
Takumi Takata

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8716686/publications.pdf Version: 2024-02-01

Τλκιιμι Τλκλτλ

#	Article	IF	CITATIONS
1	Identification of D-amino Acid Residues in Proteins Using Mass Spectrometry. Bunseki Kagaku, 2022, 71, 319-324.	0.2	0
2	lsomerization of Asp is essential for assembly of amyloid-like fibrils of αA-crystallin-derived peptide. PLoS ONE, 2021, 16, e0250277.	2.5	2
3	Elucidation of the mechanism of subunit exchange in αB crystallin oligomers. Scientific Reports, 2021, 11, 2555.	3.3	11
4	Effect of a Lens Protein in Low-Temperature Culture of Novel Immortalized Human Lens Epithelial Cells (iHLEC-NY2). Cells, 2020, 9, 2670.	4.1	9
5	Siteâ€specific rapid deamidation and isomerization in human lens αAâ€crystallin in vitro. Protein Science, 2020, 29, 941-951.	7.6	4
6	Asp isomerization increases aggregation of α-crystallin and decreases its chaperone activity in human lens of various ages. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2020, 1868, 140446.	2.3	10
7	Simultaneous and Rapid Detection of Multiple Epimers and Isomers of Aspartyl Residues in Lens Proteins Using an LC-MS-MRM Method. ACS Omega, 2020, 5, 27626-27632.	3.5	5
8	Negative charge at aspartate 151 is important for human lens αA-crystallin stability and chaperone function. Experimental Eye Research, 2019, 182, 10-18.	2.6	9
9	Identification of Isomeric Aspartate residues in βB2-crystallin from Aged Human Lens. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 767-774.	2.3	15
10	Asp 58 modulates lens αAâ€crystallin oligomer formation and chaperone function. FEBS Journal, 2018, 285, 2263-2277.	4.7	7
11	D-Amino acids in protein: The mirror of life as a molecular index of aging. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2018, 1866, 840-847.	2.3	56
12	Isomeric Replacement of a Single Aspartic Acid Induces a Marked Change in Protein Function: The Example of Ribonuclease A. ACS Omega, 2017, 2, 260-267.	3.5	32
13	Ferulic Acid Suppresses Amyloid <i>β</i> Production in the Human Lens Epithelial Cell Stimulated with Hydrogen Peroxide. BioMed Research International, 2017, 2017, 1-9.	1.9	14
14	The Importance of the Idea of "Parachirality―in Life Science. , 2017, , 119-131.		0
15	Identification of á´amino acid-containing peptides in human serum. PLoS ONE, 2017, 12, e0189972.	2.5	21
16	Aggregation of Trp > Clu point mutants of human gammaâ€D crystallin provides a model for heredita or UVâ€induced cataract. Protein Science, 2016, 25, 1115-1128.	ary 7.6	44
17	d-Amino Acid Residues in Proteins Related to Aging and Age-Related Diseases and a New Analysis of the Isomers in Proteins. , 2016, , 241-254.		3
18	New insight into the dynamical system of αB-crystallin oligomers. Scientific Reports, 2016, 6, 29208.	3.3	32

Такимі Таката

#	Article	lF	CITATIONS
19	Isomerization of Asp residues plays an important role in αA rystallin dissociation. FEBS Journal, 2016, 283, 850-859.	4.7	21
20	lsomerization of aspartyl residues in crystallins and its influence upon cataract. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 183-191.	2.4	47
21	Rapid Survey of Four Asp Isomers in Disease-Related Proteins by LC-MS combined with Commercial Enzymes. Analytical Chemistry, 2015, 87, 561-568.	6.5	37
22	Quantitative analysis of isomeric (l-α-, l-β-, d-α-, d-β-) aspartyl residues in proteins from elderly donors. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 25-33.	2.8	20
23	Effect of Asp 96 isomerization on the properties of a lens αB-crystallin-derived short peptide. Journal of Pharmaceutical and Biomedical Analysis, 2015, 116, 139-144.	2.8	4
24	Alpha B- and βA3-crystallins containing d-Aspartic acids exist in a monomeric state. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1-9.	2.3	26
25	The C-terminal cysteine annulus participates in auto-chaperone function forSalmonellaphage P22 tailspike folding and assembly. Bacteriophage, 2012, 2, 36-49.	1.9	3
26	Solvent accessibility of βB2-crystallin and local structural changes due to deamidation at the dimer interface. Experimental Eye Research, 2010, 91, 336-346.	2.6	16
27	Deamidation alters interactions of beta-crystallins in hetero-oligomers. Molecular Vision, 2009, 15, 241-9.	1.1	25
28	Deamidation destabilizes and triggers aggregation of a lens protein, βA3â€crystallin. Protein Science, 2008, 17, 1565-1575.	7.6	115
29	Deamidation Alters the Structure and Decreases the Stability of Human Lens βΑ3-Crystallin. Biochemistry, 2007, 46, 8861-8871.	2.5	59
30	Localization of D-β-Aspartic Acid–Containing Proteins in Human Eyes. , 2007, 48, 3923.		52
31	Differential analysis of d-β-Asp-containing proteins found in normal and infrared irradiated rabbit lens. Biochemical and Biophysical Research Communications, 2006, 344, 263-271.	2.1	6
32	Characterization of new d-β-aspartate-containing proteins in a lens-derived cell line. Biochemical and Biophysical Research Communications, 2005, 334, 1022-1031.	2.1	6
33	Immunological detection of D-beta-aspartate-containing protein in lens-derived cell lines. Molecular Vision, 2003, 9, 200-4.	1.1	3
34	The presence of d-β-aspartic acid-containing peptides in elastic fibers of sun-damaged skin: a potent marker for ultraviolet-induced skin aging. Biochemical and Biophysical Research Communications, 2002, 294, 1047-1051.	2.1	96