
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8717301/publications.pdf Version: 2024-02-01

SOSHII KIDIHADA

#	Article	IF	CITATIONS
1	Fabrication of electromagnetic crystals with a complete diamond structure by stereolithography. Solid State Communications, 2002, 121, 435-439.	1.9	97
2	Localization of Electromagnetic Waves in Three-Dimensional Fractal Cavities. Physical Review Letters, 2004, 92, 093902.	7.8	97
3	Enhanced thermal conductivity of polymer composites filled with three-dimensional brushlike AlN nanowhiskers. Applied Physics Letters, 2009, 95, .	3.3	92
4	Control of microwave emission from electromagnetic crystals by lattice modifications. Solid State Communications, 2002, 124, 135-139.	1.9	57
5	Fabrication and Measurement of Micro Threeâ€Dimensional Photonic Crystals of SiO ₂ Ceramic for Terahertz Wave Applications. Journal of the American Ceramic Society, 2007, 90, 2078-2081.	3.8	54
6	Fabrication of Three-Dimensional Micro Photonic Crystals of Resin-Incorporating TiO2Particles and their Terahertz Wave Properties. Journal of the American Ceramic Society, 2007, 90, 92-96.	3.8	48
7	Fabrication of TiO2-SiO2 Photonic Crystals with Diamond Structure. Journal of the American Ceramic Society, 2005, 88, 1461-1464.	3.8	44
8	Freeform fabrication of superalloy objects by 3D micro welding. Materials & Design, 2009, 30, 1093-1097.	5.1	42
9	Terahertz Wave Control Using Ceramic Photonic Crystals with a Diamond Structure Including Plane Defects Fabricated by Microstereolithography. International Journal of Applied Ceramic Technology, 2009, 6, 41-44.	2.1	38
10	Fabrication of Ceramic-Polymer Photonic Crystals by Stereolithography and Their Microwave Properties. Journal of the American Ceramic Society, 2002, 85, 1369-1371.	3.8	34
11	Terahertz wave properties of alumina microphotonic crystals with a diamond structure. Journal of Materials Research, 2008, 23, 1036-1041.	2.6	30
12	Additive manufacturing of ceramic components using laser scanning stereolithography. Welding in the World, Le Soudage Dans Le Monde, 2016, 60, 697-702.	2.5	30
13	Three-dimensional microphotonic crystals of ZrO2 toughened Al2O3 for terahertz wave applications. Applied Physics Letters, 2007, 91, 153507.	3.3	28
14	Terahertz wave localization at a three-dimensional ceramic fractal cavity in photonic crystals. Journal of Applied Physics, 2008, 103, 103106.	2.5	27
15	Combustion synthesis of single-phase β-sialons (z=2–4). Journal of the European Ceramic Society, 2010, 30, 1925-1930.	5.7	26
16	Smart Processing Development of Photonic Crystals and Fractals. International Journal of Applied Ceramic Technology, 2004, 1, 40-48.	2.1	24
17	Fabrication of Ceramic Photonic Crystals with Diamond Structure for Microwave Applications. Journal of the American Ceramic Society, 2004, 87, 598-601.	3.8	23
18	Band Gap Modification of Diamond Photonic Crystals by Changing the Volume Fraction of the Dielectric Lattice. Journal of the American Ceramic Society, 2003, 86, 1691-1694.	3.8	22

#	Article	IF	CITATIONS
19	Threeâ€Ðimensional Stereolithography of Alumina Photonic Crystals for Terahertz Wave Localization. International Journal of Applied Ceramic Technology, 2015, 12, 32-37.	2.1	22
20	Freeform fabrication of Ti–Al alloys by 3D micro-welding. Intermetallics, 2008, 16, 1245-1249.	3.9	21
21	Electromagnetic wave control of ceramic/resin photonic crystals with diamond structure. Science and Technology of Advanced Materials, 2004, 5, 225-230.	6.1	19
22	Microwave Absorption in Photonic Crystals Composed of SiC/Resin with a Diamond Structure. Journal of the American Ceramic Society, 2006, 89, 2492-2495.	3.8	18
23	Strong localization of microwave in photonic fractals with Menger-sponge structure. Journal of the European Ceramic Society, 2006, 26, 1861-1864.	5.7	18
24	Fabrication and Characterization of Threeâ€Dimensional ZrO ₂ â€Toughened Al ₂ O ₃ Ceramic Microdevices. International Journal of Applied Ceramic Technology, 2008, 5, 353-359.	2.1	17
25	Three-Dimensional Material Tectonics for Electromagnetic Wave Control by Using Micoro-Stereolithography. Ferroelectrics, 2009, 387, 102-111.	0.6	17
26	Fabrication of three-dimensional ceramic photonic crystals and their electromagnetic properties. Journal of the European Ceramic Society, 2006, 26, 2195-2198.	5.7	15
27	Ultraviolet Laser Lithography of Titania Photonic Crystals for Terahertz-Wave Modulation. Materials, 2018, 11, 835.	2.9	15
28	Static tuning band gaps of three-dimensional photonic crystals in subterahertz frequencies. Applied Physics Letters, 2008, 92, 183504.	3.3	14
29	Stereolithography of ceramic components: fabrication of photonic crystals with diamond structures for terahertz wave modulation. Journal of the Ceramic Society of Japan, 2015, 123, 816-822.	1.1	14
30	Combustion synthesis of rod-like AlN nanoparticles. Journal of the Ceramic Society of Japan, 2008, 116, 975-979.	1.1	13
31	Accurate Fabrication of Hydroxyapatite Bone Models with Porous Scaffold Structures by Using Stereolithography. IOP Conference Series: Materials Science and Engineering, 2011, 18, 072017.	0.6	12
32	Analysis of Electromagnetic Response of 3-D Dielectric Fractals of Menger Sponge Type. IEEE Transactions on Microwave Theory and Techniques, 2007, 55, 1305-1313.	4.6	10
33	Fabrication and Microwave Properties of Three-Dimensional Photonic Crystals With a Diamond Structure Composed of Ceramic Spheres in Resin. Journal of the American Ceramic Society, 2007, 90, 1112-1115.	3.8	9
34	Electromagnetic Wave Diffractions in Ceramic/Polymer Photonic Crystals with Three-Dimensional Diamond Structure. Journal of the Ceramic Society of Japan, 2003, 111, 471-478.	1.3	8
35	Fabrication of Photonic Crystal with a Diamond Structure Having an Air Cavity Defect and its Microwave Properties. Journal of the American Ceramic Society, 2005, 88, 2480-2484.	3.8	8
36	Localization of Electromagnetic Wave in 3D Periodic and Fractal Structures. Chemistry Letters, 2006, 35, 342-347.	1.3	8

#	Article	lF	CITATIONS
37	Development of Freeform Fabrication of Metals by Three Diminsional Micro-Welding. Solid State Phenomena, 2007, 127, 189-194.	0.3	8
38	Smart processing in materials tectonics: Fabrication of photonic crystals for terahertz wave control by using micro-stereolithography. Tsinghua Science and Technology, 2009, 14, 160-163.	6.1	8
39	Microwave Emission from Metal Photonic Crystals Fabricated by using Stereolithography. Ferroelectrics, 2009, 388, 23-30.	0.6	8
40	Freeform Fabrication of Magnetophotonic Crystals with Diamond Lattices of Oxide and Metallic Glasses for Terahertz Wave Control by Micro Patterning Stereolithography and Low Temperature Sintering. Micromachines, 2013, 4, 149-156.	2.9	7
41	Microfabrication of Threeâ€Dimensional Photonic Crystals of SiO ₂ –Al ₂ O ₃ Ceramics and Their Terahertz Wave Properties. International Journal of Applied Ceramic Technology, 2008, 5, 228-233.	2.1	6
42	Localization Behavior of Microwaves in Three-Dimensional Menger Sponge Fractals Fabricated from Metallodielectric Cu/Polyester Media. Science of Advanced Materials, 2009, 1, 175-181.	0.7	6
43	Padding, Welding and Freeform Fabrication of Nickel Aluminide Intermetallic Compound by Reactive Rapid Prototyping Process. Materials Transactions, 2002, 43, 1146-1152.	1.2	5
44	Electromagnetic properties of photonic crystals with diamond structure containing defects. Journal of Materials Research, 2003, 18, 2214-2220.	2.6	5
45	Fabrication of Metallodielectric Photonic Crystals with a Diamond Structure and their Microwave Properties. Journal of the American Ceramic Society, 2008, 91, 1194-1198.	3.8	5
46	Combustion Synthesis and Sintering of β-Sialon Ceramics (z = 2). Zairyo/Journal of the Society of Materials Science, Japan, 2008, 57, 1248-1252.	0.2	5
47	Fabrication of Metal Photonic Crystals with Graded Lattice Spacing by Using Micro-Stereolithography. Materials Science Forum, 0, 631-632, 287-292.	0.3	5
48	Structural Joining of Ceramics Nanoparticles: Development of Photonic Crystals for Terahertz Wave Control by Using Micro Stereolithography. KONA Powder and Particle Journal, 2009, 27, 107-118.	1.7	5
49	Process Development of Thermal Nanoparticles Spraying. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2011, 80, 588-591.	0.1	5
50	Effective Injection of Ceramics Nanoparticle Pastes into Plasma Spray for Speedy Layer Formation. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 148s-151s.	0.5	5
51	Systematic Compounding of Ceramic Pastes in Stereolithographic Additive Manufacturing. Materials, 2021, 14, 7090.	2.9	5
52	Design and fabrication of micro close end tubular SOFC with internal conduction layer. Journal of the Ceramic Society of Japan, 2016, 124, 360-364.	1.1	4
53	Stereolithographic additive manufacturing of ceramic components with functionally modulated structures. Open Ceramics, 2021, 5, 100068.	2.0	4
54	Stereolithographic Additive Manufacturing of Zirconia Electrodes with Dendritic Patterns for Aluminum Smelting. Applied Sciences (Switzerland), 2021, 11, 8168.	2.5	4

#	Article	IF	CITATIONS
55	å応拡散ã,'å^©ç""ã⊷ãŸè»½é‡'属ã«å⁻¾ã™ã,‹ç¡¬è³ªãf•ãf©ã,¯ã,¿ãf«ãf'ã,¿ãf¼ãf‹ãf³ã,°. Journal of Smart F	Proœssing,	20412, 1, 18
56	A New Functional Material; Photonic Fractal. Materials Science Forum, 2005, 492-493, 77-84.	0.3	3
57	Stereolithographic Fabrication and Microwave Properties of 1D Tunable Photonic Crystals Composed of YIG and Alumina Plates in Resin. Journal of the American Ceramic Society, 2008, 91, 2195-2200.	3.8	3
58	Fabrications of Terahertz Wave Resonators in Micro Liquid Cells Introduced into Alumina Photonic Crystals with Diamond Structures. ISRN Materials Science, 2011, 2011, 1-8.	1.0	3
59	Creation of Titania Artificial Interfaces with Geometric Patterns by Using Microstereolithography and Aqueous Solution Techniques. International Journal of Applied Ceramic Technology, 2013, 10, 468-473.	2.1	3
60	Geometric Modeling of Ceramics Dendrites to Modulate Energy and Material Flows by Using Stereolithography. Materials Science Forum, 0, 783-786, 2439-2444.	0.3	3
61	Materials Tectonics Technology and Stereolithographic Additive Manufacturing. Journal of Smart Processing, 2018, 7, 223-228.	0.1	3
62	Fabrication of Ceramic/Epoxy Photonic Crystals by Stereolithgraphy. Ceramic Engineering and Science Proceedings, 0, , 13-17.	0.1	3
63	Visualization of Nanoparticles Behavior Introduced into Gas Flame Spraying. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2015, 33, 49s-52s.	0.5	3
64	Laser Scanning Stereolithography. Springer Series in Materials Science, 2020, , 305-312.	0.6	3
65	Freeform Fabrication of Alumina Dental-Crown Models by Using Stereolithography. Ceramic Engineering and Science Proceedings, 0, , 131-138.	0.1	2
66	Fabrication of Photonic Crystals by Stereolithography Technique. , 2013, , 195-211.		2
67	Three Dimensional Smart Processing by Ultra Violet Laser Lithography of Ceramic Additive Manufacturing. Materials Science Forum, 2018, 941, 2196-2199.	0.3	2
68	Fabrication of Oxide Ceramics Dendrites for Porous Electrodes by Using Stereolithography. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2012, 2012, 000152-000157.	0.2	2
69	Stereolithographic Additive Manufacturing of Fluctuated Patterns for Streamline Modulations in Water Flows. Journal of Smart Processing, 2018, 7, 233-237.	0.1	2
70	Structural Dimension Control in Smart Additive Manufacturing. Journal of Smart Processing, 2019, 8, 124-131.	0.1	2
71	Stereolithographic Additive Manufacturing of Silicon Carbide Components. Journal of Smart Processing, 2020, 9, 185-189.	0.1	2
72	Fabrication of Photonic Crystals to Control Terahertz Waves by Micro Patterning Stereolithography and Dielectric Nanoparticle Assemblys. Journal of Smart Processing, 2012, 1, 161-166.	0.1	2

#	Article	IF	CITATIONS
73	Smart Processing of Functional Structures by Using Stereolithographic 3D Printing. Journal of Smart Processing, 2014, 3, 182-190.	0.1	2
74	Stereolithographic 3D Printing by Using Functional Ceramics Particles. Journal of the Society of Powder Technology, Japan, 2014, 51, 519-526.	0.1	2
75	Micro Stereolithography by Using Fine Particles Dispersed Pastes. Journal of the Japan Society for Technology of Plasticity, 2015, 56, 107-111.	0.3	2
76	Strong Localization of Electromagnetic Wave in Ceramic/Epoxy Photonic Fractals with Menger-Sponge Structure. Materials Science Forum, 2006, 512, 227-232.	0.3	1
77	Simulation and Experimental Study of Electromagnetic Wave Localization in 3D Dielectric Fractal Structures. , 2006, , .		1
78	Terahertz Wave Properties of Ceramic Photonic Crystals with Graded Structure Fabricated by Using Micro-Stereolithography. Materials Science Forum, 2009, 631-632, 299-304.	0.3	1
79	Millimeter Wave Control Using TiO ₂ Photonic Crystal with Diamond Structure Fabricated by Micro-Stereolithography. Materials Science Forum, 0, 631-632, 293-298.	0.3	1
80	Smart Processing of Micro Photonic Crystals for Terahertz Wave Control - Freeform Fabrication by Stereolithographic Technique Materials Science Forum, 0, 706-709, 1925-1930.	0.3	1
81	Fabrication of Metallodielectric Photonic Crystals to Exhibit Perfect Millimeter Wave Band Gaps. International Journal of Applied Ceramic Technology, 2012, 9, 893-901.	2.1	1
82	Terahertz Transmission Properties of a Disorderly Piled Hexagonal ZnO Multi-Layer: FDTD Simulations and Stereolithography Fabrication. Journal of Computational and Theoretical Nanoscience, 2015, 12, 1017-1022.	0.4	1
83	Stereolithographic Additive Manufacturing of Functionally Modulated Components. Journal of Smart Processing, 2017, 6, 22-27.	0.1	1
84	Three-Dimensional Printing Process. , 2019, , 267-284.		1
85	Stereolithographic Additive Manufacturing of Solid Electrolyte Sheets with Micro Emboss Patterns and Microstructural Densifications through Pressing and Heating Treatments. Journal of Smart Processing, 2021, 10, 279-283.	0.1	1
86	ã,₿ſfāf^āfªā,¢å®‰å®šåŒ—ã,ãf«ã,³ãf<ã,¢è£½ä≌å·¥æ⁼å†ã® å‰é€å½¢ã,¢ãf‡ã,£ãf†ã,£ãf—ãf»ãfžãf<ãf¥ã	f•ã, çã j_ãfã	áf£ ã fªãf³ã,°.J
87	ãf‡ãf³ãf‰ãf©ã,₿f^æ¼åœ§‹é€ã,'有ãı™ã,‹å›ºä½"電解質ã®å‰é€å½¢ãï ã,¢ãf«ãfŸãf‹ã,¦ãf製錷	[¬] ã _ӄ ã҄Ѳ҇ӓ҅ _Ⴧ œҫ	""æ œ e"Ž. Jour
88	Stereolithographic additive manufacturing of acoustic devices with spatially modulated cavities. International Journal of Applied Ceramic Technology, 2022, 19, 949-956.	2.1	1
89	III : Development on Electromagnetic-Wave Functional Materials of Ceramics by a New Process. Zairyo/Journal of the Society of Materials Science, Japan, 2006, 55, 1051-1055.	0.2	1
90	Fabrication of Bio-ceramic Implants by Stereolithographic Additive Manufacturing. Materia Japan, 2018, 57, 155-158.	0.1	1

6

#	Article	IF	CITATIONS
91	Design and Fabrication of Sound Absorption Structures for Thermal Spraying by Using Stereolithographic Additive Manufacturing. Journal of Smart Processing, 2018, 7, 238-242.	0.1	1
92	Stereolithographic Additive Manufacturing of Artificial Tree Models Using Sawdust Woodchips Dispersed Resin Paste. Journal of Smart Processing, 2020, 9, 190-193.	0.1	1
93	SMART PROCESSING DEVELOPMENT OF NOVEL MATERIALS FOR ELECTROMAGNETIC WAVE CONTROL. , 2005, , 3-9.		0
94	Selective Transmission of Electromagnetic Wave by Using Diamond Photonic Crystals with Graded Lattice Spacing. Advances in Science and Technology, 2006, 45, 1139.	0.2	0
95	Diamond-Structure Photonic Crystals Composed of Ceramic Spheres in Resin and Their Microwave Properties. Japanese Journal of Applied Physics, 2007, 46, 7117-7121.	1.5	0
96	Development of WC-Co/SUS304 Functionally Graded Materials by Using Three Dimensional Micro Welding. Materials Science Forum, 0, 631-632, 265-270.	0.3	0
97	Smart Processing for Ceramics Structure Tectonics: Fabrication of Dielectric Micro Patterns for Artificial Photosynthesis in Terahertz Wave Regions by Using Stereolithography. Advances in Science and Technology, 0, , .	0.2	0
98	Development of photonic crystal resonators for terahertz wave sensing by using nanoparticle stereolithography. , 2012, , 648-650.		0
99	Process Visualization of Thermal Nanoparticle Spraying Using Micro Composite Fragments. Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society, 2017, 35, 1s-4s.	0.5	0
100	Development of Photonic Crystal Resonators for Terahertz Wave Sensing by Using Nanoparticle Stereolithography. , 2018, , 635-636.		0
101	Fabrication of Polymer Photonic Crystals by Stereolithography. Kobunshi, 2003, 52, 769-769.	0.0	0
102	Freeform Fabrication of Photonic Crystals for Tera-hertz Wave Control. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2004, 12, 131-135.	0.0	0
103	Fabrication of Photonic Fractals for Millimeter Wave Control by Using Ceramic Nanoparticles. Hosokawa Powder Technology Foundation ANNUAL REPORT, 2008, 16, 15-20.	0.0	0
104	Diamond Photonic Crystals with Alumina Micro Lattices. KONA Powder and Particle Journal, 2009, 27, 2-2.	1.7	0
105	Zinc Oxide Modeling to Create Semiconductor Dendrites by Using Micro Stereolithography. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2011, 2011, 000193-000198.	0.2	0
106	Creation of Artificial Bone Implants from Photo Polymerized Slurry with Bio-ceramics Fine Particles. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2012, 81, 513-517.	0.1	0
107	Creation of Titania Artificial Interfaces with Geometric Patterns by Using Micro Stereolithography and Aqueous Solution Techniques. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2012, 2012, 000117-000122.	0.2	0
108	MS&T' 12. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2013, 82, 205-207.	0.1	0

#	Article	IF	CITATIONS
109	Fabrication of Diamond Photonic Crystals with Oxide and Metallic Glasses Lattices for Terahertz Wave Control by Micro Pattering Stereolithography. Additional Conferences (Device Packaging HiTEC) Tj ETQq1 1	@2 84314	∙ogBT /Over
110	CICMT 2014. Yosetsu Gakkai Shi/Journal of the Japan Welding Society, 2014, 83, 503-504.	0.1	0
111	Stereolithographic Additive Manufacturing of Diamond Photonic Crystal Composed of Titania and Alumina Micro Lattices. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2015, 2015, 000314-000321.	0.2	0
112	Stereolithographic Additive Manufacturing of Solid Electrolyte Ceramic Sheets with Micro Emboss Pattern for All Solid Battery Application. Additional Conferences (Device Packaging HiTEC HiTEN &) Tj ETQq0 0 0 rg	gðī2/Overl	aak 10 Tf 50
113	Stereolithographic Additive Manufacturing of Bulky Ceramic Components with Functionally Geometric Micropattern. Additional Conferences (Device Packaging HiTEC HiTEN & CICMT), 2016, 2016, 000001-000005.	0.2	0
114	Microstructural Control of Thermal Nanoparticle Spraying Using Micro Composite Fragments. Journal of Smart Processing, 2017, 6, 46-49.	0.1	0
115	Fabrication of Alumina Microlattice Structures by Using Ultraviolet Laser Lithography. Journal of Smart Processing, 2019, 8, 147-150.	0.1	0
116	Coordination Number Modulations of Spatial Lattice Structures by Stereolithographic Additive Manufacturing. Journal of Smart Processing, 2020, 9, 174-179.	0.1	0
117	Stereolithographic Additive Manufacturing of Fluid Channels Bundles with Graded Aperture Sizes in Thermoacoustic Converters. Journal of Smart Processing, 2020, 9, 194-198.	0.1	0
118	Active Contributions of Additive Manufacturing for Sustainable Development Goals. Journal of Smart Processing, 2021, 10, 152-158.	0.1	0