
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8715971/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monoenergetic beams of relativistic electrons from intense laser–plasma interactions. Nature, 2004, 431, 535-538.	27.8	1,731
2	Bright spatially coherent synchrotron X-rays from a table-top source. Nature Physics, 2010, 6, 980-983.	16.7	392
3	lonization Induced Trapping in a Laser Wakefield Accelerator. Physical Review Letters, 2010, 104, 025004.	7.8	340
4	Generation of neutral and high-density electron–positron pair plasmas in the laboratory. Nature Communications, 2015, 6, 6747.	12.8	252
5	Ultrahigh Brilliance Multi-MeV <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mi>γ</mml:mi></mml:math> -Ray Beams from Nonlinear Relativistic Thomson Scattering. Physical Review Letters, 2014, 113, 224801.	7.8	239
6	Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam. Physical Review X, 2018, 8, .	8.9	234
7	Experimental Signatures of the Quantum Nature of Radiation Reaction in the Field of an Ultraintense Laser. Physical Review X, 2018, 8, .	8.9	210
8	Applications of laser wakefield accelerator-based light sources. Plasma Physics and Controlled Fusion, 2016, 58, 103001.	2.1	209
9	Collimated Multi-MeV Ion Beams from High-Intensity Laser Interactions with Underdense Plasma. Physical Review Letters, 2006, 96, 245002.	7.8	155
10	Schwinger Limit Attainability with Extreme Power Lasers. Physical Review Letters, 2010, 105, 220407.	7.8	154
11	Table-Top Laser-Based Source of Femtosecond, Collimated, Ultrarelativistic Positron Beams. Physical Review Letters, 2013, 110, 255002.	7.8	149
12	Laser-Wakefield Acceleration of Monoenergetic Electron Beams in the First Plasma-Wave Period. Physical Review Letters, 2006, 96, 215001.	7.8	148
13	Electron Acceleration in Cavitated Channels Formed by a Petawatt Laser in Low-Density Plasma. Physical Review Letters, 2005, 94, .	7.8	147
14	Generation of GeV protons from 1 PW laser interaction with near critical density targets. Physics of Plasmas, 2010, 17, .	1.9	126
15	X-ray phase contrast imaging of biological specimens with femtosecond pulses of betatron radiation from a compact laser plasma wakefield accelerator. Applied Physics Letters, 2011, 99, .	3.3	118
16	Characterization of High-Intensity Laser Propagation in the Relativistic Transparent Regime through Measurements of Energetic Proton Beams. Physical Review Letters, 2009, 102, 125002.	7.8	97
17	2020 roadmap on plasma accelerators. New Journal of Physics, 2021, 23, 031101.	2.9	89
18	Evidence of photon acceleration by laser wake fields. Physics of Plasmas, 2006, 13, 033108.	1.9	88

#	Article	IF	CITATIONS
19	Effect of Laser-Focusing Conditions on Propagation and Monoenergetic Electron Production in Laser-Wakefield Accelerators. Physical Review Letters, 2007, 98, 095004.	7.8	88
20	Strong Radiation-Damping Effects in a Gamma-Ray Source Generated by the Interaction of a High-Intensity Laser with a Wakefield-Accelerated Electron Beam. Physical Review X, 2012, 2, .	8.9	88
21	Relativistic plasma physics in supercritical fields. Physics of Plasmas, 2020, 27, .	1.9	81
22	Automation and control of laser wakefield accelerators using Bayesian optimization. Nature Communications, 2020, 11, 6355.	12.8	78
23	Spin polarization of electrons by ultraintense lasers. Physical Review A, 2017, 96, .	2.5	77
24	Finite Spot Effects on Radiation Pressure Acceleration from Intense High-Contrast Laser Interactions with Thin Targets. Physical Review Letters, 2012, 108, 175005.	7.8	76
25	Scaling High-Order Harmonic Generation from Laser-Solid Interactions to Ultrahigh Intensity. Physical Review Letters, 2013, 110, 175002.	7.8	73
26	Laser wakefield accelerator based light sources: potential applications and requirements. Plasma Physics and Controlled Fusion, 2014, 56, 084015.	2.1	69
27	On the stability of laser wakefield electron accelerators in the monoenergetic regime. Physics of Plasmas, 2007, 14, 056702.	1.9	66
28	Proton deflectometry of a magnetic reconnection geometry. Physics of Plasmas, 2010, 17, .	1.9	65
29	Theory of radiative electron polarization in strong laser fields. Physical Review A, 2018, 98, .	2.5	65
30	Characterization of transverse beam emittance of electrons from a laser-plasma wakefield accelerator in the bubble regime using betatron x-ray radiation. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	63
31	Ultrafast Electron Radiography of Magnetic Fields in High-Intensity Laser-Solid Interactions. Physical Review Letters, 2013, 110, 015003.	7.8	61
32	A review of Vlasov–Fokker–Planck numerical modeling of inertial confinement fusion plasma. Journal of Computational Physics, 2012, 231, 1051-1079.	3.8	60
33	High repetition-rate wakefield electron source generated by few-millijoule, 30 fs laser pulses on a density downramp. New Journal of Physics, 2013, 15, 053016.	2.9	60
34	Horizon 2020 EuPRAXIA design study. Journal of Physics: Conference Series, 2017, 874, 012029.	0.4	60
35	High-Power, Kilojoule Class Laser Channeling in Millimeter-Scale Underdense Plasma. Physical Review Letters, 2011, 106, 105002.	7.8	58
36	Measurement of Magnetic-Field Structures in a Laser-Wakefield Accelerator. Physical Review Letters, 2010, 105, 115002.	7.8	57

#	Article	IF	CITATIONS
37	High-power, kilojoule laser interactions with near-critical density plasma. Physics of Plasmas, 2011, 18,	1.9	57
38	Electron diffraction using ultrafast electron bunches from a laser-wakefield accelerator at kHz repetition rate. Applied Physics Letters, 2013, 102, .	3.3	57
39	Coherent control of plasma dynamics. Nature Communications, 2015, 6, 7156.	12.8	57
40	Self-injection threshold in self-guided laser wakefield accelerators. Physical Review Special Topics: Accelerators and Beams, 2012, 15, .	1.8	56
41	Scalings for radiation from plasma bubbles. Physics of Plasmas, 2010, 17, .	1.9	55
42	Signatures of quantum effects on radiation reaction in laser–electron-beam collisions. Journal of Plasma Physics, 2017, 83, .	2.1	55
43	Effect of laser contrast ratio on electron beam stability in laser wakefield acceleration experiments. Plasma Physics and Controlled Fusion, 2006, 48, B83-B90.	2.1	50
44	Fast Advection of Magnetic Fields by Hot Electrons. Physical Review Letters, 2010, 105, 095001.	7.8	48
45	Comparison of bulk and pitcher-catcher targets for laser-driven neutron production. Physics of Plasmas, 2011, 18, .	1.9	48
46	Ultrafast polarization of an electron beam in an intense bichromatic laser field. Physical Review A, 2019, 100, .	2.5	48
47	Measurements of Wave-Breaking Radiation from a Laser-Wakefield Accelerator. Physical Review Letters, 2007, 98, 054802.	7.8	47
48	Surface waves and electron acceleration from high-power, kilojoule-class laser interactions with underdense plasma. New Journal of Physics, 2013, 15, 025023.	2.9	46
49	Laser-wakefield accelerators for high-resolution X-ray imaging of complex microstructures. Scientific Reports, 2019, 9, 3249.	3.3	46
50	Energetic neutron beams generated from femtosecond laser plasma interactions. Applied Physics Letters, 2013, 102, .	3.3	44
51	Experimental Observation of a Current-Driven Instability in a Neutral Electron-Positron Beam. Physical Review Letters, 2017, 119, 185002.	7.8	44
52	Electron spin polarization in realistic trajectories around the magnetic node of two counter-propagating, circularly polarized, ultra-intense lasers. Plasma Physics and Controlled Fusion, 2018, 60, 064003.	2.1	44
53	Magnetic Cavitation and the Reemergence of Nonlocal Transport in Laser Plasmas. Physical Review Letters, 2008, 100, 075003.	7.8	43
54	Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators. Physical Review Letters, 2010, 104, 134801.	7.8	42

#	Article	IF	CITATIONS
55	The effect of nonlinear quantum electrodynamics on relativistic transparency and laser absorption in ultra-relativistic plasmas. New Journal of Physics, 2015, 17, 043051.	2.9	41
56	Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays from a Laser Wakefield Accelerator. Scientific Reports, 2018, 8, 11010.	3.3	40
57	Improvements to laser wakefield accelerated electron beam stability, divergence, and energy spread using three-dimensional printed two-stage gas cell targets. Applied Physics Letters, 2014, 104, .	3.3	38
58	Current Filamentation Instability in Laser Wakefield Accelerators. Physical Review Letters, 2011, 106, 105001.	7.8	37
59	Generation of heavy ion beams using femtosecond laser pulses in the target normal sheath acceleration and radiation pressure acceleration regimes. Physics of Plasmas, 2016, 23, .	1.9	35
60	Control of Energy Spread and Dark Current in Proton and Ion Beams Generated in High-Contrast Laser Solid Interactions. Physical Review Letters, 2011, 107, 065003.	7.8	33
61	Laser-driven generation of collimated ultra-relativistic positron beams. Plasma Physics and Controlled Fusion, 2013, 55, 124017.	2.1	33
62	Algorithm for calculating spectral intensity due to charged particles in arbitrary motion. Physical Review Special Topics: Accelerators and Beams, 2010, 13, .	1.8	32
63	Relativistic-electron-driven magnetic reconnection in the laboratory. Physical Review E, 2018, 98, .	2.1	32
64	Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams. Physics of Plasmas, 2014, 21, .	1.9	31
65	Single-Shot Multi-keV X-Ray Absorption Spectroscopy Using an Ultrashort Laser-Wakefield Accelerator Source. Physical Review Letters, 2019, 123, 254801.	7.8	30
66	Betatron x-ray generation from electrons accelerated in a plasma cavity in the presence of laser fields. Physics of Plasmas, 2009, 16, .	1.9	28
67	Magnetic Reconnection in Plasma under Inertial Confinement Fusion Conditions Driven by Heat Flux Effects in Ohm's Law. Physical Review Letters, 2014, 112, 105004.	7.8	28
68	Laser wakefield acceleration with active feedback at 5ÂHz. Physical Review Accelerators and Beams, 2019, 22, .	1.6	28
69	Capturing Structural Dynamics in Crystalline Silicon Using Chirped Electrons from a Laser Wakefield Accelerator. Scientific Reports, 2016, 6, 36224.	3.3	27
70	Polarized QED cascades. New Journal of Physics, 2021, 23, 053025.	2.9	27
71	Monoenergetic Electronic Beam Production Using Dual Collinear Laser Pulses. Physical Review Letters, 2008, 100, 255002.	7.8	25
72	Stimulated Raman Side Scattering in Laser Wakefield Acceleration. Physical Review Letters, 2010, 105, 034801.	7.8	24

#	Article	IF	CITATIONS
73	Magnetic Signatures of Radiation-Driven Double Ablation Fronts. Physical Review Letters, 2020, 125, 145001.	7.8	23
74	Rapid self-magnetization of laser speckles in plasmas by nonlinear anisotropic instability. New Journal of Physics, 2009, 11, 033001.	2.9	22
75	Observation of a Long-Wavelength Hosing Modulation of a High-Intensity Laser Pulse in Underdense Plasma. Physical Review Letters, 2010, 105, 095003.	7.8	22
76	High contrast ion acceleration at intensities exceeding 1021 Wcmâ^'2. Physics of Plasmas, 2013, 20, .	1.9	21
77	Kinetic modeling of Nernst effect in magnetized hohlraums. Physical Review E, 2016, 93, 043206.	2.1	21
78	A spectrometer for ultrashort gamma-ray pulses with photon energies greater than 10 MeV. Review of Scientific Instruments, 2018, 89, 113303.	1.3	21
79	Self-Guided Wakefield Experiments Driven by Petawatt-Class Ultrashort Laser Pulses. IEEE Transactions on Plasma Science, 2008, 36, 1715-1721.	1.3	20
80	MeV proton beams generated by 3 mJ ultrafast laser pulses at 0.5 kHz. Applied Physics Letters, 2009, 95, .	3.3	20
81	Holographic visualization of laser wakefields. New Journal of Physics, 2010, 12, 045016.	2.9	20
82	WillingaleetÂal.Reply:. Physical Review Letters, 2007, 98, .	7.8	19
83	Generation of Ultrahigh-Velocity Ionizing Shocks with Petawatt-Class Laser Pulses. Physical Review Letters, 2009, 103, 255001.	7.8	19
84	Control of the configuration of multiple femtosecond filaments in air by adaptive wavefront manipulation. Optics Express, 2016, 24, 6071.	3.4	19
85	High-Flux Femtosecond X-Ray Emission from Controlled Generation of Annular Electron Beams in a Laser Wakefield Accelerator. Physical Review Letters, 2016, 117, 094801.	7.8	19
86	Temporal feedback control of high-intensity laser pulses to optimize ultrafast heating of atomic clusters. Applied Physics Letters, 2018, 112, .	3.3	19
87	Laser plasma acceleration of electrons: Towards the production of monoenergetic beams. Physics of Plasmas, 2005, 12, 056711.	1.9	18
88	Plasma cavitation in ultraintense laser interactions with underdense helium plasmas. New Journal of Physics, 2010, 12, 045014.	2.9	18
89	Laser-ion acceleration through controlled surface contamination. Physics of Plasmas, 2011, 18, 040702.	1.9	18
90	Ionization-Induced Self-Compression of Tightly Focused Femtosecond Laser Pulses. Physical Review Letters, 2014, 113, 263904.	7.8	18

#	Article	IF	CITATIONS
91	Enhancement of high-order harmonic generation in intense laser interactions with solid density plasma by multiple reflections and harmonic amplification. Applied Physics Letters, 2015, 106, .	3.3	18
92	Field reconstruction from proton radiography of intense laser driven magnetic reconnection. Physics of Plasmas, 2019, 26, .	1.9	18
93	High resolution bremsstrahlung and fast electron characterization in ultrafast intense laser–solid interactions. New Journal of Physics, 2013, 15, 123038.	2.9	17
94	Transport in the presence of inverse bremsstrahlung heating and magnetic fields. Physics of Plasmas, 2008, 15, .	1.9	16
95	Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes. Plasma Physics and Controlled Fusion, 2017, 59, 075003.	2.1	16
96	Longitudinal Ion Acceleration From High-Intensity Laser Interactions With Underdense Plasma. IEEE Transactions on Plasma Science, 2008, 36, 1825-1832.	1.3	15
97	Spectral and spatial characterisation of laser-driven positron beams. Plasma Physics and Controlled Fusion, 2017, 59, 014015.	2.1	15
98	Photon acceleration and modulational instability during wakefield excitation using long laser pulses. Plasma Physics and Controlled Fusion, 2009, 51, 024008.	2.1	14
99	High repetition-rate neutron generation by several-mJ, 35 fs pulses interacting with free-flowing D2O. Applied Physics Letters, 2016, 109, .	3.3	14
100	Characterizing extreme laser intensities by ponderomotive acceleration of protons from rarified gas. New Journal of Physics, 2020, 22, 023003.	2.9	14
101	Observations of pressure anisotropy effects within semi-collisional magnetized plasma bubbles. Nature Communications, 2021, 12, 334.	12.8	14
102	Measuring magnetic flux suppression in high-power laser–plasma interactions. Physics of Plasmas, 2022, 29, .	1.9	14
103	Analytical time-dependent theory of thermally induced modal instabilities in high power fiber amplifiers. , 2013, , .		13
104	Characterization of a high repetition-rate laser-driven short-pulsed neutron source. Plasma Physics and Controlled Fusion, 2018, 60, 054011.	2.1	13
105	Ultrashort pulse filamentation and monoenergetic electron beam production in LWFAs. Plasma Physics and Controlled Fusion, 2009, 51, 024010.	2.1	12
106	High-order harmonic generation from solid targets with 2 mJ pulses. Optics Letters, 2010, 35, 3186.	3.3	12
107	Enhancement of THz generation by feedback-optimized wavefront manipulation. Optics Express, 2017, 25, 17271.	3.4	12
108	Angular streaking of betatron X-rays in a transverse density gradient laser-wakefield accelerator. Physics of Plasmas, 2018, 25, .	1.9	12

#	Article	IF	CITATIONS
109	Angular emission and polarization dependence of harmonics from laser–solid interactions. New Journal of Physics, 2013, 15, 025035.	2.9	11
110	Plasmas, 2015, 22, 056704.	1.9	11
111	Diagnosis of warm dense conditions in foil targets heated by intense femtosecond laser pulses using Kα imaging spectroscopy. Optics Express, 2018, 26, 6294.	3.4	11
112	Polarization-Dependent Self-Injection by Above Threshold Ionization Heating in a Laser Wakefield Accelerator. Physical Review Letters, 2020, 124, 114801.	7.8	11
113	A laser–plasma platform for photon–photon physics: the two photon Breit–Wheeler process. New Journal of Physics, 2021, 23, 115006.	2.9	11
114	The generation of mono-energetic electron beams from ultrashort pulse laser–plasma interactions. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 663-677.	3.4	10
115	Stereolithography based method of creating custom gas density profile targets for high intensity laser-plasma experiments. Review of Scientific Instruments, 2012, 83, 073503.	1.3	10
116	A plasma wiggler beamline for 100ÂTW to 10ÂPW lasers. High Energy Density Physics, 2012, 8, 133-140.	1.5	10
117	Hybrid Vlasov–Fokker–Planck–Maxwell simulations of fast electron transport and the time dependance of <i>K</i> -shell excitation in a mid- <i>Z</i> metallic target. New Journal of Physics, 2013, 15, 015017.	2.9	10
118	Adaptive control of laser-wakefield accelerators driven by mid-IR laser pulses. Optics Express, 2019, 27, 10912.	3.4	10
119	Experimental laser wakefield acceleration scalings exceeding 100 TW. Physics of Plasmas, 2012, 19, 063113.	1.9	9
120	Acceleration of high charge-state target ions in high-intensity laser interactions with sub-micron targets. New Journal of Physics, 2016, 18, 113032.	2.9	9
121	High-intensity laser-driven proton acceleration enhancement from hydrogen containing ultrathin targets. Applied Physics Letters, 2013, 103, 141117.	3.3	8
122	Proton acceleration from high-contrast short pulse lasers interacting with sub-micron thin foils. Journal of Applied Physics, 2016, 119, .	2.5	8
123	A Frenet–Serret interpretation of particle dynamics in high-intensity laser fields. Plasma Physics and Controlled Fusion, 2019, 61, 074005.	2.1	8
124	Measurements of electron beam ring structures from laser wakefield accelerators. Plasma Physics and Controlled Fusion, 2019, 61, 065012.	2.1	7
125	Characterization of hard X-ray sources produced via the interaction of relativistic femtosecond laser pulses with metallic targets. Applied Physics B: Lasers and Optics, 2019, 125, 1.	2.2	7
126	A computational investigation of the impact of aberrated Gaussian laser pulses on electron beam properties in laser-wakefield acceleration experiments. Physics of Plasmas, 2011, 18, 053110.	1.9	6

#	Article	IF	CITATIONS
127	Compressor optimization with compressor-based multiphoton intrapulse interference phase scan (MIIPS). Optics Letters, 2012, 37, 1385.	3.3	6
128	Measurements of magnetic field generation at ionization fronts from laser wakefield acceleration experiments. New Journal of Physics, 2013, 15, 025034.	2.9	6
129	Antimatter creation in an X-ray bath. Nature Photonics, 2014, 8, 429-431.	31.4	6
130	Vlasov simulations of thermal plasma waves with relativistic phase velocity in a Lorentz boosted frame. Physical Review E, 2016, 94, 053204.	2.1	6
131	Enhanced laser absorption from radiation pressure in intense laser plasma interactions. New Journal of Physics, 2017, 19, 063014.	2.9	6
132	Predominant contribution of direct laser acceleration to high-energy electron spectra in a low-density self-modulated laser wakefield accelerator. Physical Review Accelerators and Beams, 2021, 24, .	1.6	6
133	Beyond optimization—supervised learning applications in relativistic laser-plasma experiments. Physics of Plasmas, 2021, 28, .	1.9	6
134	On the design of experiments to study extreme field limits. , 2013, , .		5
135	Making pions with laser light. New Journal of Physics, 2018, 20, 073008.	2.9	5
136	Proton beam emittance growth in multipicosecond laser-solid interactions. New Journal of Physics, 2019, 21, 103021.	2.9	5
137	The effects of laser polarization and wavelength on injection dynamics of a laser wakefield accelerator. Physics of Plasmas, 2021, 28, .	1.9	5
138	Enhancement of plasma wakefield generation and self-compression of femtosecond laser pulses by ionization gradients. Plasma Physics and Controlled Fusion, 2014, 56, 084010.	2.1	4
139	Time dependent Doppler shifts in high-order harmonic generation in intense laser interactions with solid density plasma and frequency chirped pulses. Physics of Plasmas, 2015, 22, .	1.9	4
140	Ionization injection effects in x-ray spectra generated by betatron oscillations in a laser wakefield accelerator. Plasma Physics and Controlled Fusion, 2016, 58, 055012.	2.1	4
141	Focus optimization at relativistic intensity with high numerical aperture and adaptive optics. Optics Communications, 2018, 421, 79-82.	2.1	4
142	General features of experiments on the dynamics of laser-driven electron–positron beams. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2018, 909, 95-101.	1.6	4
143	X-ray phase contrast imaging of additive manufactured structures using a laser wakefield accelerator. Plasma Physics and Controlled Fusion, 2019, 61, 054009.	2.1	4
144	High flux femtosecond x-ray emission from the electron-hose instability in laser wakefield accelerators. Physical Review Accelerators and Beams, 2018, 21, .	1.6	4

#	Article	IF	CITATIONS
145	Synchrotron x-ray radiation from laser wakefield accelerated electron beams in a plasma channel. Journal of Physics: Conference Series, 2010, 244, 042026.	0.4	3
146	Narrow Energy Spread Protons and Ions from High-Intensity, High-Contrast Laser Solid Target Interactions. , 2010, , .		3
147	Proton probe measurement of fast advection of magnetic fields by hot electrons. Plasma Physics and Controlled Fusion, 2011, 53, 124026.	2.1	3
148	Investigation of relativistic intensity laser generated hot electron dynamics via copper K _α imaging and proton acceleration. Physics of Plasmas, 2013, 20, 123112.	1.9	3
149	Characterization of laser-driven proton beams from near-critical density targets using copper activation. Journal of Plasma Physics, 2015, 81, .	2.1	3
150	Brilliant X-rays using a Two-Stage Plasma Insertion Device. Scientific Reports, 2017, 7, 3985.	3.3	3
151	Momentum transport and nonlocality in heat-flux-driven magnetic reconnection in high-energy-density plasmas. Physical Review E, 2017, 96, 043203.	2.1	3
152	On the properties of synchrotron-like X-ray emission from laser wakefield accelerated electron beams. Physics of Plasmas, 2018, 25, 043104.	1.9	3
153	Demonstration of femtosecond broadband X-rays from laser wakefield acceleration as a source for pump-probe X-ray absorption studies. High Energy Density Physics, 2020, 35, 100729.	1.5	3
154	Characterization of flowing liquid films as a regenerating plasma mirror for high repetition-rate laser contrast enhancement. Laser and Particle Beams, 2020, 38, 128-134.	1.0	3
155	Characterisation of a laser plasma betatron source for high resolution x-ray imaging. Plasma Physics and Controlled Fusion, 2021, 63, 084010.	2.1	3
156	ZEUS: A National Science Foundation mid-scale facility for laser-driven science in the QED regime. , 2020, , .		3
157	Characterization of Quasi-Monoenergetic Electron Beams at the Lund Laser Centre. IEEE Transactions on Plasma Science, 2008, 36, 1707-1714.	1.3	2
158	Formation of Optical Bullets in Laser-Driven Plasma Bubble Accelerators. , 2010, , .		2
159	A table-top laser-based source of short, collimated, ultra-relativistic positron beams. Proceedings of SPIE, 2013, , .	0.8	2
160	Characterization of electrons and x-rays produced using chirped laser pulses in a laser wakefield accelerator. Plasma Physics and Controlled Fusion, 2016, 58, 105003.	2.1	2
161	Multi-electron beam generation using co-propagating, parallel laser beams. New Journal of Physics, 2018, 20, 093021.	2.9	2
162	Towards isolated attosecond electron bunches using ultrashort-pulse laser-solid interactions. Scientific Reports, 2020, 10, 18354.	3.3	2

#	Article	IF	CITATIONS
163	Multiple species laser-driven ion-shock acceleration. Plasma Physics and Controlled Fusion, 2021, 63, 095012.	2.1	2
164	Modeling chromatic emittance growth in staged plasma wakefield acceleration to 1ÂTeV using nonlinear transfer matrices. Physical Review Accelerators and Beams, 2021, 24, .	1.6	2
165	Parametric study of high-energy ring-shaped electron beams from a laser wakefield accelerator. New Journal of Physics, 2022, 24, 013017.	2.9	2
166	Observation of Monoenergetic Relativistic Electron Beams from Intense Laser - Plasma Interactions. , 0, , .		1
167	Synchrotron Radiation from a Laser Plasma Accelerator in the Bubble Regime. , 2010, , .		1
168	Visualization of plasma bubble accelerators using Frequency-Domain Shadowgraphy. High Energy Density Physics, 2010, 6, 153-156.	1.5	1
169	Summary Report of Working Group 1: Laser-Plasma Acceleration. , 2010, , .		1
170	Proton Probe Imaging of Fields Within a Laser-Generated Plasma Channel. IEEE Transactions on Plasma Science, 2011, 39, 2616-2617.	1.3	1
171	Response to "Comment on â€~Scalings for radiation from plasma bubbles' ―[Phys. Plasmas 18, 0347 (2011)]. Physics of Plasmas, 2011, 18, .	701,	1
172	A high-repetition-rate laser-wakefield accelerator for studies of electron acceleration. Proceedings of SPIE, 2013, , .	0.8	1
173	Ultra-intense laser neutron generation through efficient deuteron acceleration. Proceedings of SPIE, 2013, , .	0.8	1
174	Laser seeded electron beam filamentation in high intensity laser wakefield acceleration. , 2013, , .		1
175	On electron betatron motion and electron injection in laser wakefield accelerators. Plasma Physics and Controlled Fusion, 2014, 56, 084009.	2.1	1
176	Effect of defocusing on picosecond laser-coupling into gold cones. Physics of Plasmas, 2014, 21, 012702.	1.9	1
177	Measurements of the energy spectrum of electrons emanating from solid materials irradiated by a picosecond laser. Physics of Plasmas, 2015, 22, .	1.9	1
178	Laser-driven Thomson scattering for the generation of ultra-bright multi-MeV gamma-ray beams. Proceedings of SPIE, 2015, , .	0.8	1
179	Target surface area effects on hot electron dynamics from high intensity laser–plasma interactions. New Journal of Physics, 2016, 18, 063020.	2.9	1
180	Observation of anomalous side-scattering in laser wakefield accelerators. Laser and Particle Beams, 2018, 36, 391-395.	1.0	1

#	Article	IF	CITATIONS
181	Sarri etÂal. Reply:. Physical Review Letters, 2020, 124, 179502.	7.8	1
182	Optical probing of high-intensity laser interactions with underdense plasmas using the VULCAN petawatt laser facility. European Physical Journal Special Topics, 2006, 133, 543-547.	0.2	1
183	Generation of electron high energy beams with a ring-like structure by a dual stage laser wakefield accelerator. , 2019, , .		1
184	Intense gamma-ray source based on focused electron beams from a laser wakefield accelerator. Applied Physics Letters, 2022, 120, .	3.3	1
185	Observation of mono-energetic structures in the spectrum of laser wakefield accelerated electrons. AIP Conference Proceedings, 2004, , .	0.4	Ο
186	The effect of laser focusing conditions in laser wakefield acceleration experiments. , 2006, , .		0
187	Laser wakefield acceleration in the first plasma wave period. , 2006, , .		Ο
188	Effects of Ionization in a Laser Wakefield Accelerator. , 2010, , .		0
189	Divergence of high order harmonic emission from intense laser interactions with solid targets. , 2012, , .		Ο
190	Solid-Density Experiments for Laser-Based Thomson Scattering: Approaching the Radiation Dominated Regime. , 2014, , .		0
191	X-Ray imaging of ultrafast magnetic reconnection driven by relativistic electrons. Proceedings of SPIE, 2015, , .	0.8	Ο
192	High-repetition rate relativistic electron beam generation from intense laser solid interactions. Proceedings of SPIE, 2015, , .	0.8	0
193	The International Laser Plasma Accelerators Workshop 2015 (Guadeloupe, May 10–15). Plasma Physics and Controlled Fusion, 2016, 58, 030101.	2.1	Ο
194	Development of mini-undulators for a table-top free-electron laser. Laser and Particle Beams, 2018, 36, 396-404.	1.0	0
195	Generation of straight and curved hollow plasma channels by laser-generated nonlinear wakefields and studies of ultra-intense laser pulse guiding. Physics of Plasmas, 2021, 28, 063104.	1.9	Ο
196	Optimization of the electron beam dump for a GeV-class laser electron accelerator. Applied Radiation and Isotopes, 2021, 176, 109853.	1.5	0
197	Monoenergetic Electron Beams from a Laser-Plasma Accelerator. , 2005, , .		0
198	Observation of Optical Bullets formed in Laser-driven Plasma Bubble Accelerators. , 2010, , .		0

#	Article	IF	CITATIONS
199	Optical Characterization of Laser-Driven Electron Acceleration. , 2011, , .		Ο
200	High-repetition Rate Wakefield Electron Source Driven by Few-millijoule Ultrashort Laser Pulses. , 2012, , .		0