclin F controls genome stability through ubiquitin-mediated proteolysis. Trends in Cell Biology, 2013, 23, 135-140. | 3.6 | 82 | | 54 | FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress. Journal of Cell Biology, 2013, 200, 141-149. | 2.3 | 50 | | # | Article | IF | Citations | |----|--|------|-----------| | 55 | SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature, 2013, 496, 64-68. | 13.7 | 191 | | 56 | Mechanisms and function of substrate recruitment by F-box proteins. Nature Reviews Molecular Cell Biology, 2013, 14, 369-381. | 16.1 | 549 | | 57 | Regulation of the CRL4Cdt2 Ubiquitin Ligase and Cell-Cycle Exit by the SCFFbxo11 Ubiquitin Ligase.
Molecular Cell, 2013, 49, 1159-1166. | 4.5 | 67 | | 58 | USP33 regulates centrosome biogenesis via deubiquitination of the centriolar protein CP110. Nature, 2013, 495, 255-259. | 13.7 | 126 | | 59 | Aurora-A controls pre-replicative complex assembly and DNA replication by stabilizing geminin in mitosis. Nature Communications, 2013, 4, 1885. | 5.8 | 34 | | 60 | Role of the Ubiquitin Proteasome System in the Heart. Circulation Research, 2013, 112, 1046-1058. | 2.0 | 126 | | 61 | FBH1 protects melanocytes from transformation and is deregulated in melanomas. Cell Cycle, 2013, 12, 1128-1132. | 1.3 | 20 | | 62 | FBXL2- and PTPL1-mediated degradation of p110-free p85 \hat{l}^2 regulatory subunit controls the PI(3)K signallingÂcascade. Nature Cell Biology, 2013, 15, 472-480. | 4.6 | 98 | | 63 | Coupled Activation and Degradation of eEF2K Regulates Protein Synthesis in Response to Genotoxic Stress. Science Signaling, 2012, 5, ra40. | 1.6 | 76 | | 64 | FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature, 2012, 481, 90-93. | 13.7 | 256 | | 65 | APC/C ^{Cdh1} controls the proteasome-mediated degradation of E2F3 during cell cycle exit. Cell Cycle, 2012, 11, 1999-2005. | 1.3 | 27 | | 66 | Fbxw7 \hat{l}_{\pm} - and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biology, 2012, 14, 375-385. | 4.6 | 168 | | 67 | BubR1 Is Modified by Sumoylation during Mitotic Progression. Journal of Biological Chemistry, 2012, 287, 4875-4882. | 1.6 | 27 | | 68 | SCF-Mediated Degradation of p100 (NF-κB2): Mechanisms and Relevance in Multiple MyelomaA Presentation from the Sixth International Conference on SUMO, Ubiquitin and UBL proteins: Implications for Human Diseases, MD Anderson Cancer Center, Houston, Texas, 8 to 11 February 2012 Science Signaling, 2012, 5, pt14. | 1.6 | 14 | | 69 | Specific Small Molecule Inhibitors of Skp2-Mediated p27 Degradation. Chemistry and Biology, 2012, 19, 1515-1524. | 6.2 | 187 | | 70 | Cyclin F-Mediated Degradation ofÂRibonucleotide Reductase M2 Controls Genome Integrity and DNA Repair. Cell, 2012, 149, 1023-1034. | 13.5 | 313 | | 71 | SCF ubiquitin ligases in the maintenance of genome stability. Trends in Biochemical Sciences, 2012, 37, 66-73. | 3.7 | 85 | | 72 | SCFFbxo45 controls cytokinesis through ubiquitinâ€mediated proteolysis of GEFâ€H1. FASEB Journal, 2012, 26, lb110. | 0.2 | 0 | | # | Article | IF | CITATIONS | |----|--|-------------|-----------| | 73 | mTOR Generates an Auto-Amplification Loop by Triggering the \hat{I}^2 TrCP- and CK1 \hat{I}_\pm -Dependent Degradation of DEPTOR. Molecular Cell, 2011, 44, 317-324. | 4.5 | 175 | | 74 | The impact of Skp2 overexpression on recurrence-free survival following radical prostatectomy. Urologic Oncology: Seminars and Original Investigations, 2011, 29, 302-308. | 0.8 | 18 | | 75 | Clinical relevance of SKP2 alterations in metastatic melanoma. Pigment Cell and Melanoma Research, 2011, 24, 197-206. | 1.5 | 46 | | 76 | MCL1 meets its end during mitotic arrest. EMBO Reports, 2011, 12, 384-385. | 2.0 | 19 | | 77 | APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage. Journal of Cell Biology, 2011, 194, 177-186. | 2.3 | 63 | | 78 | Linking metabolism and cell cycle progression via the APC/C ^{Cdh1} and SCF ^{l²TrCP} ubiquitin ligases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20857-20858. | 3. 3 | 16 | | 79 | FBXW5 controls centrosome number. Nature Cell Biology, 2011, 13, 888-890. | 4.6 | 10 | | 80 | SCFCyclin F controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature, 2010, 466, 138-142. | 13.7 | 235 | | 81 | Spermatogenesis rescue in a mouse deficient for the ubiquitin ligase SCF ^{β-TrCP} by single substrate depletion. Genes and Development, 2010, 24, 470-477. | 2.7 | 37 | | 82 | Spindle assembly checkpoint inactivation: A new role for phosphatases. Cell Cycle, 2010, 9, 642-651. | 1.3 | 0 | | 83 | Phosphorylation of Ser72 is dispensable for Skp2 assembly into an active SCF ubiquitin ligase and its subcellular localization. Cell Cycle, 2010, 9, 971-974. | 1.3 | 31 | | 84 | Cdc25 phosphatases. Cell Cycle, 2010, 9, 4613-4614. | 1.3 | 9 | | 85 | Tumor Suppressor Function of Androgen Receptor Coactivator ARA70α in Prostate Cancer. American
Journal of Pathology, 2010, 176, 1891-1900. | 1.9 | 30 | | 86 | Thrombin Induces Tumor Cell Cycle Activation and Spontaneous Growth by Down-regulation of p27Kip1, in Association with the Up-regulation of Skp2 and MiR-222. Cancer Research, 2009, 69, 3374-3381. | 0.4 | 56 | | 87 | INTS3 controls the hSSB1-mediated DNA damage response. Journal of Cell Biology, 2009, 187, 25-32. | 2.3 | 80 | | 88 | Control of cell growth by the SCF and APC/C ubiquitin ligases. Current Opinion in Cell Biology, 2009, 21, 816-824. | 2.6 | 145 | | 89 | Wnt Signaling in Mitosis. Developmental Cell, 2009, 17, 749-750. | 3.1 | 48 | | 90 | SnapShot: F Box Proteins I. Cell, 2009, 137, 1160-1160.e1. | 13.5 | 113 | | # | Article | IF | Citations | |-----|---|------|-----------| | 91 | SnapShot: F Box Proteins II. Cell, 2009, 137, 1358.e1-1358.e2. | 13.5 | 107 | | 92 | Î ² TrCP- and Rsk1/2-Mediated Degradation of BimEL Inhibits Apoptosis. Molecular Cell, 2009, 33, 109-116. | 4.5 | 157 | | 93 | APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation. Cell Cycle, 2009, 8, 167-171. | 1.3 | 78 | | 94 | Control of chromosome stability by the β-TrCP–REST–Mad2 axis. Nature, 2008, 452, 365-369. | 13.7 | 181 | | 95 | Cdh1: a master G0/G1 regulator. Nature Cell Biology, 2008, 10, 755-757. | 4.6 | 55 | | 96 | The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biology, 2008, 10, 643-653. | 4.6 | 234 | | 97 | Deregulated proteolysis by the F-box proteins SKP2 and β-TrCP: tipping the scales of cancer. Nature Reviews Cancer, 2008, 8, 438-449. | 12.8 | 836 | | 98 | APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation. Molecular Immunology, 2008, 45, 3731-3739. | 1.0 | 11 | | 99 | The Cdc14B-Cdh1-Plk1 Axis Controls the G2 DNA-Damage-Response Checkpoint. Cell, 2008, 134, 256-267. | 13.5 | 365 | | 100 | Stimulation of Prostate Cancer Cellular Proliferation and Invasion by the Androgen Receptor Co-Activator ARA70 \hat{l}^2 . American Journal of Pathology, 2008, 172, 225-235. | 1.9 | 47 | | 101 | PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4 ^{Cdt2} ubiquitin ligase complex. Genes and Development, 2008, 22, 2496-2506. | 2.7 | 334 | | 102 | Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. Journal of Cell Biology, 2008, 181, 485-496. | 2.3 | 153 | | 103 | KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle, 2008, 7, 3539-3547. | 1.3 | 125 | | 104 | The After-Hours Mutant Reveals a Role for Fbxl3 in Determining Mammalian Circadian Period. Science, 2007, 316, 897-900. | 6.0 | 434 | | 105 | Multisite Phosphorylation of Nuclear Interaction Partner of ALK (NIPA) at G2/M Involves Cyclin B1/Cdk1. Journal of Biological Chemistry, 2007, 282, 15965-15972. | 1.6 | 28 | | 106 | Substrate Recognition and Ubiquitination of SCFSkp2/Cks1 Ubiquitin-Protein Isopeptide Ligase. Journal of Biological Chemistry, 2007, 282, 15462-15470. | 1.6 | 19 | | 107 | SCFFbxl3 Controls the Oscillation of the Circadian Clock by Directing the Degradation of Cryptochrome Proteins. Science, 2007, 316, 900-904. | 6.0 | 445 | | 108 | DRE-1: An Evolutionarily Conserved F Box Protein that Regulates C. elegans Developmental Age. Developmental Cell, 2007, 12, 443-455. | 3.1 | 61 | | # | Article | IF | CITATIONS | |--------------------------|--|-------------------|-----------------------| | 109 | APC/CCdc20 Controls the Ubiquitin-Mediated Degradation of p21 in Prometaphase. Molecular Cell, 2007, 27, 462-473. | 4.5 | 181 | | 110 | Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. BMC Biochemistry, 2007, 8, S9. | 4.4 | 35 | | 111 | The pRb–Cdh1–p27 autoamplifying network. Nature Cell Biology, 2007, 9, 137-138. | 4.6 | 1 | | 112 | JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature, 2007, 450, 309-313. | 13.7 | 259 | | 113 | Constitutive Phosphorylation of Aurora-A on Ser51 Induces Its Stabilization and Consequent Overexpression in Cancer. PLoS ONE, 2007, 2, e944. | 1.1 | 44 | | 114 | Two different ubiquitin ligases control the abundance of Claspin at different phases of the cell cycle. FASEB Journal, 2007, 21, A154. | 0.2 | 0 | | 115 | A peptidomimetic siRNA transfection reagent for highly effective gene silencing. Molecular BioSystems, 2006, 2, 312. | 2.9 | 58 | | 116 | S6K1- and ÂTRCP-Mediated Degradation of PDCD4 Promotes Protein Translation and Cell Growth. Science, 2006, 314, 467-471. | 6.0 | 637 | | 117 | American Idol and NIH Grant Review. Cell, 2006, 126, 637-638. | 13.5 | 17 | | | | | | | 118 | Response: More Money and Less Time!. Cell, 2006, 127, 664-665. | 13.5 | 0 | | 118 | Response: More Money and Less Time!. Cell, 2006, 127, 664-665. Stabilizers and Destabilizers Controlling Cell Cycle Oscillators. Molecular Cell, 2006, 22, 1-4. | 13.5
4.5 | 0 | | | | | | | 119 | Stabilizers and Destabilizers Controlling Cell Cycle Oscillators. Molecular Cell, 2006, 22, 1-4. SCFÎ ² TrCP-Mediated Degradation of Claspin Regulates Recovery from the DNA Replication Checkpoint | 4.5 | 112 | | 119 | Stabilizers and Destabilizers Controlling Cell Cycle Oscillators. Molecular Cell, 2006, 22, 1-4. SCFβTrCP-Mediated Degradation of Claspin Regulates Recovery from the DNA Replication Checkpoint Response. Molecular Cell, 2006, 23, 319-329. | 4.5 | 264 | | 119
120
121 | Stabilizers and Destabilizers Controlling Cell Cycle Oscillators. Molecular Cell, 2006, 22, 1-4. SCFβTrCP-Mediated Degradation of Claspin Regulates Recovery from the DNA Replication Checkpoint Response. Molecular Cell, 2006, 23, 319-329. Cell Division, a new open access online forum for and from the cell cycle community., 2006, 1, 1. | 4.5
4.5 | 112
264
19 | | 119
120
121
122 | Stabilizers and Destabilizers Controlling Cell Cycle Oscillators. Molecular Cell, 2006, 22, 1-4. SCFÎ2TrCP-Mediated Degradation of Claspin Regulates Recovery from the DNA Replication Checkpoint Response. Molecular Cell, 2006, 23, 319-329. Cell Division, a new open access online forum for and from the cell cycle community., 2006, 1, 1. Modification of Cul1 regulates its association with proteasomal subunits. Cell Division, 2006, 1, 5. Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. | 4.5 | 112
264
19
5 | | 119
120
121
122 | Stabilizers and Destabilizers Controlling Cell Cycle Oscillators. Molecular Cell, 2006, 22, 1-4. SCFβTrCP-Mediated Degradation of Claspin Regulates Recovery from the DNA Replication Checkpoint Response. Molecular Cell, 2006, 23, 319-329. Cell Division, a new open access online forum for and from the cell cycle community., 2006, 1, 1. Modification of Cul1 regulates its association with proteasomal subunits. Cell Division, 2006, 1, 5. Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature, 2006, 442, 471-474. Skp2 Contains a Novel Cyclin A Binding Domain That Directly Protects Cyclin A from Inhibition by | 4.5
4.5
1.1 | 112
264
19
5 | | # | Article | IF | CITATIONS | |-----|---|------|-----------| | 127 | The Acidic Tail domain of Human Cdc34 is Required for p27Kip1 Ubiquitination and Complementation of a cdc34 Temperature Sensitive Yeast Strain. Cell Cycle, 2005, 4, 1421-1427. | 1.3 | 17 | | 128 | Involvement of the SCF Complex in the Control of Cdh1 Degradation in S-phase. Cell Cycle, 2005, 4, 1230-1232. | 1.3 | 56 | | 129 | Structural Basis of the Cks1-Dependent Recognition of p27Kip1 by the SCFSkp2 Ubiquitin Ligase. Molecular Cell, 2005, 20, 9-19. | 4.5 | 255 | | 130 | Experimental Tests to Definitively Determine Ubiquitylation of a Substrate. Methods in Enzymology, 2005, 399, 249-266. | 0.4 | 41 | | 131 | Varshavsky's Contributions. Science, 2004, 306, 1290-1292. | 6.0 | 11 | | 132 | Don't Skip the G1 Phase: How APC/CCdh1Keeps SCFSKP2in Check. Cell Cycle, 2004, 3, 848-850. | 1.3 | 27 | | 133 | Role of F-Box Protein \hat{I}^2 Trcp1 in Mammary Gland Development and Tumorigenesis. Molecular and Cellular Biology, 2004, 24, 8184-8194. | 1.1 | 81 | | 134 | Ubiquitin-dependent Degradation of p73 Is Inhibited by PML. Journal of Experimental Medicine, 2004, 199, 1545-1557. | 4.2 | 111 | | 135 | To Be or Not to BeUbiquitinated?. Cell Cycle, 2004, 3, 136-138. | 1.3 | 28 | | 136 | Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7937-7942. | 3.3 | 192 | | 137 | The SCF ubiquitin ligase: insights into a molecular machine. Nature Reviews Molecular Cell Biology, 2004, 5, 739-751. | 16.1 | 983 | | 138 | Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase. Nature, 2004, 428, 190-193. | 13.7 | 457 | | 139 | Cell cycle, proteolysis and cancer. Current Opinion in Cell Biology, 2004, 16, 623-628. | 2.6 | 66 | | 140 | Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer, 2004, 100, 1615-1621. | 2.0 | 51 | | 141 | Systematic analysis and nomenclature of mammalian F-box proteins. Genes and Development, 2004, 18, 2573-2580. | 2.7 | 589 | | 142 | Wagging the Dogma. Cell, 2004, 118, 535-538. | 13.5 | 79 | | 143 | Role of Cks1 Overexpression in Oral Squamous Cell Carcinomas. American Journal of Pathology, 2004, 165, 2147-2155. | 1.9 | 71 | | 144 | An Rb-Skp2-p27 Pathway Mediates Acute Cell Cycle Inhibition by Rb and Is Retained in a Partial-Penetrance Rb Mutant. Molecular Cell, 2004, 16, 47-58. | 4.5 | 152 | | # | Article | IF | Citations | |-----|--|------|-----------| | 145 | Control of DNA Synthesis and Mitosis by the Skp2-p27-Cdk1/2 Axis. Molecular Cell, 2004, 14, 414-416. | 4.5 | 99 | | 146 | Oncogenic aberrations of cullin-dependent ubiquitin ligases. Oncogene, 2004, 23, 2037-2049. | 2.6 | 75 | | 147 | To be or not to be ubiquitinated?. Cell Cycle, 2004, 3, 138-40. | 1.3 | 13 | | 148 | Don't skip the G1 phase: how APC/CCdh1 keeps SCFSKP2 in check. Cell Cycle, 2004, 3, 850-2. | 1.3 | 16 | | 149 | Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Seminars in Cancer Biology, 2003, 13, 41-47. | 4.3 | 341 | | 150 | When protein destruction runs amok, malignancy is on the loose. Cancer Cell, 2003, 4, 251-256. | 7.7 | 84 | | 151 | Degradation of Cdc25A by β-TrCP during S phase and in response to DNA damage. Nature, 2003, 426, 87-91. | 13.7 | 418 | | 152 | Proteasome-Mediated Degradation of p21 via N-Terminal Ubiquitinylation. Cell, 2003, 115, 71-82. | 13.5 | 277 | | 153 | Control of Meiotic and Mitotic Progression by the F Box Protein \hat{I}^2 -Trcp1 In Vivo. Developmental Cell, 2003, 4, 799-812. | 3.1 | 346 | | 154 | Novel p27 kip1 C-Terminal Scatter Domain Mediates Rac-Dependent Cell Migration Independent of Cell Cycle Arrest Functions. Molecular and Cellular Biology, 2003, 23, 216-228. | 1.1 | 198 | | 155 | Role of the SCFSkp2 Ubiquitin Ligase in the Degradation of p21Cip1 in S Phase. Journal of Biological Chemistry, 2003, 278, 25752-25757. | 1.6 | 414 | | 156 | Aberrant ubiquitin-mediated proteolysis of cell cycle regulatory proteins and oncogenesis. Advances in Cancer Research, 2003, 88, 101-144. | 1.9 | 55 | | 157 | Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients. Clinical Cancer Research, 2003, 9, 2613-9. | 3.2 | 54 | | 158 | In Vivo Interference with Skp1 Function Leads to Genetic Instability and Neoplastic Transformation. Molecular and Cellular Biology, 2002, 22, 8375-8387. | 1.1 | 53 | | 159 | Three Different Binding Sites of Cks1 Are Required for p27-Ubiquitin Ligation. Journal of Biological Chemistry, 2002, 277, 42233-42240. | 1.6 | 80 | | 160 | S-Phase Kinase-Associated Protein 2 Expression in Non-Hodgkin's Lymphoma Inversely Correlates with p27 Expression and Defines Cells in S Phase. American Journal of Pathology, 2002, 160, 1457-1466. | 1.9 | 94 | | 161 | Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature, 2002, 416, 703-709. | 13.7 | 1,322 | | 162 | Dual mode of degradation of Cdc25 A phosphatase. EMBO Journal, 2002, 21, 4875-4884. | 3.5 | 163 | | # | Article | IF | Citations | |-----|---|------|-----------| | 163 | Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. Journal of Clinical Investigation, 2002, 110, 633-641. | 3.9 | 208 | | 164 | Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. Journal of Clinical Investigation, 2002, 110, 633-641. | 3.9 | 142 | | 165 | Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Letters, 2001, 490, 179-189. | 1.3 | 111 | | 166 | Inverse relation between levels of p27Kip1 and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer, 2001, 91, 1745-1751. | 2.0 | 160 | | 167 | Beware the baited hook of publicity. Nature, 2001, 414, 843-843. | 13.7 | 1 | | 168 | The de-ubiquitinating enzyme Unp interacts with the retinoblastoma protein. Oncogene, 2001, 20, 5538-5542. | 2.6 | 29 | | 169 | The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nature Cell Biology, 2001, 3, 321-324. | 4.6 | 444 | | 170 | Role of the F-Box Protein Skp2 in Adhesion-Dependent Cell Cycle Progression. Journal of Cell Biology, 2001, 153, 1381-1390. | 2.3 | 133 | | 171 | Induction of \hat{I}^2 -Transducin Repeat-containing Protein by JNK Signaling and Its Role in the Activation of NF- \hat{I}^2 B. Journal of Biological Chemistry, 2001, 276, 27152-27158. | 1.6 | 65 | | 172 | Inverse relation between levels of p27Kip1 and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas., 2001, 91, 1745. | | 3 | | 173 | Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature, 2000, 408, 381-386. | 13.7 | 550 | | 174 | Low expression of p27 and low proliferation index do not correlate in hairy cell leukaemia. British Journal of Haematology, 2000, 111, 263-271. | 1.2 | 2 | | 175 | Increased proteasome degradation of cyclin-dependent kinase inhibitor p27 is associated with a decreased overall survival in mantle cell lymphoma. Blood, 2000, 95, 619-626. | 0.6 | 199 | | 176 | Wnt/ \hat{l}^2 -Catenin Signaling Induces the Expression and Activity of \hat{l}^2 TrCP Ubiquitin Ligase Receptor. Molecular Cell, 2000, 5, 877-882. | 4.5 | 172 | | 177 | The F-box protein family. Genome Biology, 2000, 1, reviews3002.1. | 13.9 | 569 | | 178 | Role of the Cdc25A phosphatase in human breast cancer. Journal of Clinical Investigation, 2000, 106, 753-761. | 3.9 | 186 | | 179 | Identification of the Ubiquitin Carrier Proteins, E2s, Involved in Signal-induced Conjugation and Subsequent Degradation of lκBα. Journal of Biological Chemistry, 1999, 274, 14823-14830. | 1.6 | 110 | | 180 | SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biology, 1999, 1, 193-199. | 4.6 | 1,405 | | # | ARTICLE | lF | CITATIONS | |-----|---|------|-----------| | 181 | Down-Regulation of p27 Is Associated with Development of Colorectal Adenocarcinoma Metastases.
American Journal of Pathology, 1998, 153, 681-687. | 1.9 | 137 | | 182 | Cell cycle regulation by the ubiquitin pathway. FASEB Journal, 1997, 11, 1067-1075. | 0.2 | 200 | | 183 | Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Medicine, 1997, 3, 231-234. | 15.2 | 967 | | 184 | Cell Cycle and Cancer: Critical Events at the G1 Restriction Point. Critical Reviews in Oncogenesis, 1996, 7, 127-142. | 0.2 | 62 | | 185 | Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science, 1995, 269, 682-685. | 6.0 | 1,780 | | 186 | -TrCP and Casein Kinase III Mediated Degradation of Cyclin F Controls Timely Mitotic Entry. SSRN Electronic Journal, 0, , . | 0.4 | 0 |