Michele Pagano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8717591/publications.pdf

Version: 2024-02-01

186 papers 31,327 citations

76 h-index 172 g-index

269 all docs

269 docs citations

times ranked

269

31830 citing authors

#	Article	IF	CITATIONS
1	Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death and Differentiation, 2018, 25, 486-541.	11.2	4,036
2	Role of the Ubiquitin-Proteasome Pathway in Regulating Abundance of the Cyclin-Dependent Kinase Inhibitor p27. Science, 1995, 269, 682-685.	12.6	1,780
3	SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nature Cell Biology, 1999, 1, 193-199.	10.3	1,405
4	Structure of the Cul1–Rbx1–Skp1–F boxSkp2 SCF ubiquitin ligase complex. Nature, 2002, 416, 703-709.	27.8	1,322
5	The SCF ubiquitin ligase: insights into a molecular machine. Nature Reviews Molecular Cell Biology, 2004, 5, 739-751.	37.0	983
6	Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Medicine, 1997, 3, 231-234.	30.7	967
7	Deregulated proteolysis by the F-box proteins SKP2 and \hat{l}^2 -TrCP: tipping the scales of cancer. Nature Reviews Cancer, 2008, 8, 438-449.	28.4	836
8	S6K1- and ÂTRCP-Mediated Degradation of PDCD4 Promotes Protein Translation and Cell Growth. Science, 2006, 314, 467-471.	12.6	637
9	Systematic analysis and nomenclature of mammalian F-box proteins. Genes and Development, 2004, 18 , $2573-2580$.	5.9	589
10	The F-box protein family. Genome Biology, 2000, 1, reviews3002.1.	9.6	569
11	Insights into SCF ubiquitin ligases from the structure of the Skp1–Skp2 complex. Nature, 2000, 408, 381-386.	27.8	550
12	Mechanisms and function of substrate recruitment by F-box proteins. Nature Reviews Molecular Cell Biology, 2013, 14, 369-381.	37.0	549
13	Control of the SCFSkp2–Cks1 ubiquitin ligase by the APC/CCdh1 ubiquitin ligase. Nature, 2004, 428, 190-193.	27.8	457
14	SCFFbxl3 Controls the Oscillation of the Circadian Clock by Directing the Degradation of Cryptochrome Proteins. Science, 2007, 316, 900-904.	12.6	445
15	The cell-cycle regulatory protein Cks1 is required for SCFSkp2-mediated ubiquitinylation of p27. Nature Cell Biology, 2001, 3, 321-324.	10.3	444
16	The After-Hours Mutant Reveals a Role for Fbxl3 in Determining Mammalian Circadian Period. Science, 2007, 316, 897-900.	12.6	434
17	Degradation of Cdc25A by \hat{I}^2 -TrCP during S phase and in response to DNA damage. Nature, 2003, 426, 87-91.	27.8	418
18	Role of the SCFSkp2 Ubiquitin Ligase in the Degradation of p21Cip1 in S Phase. Journal of Biological Chemistry, 2003, 278, 25752-25757.	3.4	414

#	Article	IF	Citations
19	Nrf2 Activation Promotes Lung Cancer Metastasis by Inhibiting the Degradation of Bach1. Cell, 2019, 178, 316-329.e18.	28.9	385
20	The Cdc14B-Cdh1-Plk1 Axis Controls the G2 DNA-Damage-Response Checkpoint. Cell, 2008, 134, 256-267.	28.9	365
21	Control of Meiotic and Mitotic Progression by the F Box Protein β-Trcp1 In Vivo. Developmental Cell, 2003, 4, 799-812.	7.0	346
22	Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Seminars in Cancer Biology, 2003, 13, 41-47.	9.6	341
23	PCNA-dependent regulation of p21 ubiquitylation and degradation via the CRL4 ^{Cdt2} ubiquitin ligase complex. Genes and Development, 2008, 22, 2496-2506.	5.9	334
24	Cyclin F-Mediated Degradation ofÂRibonucleotide Reductase M2 Controls Genome Integrity and DNA Repair. Cell, 2012, 149, 1023-1034.	28.9	313
25	Proteasome-Mediated Degradation of p21 via N-Terminal Ubiquitinylation. Cell, 2003, 115, 71-82.	28.9	277
26	Degradation of Id2 by the anaphase-promoting complex couples cell cycle exit and axonal growth. Nature, 2006, 442, 471-474.	27.8	270
27	SCFÎ ² TrCP-Mediated Degradation of Claspin Regulates Recovery from the DNA Replication Checkpoint Response. Molecular Cell, 2006, 23, 319-329.	9.7	264
28	SCF ubiquitin ligase-targeted therapies. Nature Reviews Drug Discovery, 2014, 13, 889-903.	46.4	262
29	JHDM1B/FBXL10 is a nucleolar protein that represses transcription of ribosomal RNA genes. Nature, 2007, 450, 309-313.	27.8	259
30	FBXO11 targets BCL6 for degradation and is inactivated in diffuse large B-cell lymphomas. Nature, 2012, 481, 90-93.	27.8	256
31	Structural Basis of the Cks1-Dependent Recognition of p27Kip1 by the SCFSkp2 Ubiquitin Ligase. Molecular Cell, 2005, 20, 9-19.	9.7	255
32	SCFCyclin F controls centrosome homeostasis and mitotic fidelity through CP110 degradation. Nature, 2010, 466, 138-142.	27.8	235
33	The HECT-domain ubiquitin ligase Huwe1 controls neural differentiation and proliferation by destabilizing the N-Myc oncoprotein. Nature Cell Biology, 2008, 10, 643-653.	10.3	234
34	The ubiquitin proteasome system â€" Implications for cell cycle control and the targeted treatment of cancer. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 150-162.	4.1	214
35	Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. Journal of Clinical Investigation, 2002, 110, 633-641.	8.2	208
36	Cell cycle regulation by the ubiquitin pathway. FASEB Journal, 1997, 11, 1067-1075.	0.5	200

#	Article	IF	Citations
37	Increased proteasome degradation of cyclin-dependent kinase inhibitor p27 is associated with a decreased overall survival in mantle cell lymphoma. Blood, 2000, 95, 619-626.	1.4	199
38	Novel p27 ^{kip1} C-Terminal Scatter Domain Mediates Rac-Dependent Cell Migration Independent of Cell Cycle Arrest Functions. Molecular and Cellular Biology, 2003, 23, 216-228.	2.3	198
39	Role of Polo-like kinase in the degradation of early mitotic inhibitor 1, a regulator of the anaphase promoting complex/cyclosome. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7937-7942.	7.1	192
40	SCFFBXL3 ubiquitin ligase targets cryptochromes at their cofactor pocket. Nature, 2013, 496, 64-68.	27.8	191
41	Specific Small Molecule Inhibitors of Skp2-Mediated p27 Degradation. Chemistry and Biology, 2012, 19, 1515-1524.	6.0	187
42	Role of the Cdc25A phosphatase in human breast cancer. Journal of Clinical Investigation, 2000, 106, 753-761.	8.2	186
43	PHOTACs enable optical control of protein degradation. Science Advances, 2020, 6, eaay5064.	10.3	185
44	PTEN counteracts FBXL2 to promote IP3R3- and Ca2+-mediated apoptosis limiting tumour growth. Nature, 2017, 546, 554-558.	27.8	182
45	APC/CCdc20 Controls the Ubiquitin-Mediated Degradation of p21 in Prometaphase. Molecular Cell, 2007, 27, 462-473.	9.7	181
46	Control of chromosome stability by the β-TrCP–REST–Mad2 axis. Nature, 2008, 452, 365-369.	27.8	181
47	mTOR Generates an Auto-Amplification Loop by Triggering the \hat{I}^2 TrCP- and CK1 \hat{I}^\pm -Dependent Degradation of DEPTOR. Molecular Cell, 2011, 44, 317-324.	9.7	175
48	Wnt/ \hat{l}^2 -Catenin Signaling Induces the Expression and Activity of \hat{l}^2 TrCP Ubiquitin Ligase Receptor. Molecular Cell, 2000, 5, 877-882.	9.7	172
49	Fbxw7 \hat{l}_{\pm} - and GSK3-mediated degradation of p100 is a pro-survival mechanism in multiple myeloma. Nature Cell Biology, 2012, 14, 375-385.	10.3	168
50	Dual mode of degradation of Cdc25 A phosphatase. EMBO Journal, 2002, 21, 4875-4884.	7.8	163
51	Inverse relation between levels of p27Kip1 and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas. Cancer, 2001, 91, 1745-1751.	4.1	160
52	î ² TrCP- and Rsk1/2-Mediated Degradation of BimEL Inhibits Apoptosis. Molecular Cell, 2009, 33, 109-116.	9.7	157
53	Rac1 accumulates in the nucleus during the G2 phase of the cell cycle and promotes cell division. Journal of Cell Biology, 2008, 181, 485-496.	5.2	153
54	An Rb-Skp2-p27 Pathway Mediates Acute Cell Cycle Inhibition by Rb and Is Retained in a Partial-Penetrance Rb Mutant. Molecular Cell, 2004, 16, 47-58.	9.7	152

#	Article	IF	CITATIONS
55	Control of cell growth by the SCF and APC/C ubiquitin ligases. Current Opinion in Cell Biology, 2009, 21, 816-824.	5.4	145
56	Oncogenic role of the ubiquitin ligase subunit Skp2 in human breast cancer. Journal of Clinical Investigation, 2002, 110, 633-641.	8.2	142
57	Down-Regulation of p27 Is Associated with Development of Colorectal Adenocarcinoma Metastases. American Journal of Pathology, 1998, 153, 681-687.	3.8	137
58	Role of the F-Box Protein Skp2 in Adhesion-Dependent Cell Cycle Progression. Journal of Cell Biology, 2001, 153, 1381-1390.	5.2	133
59	USP33 regulates centrosome biogenesis via deubiquitination of the centriolar protein CP110. Nature, 2013, 495, 255-259.	27.8	126
60	Role of the Ubiquitin Proteasome System in the Heart. Circulation Research, 2013, 112, 1046-1058.	4.5	126
61	KDM2A represses transcription of centromeric satellite repeats and maintains the heterochromatic state. Cell Cycle, 2008, 7, 3539-3547.	2.6	125
62	SnapShot: F Box Proteins I. Cell, 2009, 137, 1160-1160.e1.	28.9	113
63	The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Research, 2015, 25, 288-305.	12.0	113
64	Stabilizers and Destabilizers Controlling Cell Cycle Oscillators. Molecular Cell, 2006, 22, 1-4.	9.7	112
65	Regulation of the G1 to S transition by the ubiquitin pathway. FEBS Letters, 2001, 490, 179-189.	2.8	111
66	Ubiquitin-dependent Degradation of p73 Is Inhibited by PML. Journal of Experimental Medicine, 2004, 199, 1545-1557.	8.5	111
67	Identification of the Ubiquitin Carrier Proteins, E2s, Involved in Signal-induced Conjugation and Subsequent Degradation of IκBα. Journal of Biological Chemistry, 1999, 274, 14823-14830.	3.4	110
68	SnapShot: F Box Proteins II. Cell, 2009, 137, 1358.e1-1358.e2.	28.9	107
69	Control of DNA Synthesis and Mitosis by the Skp2-p27-Cdk1/2 Axis. Molecular Cell, 2004, 14, 414-416.	9.7	99
70	FBXL2- and PTPL1-mediated degradation of p110-free p85 \hat{l}^2 regulatory subunit controls the PI(3)K signallingÂcascade. Nature Cell Biology, 2013, 15, 472-480.	10.3	98
71	S-Phase Kinase-Associated Protein 2 Expression in Non-Hodgkin's Lymphoma Inversely Correlates with p27 Expression and Defines Cells in S Phase. American Journal of Pathology, 2002, 160, 1457-1466.	3.8	94
72	FBXL5 Regulates IRP2 Stability in Iron Homeostasis via an Oxygen-Responsive [2Fe2S] Cluster. Molecular Cell, 2020, 78, 31-41.e5.	9.7	87

#	Article	IF	CITATIONS
73	SCF ubiquitin ligases in the maintenance of genome stability. Trends in Biochemical Sciences, 2012, 37, 66-73.	7.5	85
74	When protein destruction runs amok, malignancy is on the loose. Cancer Cell, 2003, 4, 251-256.	16.8	84
75	A cyclin without cyclin-dependent kinases: cyclin F controls genome stability through ubiquitin-mediated proteolysis. Trends in Cell Biology, 2013, 23, 135-140.	7.9	82
76	Role of F-Box Protein \hat{I}^2 Trcp1 in Mammary Gland Development and Tumorigenesis. Molecular and Cellular Biology, 2004, 24, 8184-8194.	2.3	81
77	Three Different Binding Sites of Cks1 Are Required for p27-Ubiquitin Ligation. Journal of Biological Chemistry, 2002, 277, 42233-42240.	3.4	80
78	INTS3 controls the hSSB1-mediated DNA damage response. Journal of Cell Biology, 2009, 187, 25-32.	5 . 2	80
79	Wagging the Dogma. Cell, 2004, 118, 535-538.	28.9	79
80	APC/C- and Mad2-mediated degradation of Cdc20 during spindle checkpoint activation. Cell Cycle, 2009, 8, 167-171.	2.6	78
81	CRL4AMBRA1 is a master regulator of D-type cyclins. Nature, 2021, 592, 789-793.	27.8	78
82	AMBRA1 regulates cyclin D to guard S-phase entry and genomic integrity. Nature, 2021, 592, 799-803.	27.8	78
83	Coupled Activation and Degradation of eEF2K Regulates Protein Synthesis in Response to Genotoxic Stress. Science Signaling, 2012, 5, ra40.	3.6	76
84	SCFFbxo9 and CK2 direct the cellular response to growth factor withdrawal via Tel2/Tti1 degradation and promote survival in multiple myeloma. Nature Cell Biology, 2013, 15, 72-81.	10.3	76
85	Oncogenic aberrations of cullin-dependent ubiquitin ligases. Oncogene, 2004, 23, 2037-2049.	5.9	75
86	DRE-1/FBXO11-Dependent Degradation of BLMP-1/BLIMP-1 Governs C.Âelegans Developmental Timing and Maturation. Developmental Cell, 2014, 28, 697-710.	7.0	72
87	ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1-mutant lung cancer. Nature Cancer, 2021, 2, 503-514.	13.2	72
88	Role of Cks1 Overexpression in Oral Squamous Cell Carcinomas. American Journal of Pathology, 2004, 165, 2147-2155.	3.8	71
89	Degradation of Cep68 and PCNT cleavage mediate Cep215 removal from the PCM to allow centriole separation, disengagement and licensing. Nature Cell Biology, 2015, 17, 31-43.	10.3	69
90	Cyclin F Controls Cell-Cycle Transcriptional Outputs by Directing the Degradation of the Three Activator E2Fs. Molecular Cell, 2019, 74, 1264-1277.e7.	9.7	69

#	Article	IF	Citations
91	Regulation of the CRL4Cdt2 Ubiquitin Ligase and Cell-Cycle Exit by the SCFFbxo11 Ubiquitin Ligase. Molecular Cell, 2013, 49, 1159-1166.	9.7	67
92	TIMELESS Forms a Complex with PARP1 Distinct from Its Complex with TIPIN and Plays a Role in the DNA Damage Response. Cell Reports, 2015, 13, 451-459.	6.4	67
93	Cell cycle, proteolysis and cancer. Current Opinion in Cell Biology, 2004, 16, 623-628.	5.4	66
94	Cdk1: the dominant sibling of Cdk2. Nature Cell Biology, 2005, 7, 779-781.	10.3	66
95	Induction of \hat{l}^2 -Transducin Repeat-containing Protein by JNK Signaling and Its Role in the Activation of NF- \hat{l}^2 B. Journal of Biological Chemistry, 2001, 276, 27152-27158.	3.4	65
96	Cyclin F-Mediated Degradation of SLBP Limits H2A.X Accumulation and Apoptosis upon Genotoxic Stress in G2. Molecular Cell, 2016, 64, 507-519.	9.7	64
97	APC/CCdh1-dependent proteolysis of USP1 regulates the response to UV-mediated DNA damage. Journal of Cell Biology, 2011, 194, 177-186.	5.2	63
98	The ULK1-FBXW5-SEC23B nexus controls autophagy. ELife, 2018, 7, .	6.0	63
99	Cell Cycle and Cancer: Critical Events at the G1 Restriction Point. Critical Reviews in Oncogenesis, 1996, 7, 127-142.	0.4	62
100	DRE-1: An Evolutionarily Conserved F Box Protein that Regulates C. elegans Developmental Age. Developmental Cell, 2007, 12, 443-455.	7.0	61
101	Skp2, the FoxO1 hunter. Cancer Cell, 2005, 7, 209-210.	16.8	60
102	A peptidomimetic siRNA transfection reagent for highly effective gene silencing. Molecular BioSystems, 2006, 2, 312.	2.9	58
103	The F-Box Domain-Dependent Activity of EMI1 Regulates PARPi Sensitivity in Triple-Negative Breast Cancers. Molecular Cell, 2019, 73, 224-237.e6.	9.7	58
104	Involvement of the SCF Complex in the Control of Cdh1 Degradation in S-phase. Cell Cycle, 2005, 4, 1230-1232.	2.6	56
105	Thrombin Induces Tumor Cell Cycle Activation and Spontaneous Growth by Down-regulation of p27Kip1, in Association with the Up-regulation of Skp2 and MiR-222. Cancer Research, 2009, 69, 3374-3381.	0.9	56
106	GGTase3 is a newly identified geranylgeranyltransferase targeting a ubiquitin ligase. Nature Structural and Molecular Biology, 2019, 26, 628-636.	8.2	56
107	Aberrant ubiquitin-mediatedproteolysis of cell cycle regulatory proteins and oncogenesis. Advances in Cancer Research, 2003, 88, 101-144.	5.0	55
108	Cdh1: a master G0/G1 regulator. Nature Cell Biology, 2008, 10, 755-757.	10.3	55

#	Article	IF	Citations
109	Altered expression of p27 and Skp2 proteins in prostate cancer of African-American patients. Clinical Cancer Research, 2003, 9, 2613-9.	7.0	54
110	In Vivo Interference with Skp1 Function Leads to Genetic Instability and Neoplastic Transformation. Molecular and Cellular Biology, 2002, 22, 8375-8387.	2.3	53
111	Alterations in the expression of the cell cycle regulatory protein cyclin kinase subunit 1 in colorectal carcinoma. Cancer, 2004, 100, $1615-1621$.	4.1	51
112	FBH1 promotes DNA double-strand breakage and apoptosis in response to DNA replication stress. Journal of Cell Biology, 2013, 200, 141-149.	5.2	50
113	Wnt Signaling in Mitosis. Developmental Cell, 2009, 17, 749-750.	7.0	48
114	Stimulation of Prostate Cancer Cellular Proliferation and Invasion by the Androgen Receptor Co-Activator ARA70Î ² . American Journal of Pathology, 2008, 172, 225-235.	3.8	47
115	Clinical relevance of SKP2 alterations in metastatic melanoma. Pigment Cell and Melanoma Research, 2011, 24, 197-206.	3.3	46
116	Stability of Wake-Sleep Cycles Requires Robust Degradation of the PERIOD Protein. Current Biology, 2017, 27, 3454-3467.e8.	3.9	44
117	Constitutive Phosphorylation of Aurora-A on Ser51 Induces Its Stabilization and Consequent Overexpression in Cancer. PLoS ONE, 2007, 2, e944.	2.5	44
118	Plk1 Protein Phosphorylates Phosphatase and Tensin Homolog (PTEN) and Regulates Its Mitotic Activity during the Cell Cycle. Journal of Biological Chemistry, 2014, 289, 14066-14074.	3.4	43
119	Critical role for IL- $1\hat{l}^2$ in DNA damage-induced mucositis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E702-11.	7.1	42
120	Experimental Tests to Definitively Determine Ubiquitylation of a Substrate. Methods in Enzymology, 2005, 399, 249-266.	1.0	41
121	The TDH–GCN5L1–Fbxo15–KBP axis limits mitochondrial biogenesis in mouse embryonic stemÂcells. Nature Cell Biology, 2017, 19, 341-351.	10.3	41
122	Two Distinct E2F Transcriptional Modules Drive Cell Cycles and Differentiation. Cell Reports, 2019, 27, 3547-3560.e5.	6.4	41
123	EMSY inhibits homologous recombination repair and the interferon response, promoting lung cancer immune evasion. Cell, 2022, 185, 169-183.e19.	28.9	38
124	Spermatogenesis rescue in a mouse deficient for the ubiquitin ligase SCF (sup) \hat{l}^2 -TrCP (sup) by single substrate depletion. Genes and Development, 2010, 24, 470-477.	5.9	37
125	Î ² -TrCP- and Casein Kinase Il-Mediated Degradation of Cyclin F Controls Timely Mitotic Progression. Cell Reports, 2018, 24, 3404-3412.	6.4	37
126	PARP1-dependent recruitment of the FBXL10-RNF68-RNF2 ubiquitin ligase to sites of DNA damage controls H2A.Z loading. ELife, 2018, 7, .	6.0	37

#	Article	IF	Citations
127	Ubiquitin ligases in cancer: Functions and clinical potentials. Cell Chemical Biology, 2021, 28, 918-933.	5.2	36
128	Wrenches in the works: drug discovery targeting the SCF ubiquitin ligase and APC/C complexes. BMC Biochemistry, 2007, 8, S9.	4.4	35
129	Aurora-A controls pre-replicative complex assembly and DNA replication by stabilizing geminin in mitosis. Nature Communications, 2013, 4, 1885.	12.8	34
130	Skp2 Contains a Novel Cyclin A Binding Domain That Directly Protects Cyclin A from Inhibition by p27Kip1. Journal of Biological Chemistry, 2006, 281, 24058-24069.	3.4	32
131	The NSP14/NSP10 RNA repair complex as a Pan-coronavirus therapeutic target. Cell Death and Differentiation, 2022, 29, 285-292.	11.2	32
132	Phosphorylation of Ser72 is dispensable for Skp2 assembly into an active SCF ubiquitin ligase and its subcellular localization. Cell Cycle, 2010, 9, 971-974.	2.6	31
133	Tumor Suppressor Function of Androgen Receptor Coactivator ARA70α in Prostate Cancer. American Journal of Pathology, 2010, 176, 1891-1900.	3.8	30
134	The de-ubiquitinating enzyme Unp interacts with the retinoblastoma protein. Oncogene, 2001, 20, 5538-5542.	5.9	29
135	To Be or Not to BeUbiquitinated?. Cell Cycle, 2004, 3, 136-138.	2.6	28
136	Multisite Phosphorylation of Nuclear Interaction Partner of ALK (NIPA) at G2/M Involves Cyclin B1/Cdk1. Journal of Biological Chemistry, 2007, 282, 15965-15972.	3.4	28
137	Epigenetic silencing of the ubiquitin ligase subunit FBXL7 impairs c-SRC degradation and promotes epithelial-to-mesenchymal transition and metastasis. Nature Cell Biology, 2020, 22, 1130-1142.	10.3	28
138	Don't Skip the G1 Phase: How APC/CCdh1Keeps SCFSKP2in Check. Cell Cycle, 2004, 3, 848-850.	2.6	27
139	APC/C ^{Cdh1} controls the proteasome-mediated degradation of E2F3 during cell cycle exit. Cell Cycle, 2012, 11, 1999-2005.	2.6	27
140	BubR1 Is Modified by Sumoylation during Mitotic Progression. Journal of Biological Chemistry, 2012, 287, 4875-4882.	3.4	27
141	FEM1 proteins are ancient regulators of SLBP degradation. Cell Cycle, 2017, 16, 556-564.	2.6	27
142	GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK. Developmental Cell, 2017, 42, 130-142.e7.	7.0	27
143	ORF10–Cullin-2–ZYG11B complex is not required for SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	26
144	The G protein–coupled receptor GPR31 promotes membrane association of KRAS. Journal of Cell Biology, 2017, 216, 2329-2338.	5.2	24

#	Article	IF	Citations
145	Cryptochromes-Mediated Inhibition of the CRL4Cop1-Complex Assembly Defines an Evolutionary Conserved Signaling Mechanism. Current Biology, 2019, 29, 1954-1962.e4.	3.9	24
146	FBH1 protects melanocytes from transformation and is deregulated in melanomas. Cell Cycle, 2013, 12, 1128-1132.	2.6	20
147	SPOP Mutations or ERG Rearrangements Result in Enhanced Levels of ERG to Promote Cell Invasion in Prostate Cancer. Molecular Cell, 2015, 59, 883-884.	9.7	20
148	NS5A Promotes Constitutive Degradation of IP3R3 to Counteract Apoptosis Induced by Hepatitis C Virus. Cell Reports, 2018, 25, 833-840.e3.	6.4	20
149	Cell Division, a new open access online forum for and from the cell cycle community. , 2006, $1, 1$.		19
150	Substrate Recognition and Ubiquitination of SCFSkp2/Cks1 Ubiquitin-Protein Isopeptide Ligase. Journal of Biological Chemistry, 2007, 282, 15462-15470.	3.4	19
151	MCL1 meets its end during mitotic arrest. EMBO Reports, 2011, 12, 384-385.	4.5	19
152	Cdh1, a Substrate-recruiting Component of Anaphase-promoting Complex/Cyclosome (APC/C) Ubiquitin E3 Ligase, Specifically Interacts with Phosphatase and Tensin Homolog (PTEN) and Promotes Its Removal from Chromatin. Journal of Biological Chemistry, 2014, 289, 17951-17959.	3.4	19
153	The impact of Skp2 overexpression on recurrence-free survival following radical prostatectomy. Urologic Oncology: Seminars and Original Investigations, 2011, 29, 302-308.	1.6	18
154	The Acidic Tail domain of Human Cdc34 is Required for p27Kip1 Ubiquitination and Complementation of a cdc34 Temperature Sensitive Yeast Strain. Cell Cycle, 2005, 4, 1421-1427.	2.6	17
155	American Idol and NIH Grant Review. Cell, 2006, 126, 637-638.	28.9	17
156	Linking metabolism and cell cycle progression via the APC/C $<$ sup $>$ Cdh1 $<$ /sup $>$ and SCF $<$ sup $>$ I 2 TrCP $<$ /sup $>$ ubiquitin ligases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 20857-20858.	7.1	16
157	Don't skip the G1 phase: how APC/CCdh1 keeps SCFSKP2 in check. Cell Cycle, 2004, 3, 850-2.	2.6	16
158	Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Reports, 2021, 37, 109870.	6.4	15
159	SCF-Mediated Degradation of p100 (NF-κB2): Mechanisms and Relevance in Multiple MyelomaA Presentation from the Sixth International Conference on SUMO, Ubiquitin and UBL proteins: Implications for Human Diseases, MD Anderson Cancer Center, Houston, Texas, 8 to 11 February 2012 Science Signaling, 2012. 5. pt14.	3.6	14
160	Genome-wide alterations of uracil distribution patterns in human DNA upon chemotherapeutic treatments. ELife, 2020, 9 , .	6.0	13
161	To be or not to be ubiquitinated?. Cell Cycle, 2004, 3, 138-40.	2.6	13
162	Varshavsky's Contributions. Science, 2004, 306, 1290-1292.	12.6	11

#	Article	IF	CITATIONS
163	APE/Ref-1 makes fine-tuning of CD40-induced B cell proliferation. Molecular Immunology, 2008, 45, 3731-3739.	2.2	11
164	FBXW5 controls centrosome number. Nature Cell Biology, 2011, 13, 888-890.	10.3	10
165	Discriminative SKP2 Interactions with CDK-Cyclin Complexes Support a Cyclin A-Specific Role in p27KIP1 Degradation. Journal of Molecular Biology, 2021, 433, 166795.	4.2	10
166	Cdc25 phosphatases. Cell Cycle, 2010, 9, 4613-4614.	2.6	9
167	Mixed ubiquitin chains regulate DNA repair. Genes and Development, 2019, 33, 1615-1616.	5.9	7
168	Don't run biomedical science as a business. Nature, 2017, 547, 381-381.	27.8	7
169	Modification of Cul1 regulates its association with proteasomal subunits. Cell Division, 2006, 1, 5.	2.4	5
170	Epigenetic suppression of FBXL7 promotes metastasis. Molecular and Cellular Oncology, 2020, 7, 1833698.	0.7	4
171	APC/CCdh1 is required for the termination of chromosomal passenger complex activity upon mitotic exit. Journal of Cell Science, 2020, 133, .	2.0	4
172	Interaction between NSMCE4A and GPS1 links the SMC5/6 complex to the COP9 signalosome. BMC Molecular and Cell Biology, 2020, 21, 36.	2.0	4
173	The Long-Lost Ligase: CRL4 ^{AMBRA1} Regulates the Stability of D-Type Cyclins. DNA and Cell Biology, 2021, 40, 1457-1461.	1.9	4
174	Inverse relation between levels of p27Kip1 and of its ubiquitin ligase subunit Skp2 in colorectal carcinomas., 2001, 91, 1745.		3
175	Low expression of p27 and low proliferation index do not correlate in hairy cell leukaemia. British Journal of Haematology, 2000, 111, 263-271.	2.5	2
176	Linking ubiquitin to actin dynamics during cell fusion. Developmental Cell, 2021, 56, 569-570.	7.0	2
177	Beware the baited hook of publicity. Nature, 2001, 414, 843-843.	27.8	1
178	The pRb–Cdh1–p27 autoamplifying network. Nature Cell Biology, 2007, 9, 137-138.	10.3	1
179	Loss of the deubiquitinase OTULIN promotes hepatocellular carcinoma (HCC) in an mTOR-dependent manner. Cell Death and Differentiation, 2020, 27, 1455-1456.	11.2	1
180	A Novel FBXO45-Gef-H1 Axis Controls Oncogenic Signaling in B-Cell Lymphoma. Blood, 2021, 138, 711-711.	1.4	1

#	Article	IF	CITATIONS
181	Response: More Money and Less Time!. Cell, 2006, 127, 664-665.	28.9	O
182	Spindle assembly checkpoint inactivation: A new role for phosphatases. Cell Cycle, 2010, 9, 642-651.	2.6	0
183	FBXO11 (F-box protein 11). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2017, , .	0.1	O
184	Two different ubiquitin ligases control the abundance of Claspin at different phases of the cell cycle. FASEB Journal, 2007, 21, A154.	0.5	0
185	SCFFbxo45 controls cytokinesis through ubiquitinâ€mediated proteolysis of GEFâ€H1. FASEB Journal, 2012, 26, lb110.	0.5	O
186	-TrCP and Casein Kinase III Mediated Degradation of Cyclin F Controls Timely Mitotic Entry. SSRN Electronic Journal, 0, , .	0.4	0