Naoki Ogiwara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8716331/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase Control of Solid-Solution Nanoparticles beyond the Phase Diagram for Enhanced Catalytic Properties. ACS Materials Au, 2022, 2, 110-116.	6.0	4
2	Oxygen Evolution Reaction Driven by Charge Transfer from a Cr Complex to Co-Containing Polyoxometalate in a Porous Ionic Crystal. Journal of the American Chemical Society, 2022, 144, 2980-2986.	13.7	32
3	Proton conduction in ionic crystals based on polyoxometalates. Coordination Chemistry Reviews, 2022, 462, 214524.	18.8	48
4	Basicity of isostructural porous ionic crystals composed of Nb/Ta-substituted Keggin-type polyoxotungstates. Dalton Transactions, 2022, 51, 8186-8191.	3.3	4
5	Polyoxocationic antimony oxide cluster with acidic protons. Science Advances, 2022, 8, .	10.3	5
6	Integrating molecular design and crystal engineering approaches in non-humidified intermediate-temperature proton conductors based on a Dawson-type polyoxometalate and poly(ethylene glycol) derivatives. Nanoscale, 2021, 13, 8049-8057.	5.6	21
7	Formation of Mixedâ€Valence Luminescent Silver Clusters via Cationâ€Coupled Electronâ€Transfer in a Redoxâ€Active Ionic Crystal Based on a Dawsonâ€type Polyoxometalate with Closed Pores. European Journal of Inorganic Chemistry, 2021, 2021, 1531-1535.	2.0	5
8	Ultrahigh Proton Conduction via Extended Hydrogen-Bonding Network in a Preyssler-Type Polyoxometalate-Based Framework Functionalized with a Lanthanide Ion. ACS Applied Materials & Interfaces, 2021, 13, 19138-19147.	8.0	25
9	Fabrication of Integrated Copperâ€Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Sprayâ€Drying Method: Highly Enhanced CO 2 Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie, 2021, 133, 22457-22462.	2.0	4
10	Fabrication of Integrated Copperâ€Based Nanoparticles/Amorphous Metal–Organic Framework by a Facile Sprayâ€Drying Method: Highly Enhanced CO ₂ Hydrogenation Activity for Methanol Synthesis. Angewandte Chemie - International Edition, 2021, 60, 22283-22288.	13.8	29
11	Recording the Pt-beyond hydrogen production electrocatalysis by dirhodium phosphide with an overpotential of only 4.3â€mV in alkaline electrolyte. Applied Catalysis B: Environmental, 2021, 297, 120457.	20.2	15
12	Isomeric effects on the acidity of Al ₁₃ Keggin clusters in porous ionic crystals. Chemical Communications, 2021, 57, 8893-8896.	4.1	8
13	Incorporating highly basic polyoxometalate anions comprising Nb or Ta into nanoscale reaction fields of porous ionic crystals. Nanoscale, 2021, 13, 18451-18457.	5.6	17
14	Ligand-Functionalization-Controlled Activity of Metal–Organic Framework-Encapsulated Pt Nanocatalyst toward Activation of Water. Nano Letters, 2020, 20, 426-432.	9.1	30
15	Crystalline to amorphous transformation in solid-solution alloy nanoparticles induced by boron doping. Chemical Communications, 2020, 56, 12941-12944.	4.1	8
16	Isostructural mesoporous ionic crystals as a tunable platform for acid catalysis. Dalton Transactions, 2020, 49, 10328-10333.	3.3	7
17	Probing dynamics of carbon dioxide in a metal–organic framework under high pressure by high-resolution solid-state NMR. Physical Chemistry Chemical Physics, 2020, 22, 14465-14470. 	2.8	10
18	The First Study on the Reactivity of Water Vapor in Metal–Organic Frameworks with Platinum Nanocrystals. Angewandte Chemie - International Edition, 2019, 58, 11731-11736.	13.8	17

NAOKI OGIWARA

#	Article	IF	CITATIONS
19	The First Study on the Reactivity of Water Vapor in Metal–Organic Frameworks with Platinum Nanocrystals. Angewandte Chemie, 2019, 131, 11857-11862.	2.0	4
20	Missing-linker metal-organic frameworks for oxygen evolution reaction. Nature Communications, 2019, 10, 5048.	12.8	422
21	Solid-solution alloy nanoparticles of a combination of immiscible Au and Ru with a large gap of reduction potential and their enhanced oxygen evolution reaction performance. Chemical Science, 2019, 10, 5133-5137.	7.4	48
22	The effect of amorphization on the molecular motion of the 2-methylimidazolate linkers in ZIF-8. Chemical Communications, 2019, 55, 5906-5909.	4.1	14
23	Conductive metal–organic framework nanowire arrays for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 10431-10438.	10.3	115
24	Charge transfer dependence on CO ₂ hydrogenation activity to methanol in Cu nanoparticles covered with metal–organic framework systems. Chemical Science, 2019, 10, 3289-3294.	7.4	77
25	Coating of 2D Flexible Metal–Organic Frameworks on Metal Nanocrystals. Chemistry Letters, 2019, 48, 173-176.	1.3	3
26	Sequence-regulated copolymerization based on periodic covalent positioning of monomers along one-dimensional nanochannels. Nature Communications, 2018, 9, 329.	12.8	60
27	Lanthanide-Based Porous Coordination Polymers: Syntheses, Slow Relaxation of Magnetization, and Magnetocaloric Effect. Inorganic Chemistry, 2018, 57, 6584-6598.	4.0	38
28	Water-Gas Shift Reaction Activity of Pt Nanoparticles Hybridized with Metal-Organic Frameworks. ECS Meeting Abstracts, 2018, , .	0.0	0
29	Mechanical Alloying of Metal–Organic Frameworks. Angewandte Chemie, 2017, 129, 2453-2457.	2.0	21
30	Mechanical Alloying of Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2017, 56, 2413-2417.	13.8	53
31	Imidazolium cation transportation in a 1-D coordination polymer. Dalton Transactions, 2017, 46, 10798-10801.	3.3	4
32	Glass Formation of a Coordination Polymer Crystal for Enhanced Proton Conductivity and Material Flexibility. Angewandte Chemie - International Edition, 2016, 55, 5195-5200.	13.8	113
33	Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong BrAֻnsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration. Chemistry of Materials, 2016, 28, 2659-2667.	6.7	160
34	Fast Conduction of Organic Cations in Metal Sulfate Frameworks. Chemistry of Materials, 2016, 28, 3968-3975.	6.7	19
35	Crystal engineering of a family of hybrid ultramicroporous materials based upon interpenetration and dichromate linkers. Chemical Science, 2016, 7, 5470-5476.	7.4	66
36	Encapsulating Mobile Proton Carriers into Structural Defects in Coordination Polymer Crystals: High Anhydrous Proton Conduction and Fuel Cell Application. Journal of the American Chemical Society, 2016, 138, 8505-8511.	13.7	146

NAOKI OGIWARA

#	Article	IF	CITATIONS
37	Glass Formation of a Coordination Polymer Crystal for Enhanced Proton Conductivity and Material Flexibility. Angewandte Chemie, 2016, 128, 5281-5286.	2.0	22
38	A pH-responsive phase transformation of a sulfonated metal–organic framework from amorphous to crystalline for efficient CO ₂ capture. CrystEngComm, 2016, 18, 2803-2807.	2.6	34
39	Formation of Foamâ€like Microstructural Carbon Material by Carbonization of Porous Coordination Polymers through a Ligandâ€Assisted Foaming Process. Chemistry - A European Journal, 2015, 21, 13278-13283.	3.3	14
40	Control of Molecular Rotor Rotational Frequencies in Porous Coordination Polymers Using a Solid-Solution Approach. Journal of the American Chemical Society, 2015, 137, 12183-12186.	13.7	78
41	Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity. APL Materials, 2014, 2, .	5.1	19
42	Syntheses, Polymorphic Transformations, and Functions of Ionic Crystals Based on Mononuclear Bismuth(III) Complexes and Polyoxometalates. ChemNanoMat, 0, , .	2.8	0