
Franco Cacialli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/871566/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 19688-19695.	10.3	1,419
2	Work Functions and Surface Functional Groups of Multiwall Carbon Nanotubes. Journal of Physical Chemistry B, 1999, 103, 8116-8121.	2.6	910
3	Molecular-scale interface engineering for polymer light-emitting diodes. Nature, 2000, 404, 481-484.	27.8	764
4	Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics, 1998, 84, 6859-6870.	2.5	599
5	Built-in field electroabsorption spectroscopy of polymer light-emitting diodes incorporating a doped poly(3,4-ethylene dioxythiophene) hole injection layer. Applied Physics Letters, 1999, 75, 1679-1681.	3.3	492
6	Cyclodextrin-threaded conjugated polyrotaxanes as insulated molecular wires with reduced interstrand interactions. Nature Materials, 2002, 1, 160-164.	27.5	471
7	Nearâ€Infrared (NIR) Organic Lightâ€Emitting Diodes (OLEDs): Challenges and Opportunities. Advanced Functional Materials, 2019, 29, 1807623.	14.9	371
8	Improved operational stability of polyfluorene-based organic light-emitting diodes with plasma-treated indium–tin–oxide anodes. Applied Physics Letters, 1999, 74, 3084-3086.	3.3	211
9	Highly efficient perovskite solar cells for light harvesting under indoor illumination via solution processed SnO2/MgO composite electron transport layers. Nano Energy, 2018, 49, 290-299.	16.0	205
10	Kelvin probe and ultraviolet photoemission measurements of indium tin oxide work function: a comparison. Synthetic Metals, 2000, 111-112, 311-314.	3.9	175
11	LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes. Applied Physics Letters, 2000, 77, 3096-3098.	3.3	154
12	Surface energy and polarity of treated indium–tin–oxide anodes for polymer light-emitting diodes studied by contact-angle measurements. Journal of Applied Physics, 1999, 86, 2774-2778.	2.5	152
13	X-ray photoelectron spectroscopy of surface-treated indium-tin oxide thin films. Chemical Physics Letters, 1999, 315, 307-312.	2.6	152
14	Synthesis of Conjugated Polyrotaxanes. Chemistry - A European Journal, 2003, 9, 6167-6176.	3.3	149
15	Efficient electron injection in blue-emitting polymer light-emitting diodes with LiF/Ca/Al cathodes. Applied Physics Letters, 2001, 79, 174-176.	3.3	147
16	Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes. Journal of Applied Physics, 2003, 93, 6159-6172.	2.5	144
17	Optically switchable organic light-emitting transistors. Nature Nanotechnology, 2019, 14, 347-353.	31.5	139
18	Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd3+ complex. Applied Physics Letters, 2001, 78, 2122-2124.	3.3	136

#	Article	IF	CITATIONS
19	High-efficiency oligothiopene-based light-emitting diodes. Applied Physics Letters, 1999, 75, 439-441.	3.3	117
20	Near-field optical lithography of a conjugated polymer. Applied Physics Letters, 2003, 82, 526-528.	3.3	114
21	Highly Efficient Solid-State Near-infrared Organic Light-Emitting Diodes incorporating A-D-A Dyes based on α,β-unsubstituted "BODIPY―Moieties. Scientific Reports, 2017, 7, 1611.	3.3	112
22	Suppression of Green Emission in a New Class of Blue-Emitting Polyfluorene Copolymers with Twisted Biphenyl Moieties. Advanced Functional Materials, 2005, 15, 981-988.	14.9	108
23	Linear and Cyclic Porphyrin Hexamers as Near-Infrared Emitters in Organic Light-Emitting Diodes. Nano Letters, 2011, 11, 2451-2456.	9.1	107
24	Improved efficiency of light-emitting diodes based on polyfluorene blends upon insertion of a poly(p-phenylene vinylene) electron- confinement layer. Applied Physics Letters, 2002, 80, 2436-2438.	3.3	104
25	Thermochemical nanopatterning of organic semiconductors. Nature Nanotechnology, 2009, 4, 664-668.	31.5	104
26	Modified Oligothiophenes with High Photo- and Electroluminescence Efficiencies. Advanced Materials, 1999, 11, 1375-1379.	21.0	101
27	Naphthalimide side-chain polymers for organic light-emitting diodes: Band-offset engineering and role of polymer thickness. Journal of Applied Physics, 1998, 83, 2343-2356.	2.5	97
28	Visible light communication with efficient far-red/near-infrared polymer light-emitting diodes. Light: Science and Applications, 2020, 9, 70.	16.6	97
29	Synthesis and Exciton Dynamics of Donor-Orthogonal Acceptor Conjugated Polymers: Reducing the Singlet–Triplet Energy Gap. Journal of the American Chemical Society, 2017, 139, 11073-11080.	13.7	95
30	Increase of charge carriers density and reduction of Hall mobilities in oxygen-plasma treated indium–tin–oxide anodes. Applied Physics Letters, 1999, 75, 19-21.	3.3	94
31	Large Work Function Shift of Gold Induced by a Novel Perfluorinated Azobenzeneâ€Based Selfâ€Assembled Monolayer. Advanced Materials, 2013, 25, 432-436.	21.0	93
32	Light-emitting diodes based on poly(methacrylates) with distyrylbenzene and oxadiazole side chains. Synthetic Metals, 1995, 75, 161-168.	3.9	91
33	Supramolecular Complexes of Conjugated Polyelectrolytes with Poly(ethylene oxide): Multifunctional Luminescent Semiconductors Exhibiting Electronic and Ionic Transport. Advanced Materials, 2005, 17, 2659-2663.	21.0	91
34	Electric-Field-Assisted Alignment of Supramolecular Fibers. Advanced Materials, 2006, 18, 1276-1280.	21.0	90
35	Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells. Organic Electronics, 2009, 10, 388-395.	2.6	90
36	Charge transport polymers for light emitting diodes. Advanced Materials, 1995, 7, 898-900.	21.0	89

#	Article	IF	CITATIONS
37	Efficient photo and electroluminescence of regioregular poly(alkylthiophene)s. Journal of Applied Physics, 1998, 84, 6279-6284.	2.5	84
38	Surface conditioning of indium-tin oxide anodes for organic light-emitting diodes. Thin Solid Films, 2003, 445, 358-366.	1.8	83
39	Emission enhancement in singleâ€layer conjugated polymer microcavities. Journal of Applied Physics, 1996, 80, 207-215.	2.5	81
40	Non onventional Processing and Postâ€processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics. Advanced Functional Materials, 2011, 21, 1279-1295.	14.9	81
41	Synthesis and luminescence properties of three novel polyfluorene copolymers. Polymer, 2003, 44, 1843-1850.	3.8	76
42	Efficient blue LEDs from a partially conjugated Si-containing PPV copolymer in a double-layer configuration. Advanced Materials, 1997, 9, 127-131.	21.0	75
43	De-mixing of Polyfluorene-Based Blends by Contact with Acetone: Electro- and Photo-luminescence Probes. Advanced Materials, 2001, 13, 810-814.	21.0	73
44	Visible light communications: real time 10 Mb/s link with a low bandwidth polymer light-emitting diode. Optics Express, 2014, 22, 2830.	3.4	73
45	Characterization of properties of polymeric light-emitting diodes over extended periods. Synthetic Metals, 1994, 67, 157-160.	3.9	72
46	Highly Luminescent Encapsulated Narrow Bandgap Polymers Based on Diketopyrrolopyrrole. Journal of the American Chemical Society, 2018, 140, 1622-1626.	13.7	70
47	Light-emitting electrochemical cells using polymeric ionic liquid/polyfluorene blends as luminescent material. Applied Physics Letters, 2010, 96, 043308.	3.3	66
48	Tuning Intrachain versus Interchain Photophysics via Control of the Threading Ratio of Conjugated Polyrotaxanes. Nano Letters, 2008, 8, 4546-4551.	9.1	64
49	Amylose-wrapped luminescent conjugated polymers. Chemical Communications, 2008, , 2797.	4.1	62
50	Photoinduced work function changes by isomerization of a densely packed azobenzene-based SAM on Au: a joint experimental and theoretical study. Physical Chemistry Chemical Physics, 2011, 13, 14302.	2.8	61
51	Micro-focused X-ray diffraction characterization of high-quality [6,6]-phenyl-C61-butyric acid methyl ester single crystals without solvent impurities. Journal of Materials Chemistry C, 2013, 1, 5619.	5.5	61
52	A blue light emitting copolymer with charge transporting and photo-crosslinkable functional units. Synthetic Metals, 1997, 84, 437-438.	3.9	60
53	White Electroluminescence by Supramolecular Control of Energy Transfer in Blends of Organic oluble Encapsulated Polyfluorenes. Advanced Functional Materials, 2010, 20, 272-280.	14.9	60
54	Tetraphenylethylene-BODIPY aggregation-induced emission luminogens for near-infrared polymer light-emitting diodes. Science China Chemistry, 2018, 61, 932-939.	8.2	60

#	Article	IF	CITATIONS
55	A study of the ITO-on-PPV interface using photoelectron spectroscopy. Synthetic Metals, 1998, 92, 207-211.	3.9	58
56	Characterisation of the properties of surface-treated indium-tin oxide thin films. Synthetic Metals, 1999, 101, 111-112.	3.9	58
57	Tuning the red emission of a soluble poly(p-phenylene vinylene) upon grafting of porphyrin side groups. Chemical Physics Letters, 2000, 325, 552-558.	2.6	58
58	Control of Rapid Formation of Interchain Excited States in Sugarâ€Threaded Supramolecular Wires. Advanced Materials, 2008, 20, 3218-3223.	21.0	56
59	Förster energy transfer and control of the luminescence in blends of an orangeÂemitting poly(pÂphenylenevinylene) and a redÂemitting tetraphenylporphyrin. Journal of Materials Chemistry, 2001, 11, 278-283.	6.7	55
60	Contact optimization in polymer light-emitting diodes. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2649-2664.	2.1	55
61	Novel poly(arylene vinylene)s carrying donor and acceptor substituents. Synthetic Metals, 1996, 76, 165-167.	3.9	54
62	New CF3-substituted PPV-type oligomers and polymers for use as hole blocking layers in LEDs. Synthetic Metals, 1997, 84, 293-294.	3.9	54
63	Light-emitting devices based on a poly(p-phenylene vinylene) derivative with ion-coordinating side groups. Journal of Applied Physics, 1999, 86, 6392-6395.	2.5	53
64	Light-Emitting Devices Based on a Poly(p-phenylenevinylene) Statistical Copolymer with Oligo(ethylene) Tj ETQq	0 0 0 rgB1 4.8	Överlock 10
65	Workfunction of purified and oxidised carbon nanotubes. Synthetic Metals, 1999, 103, 2494-2495.	3.9	51
66	Synthesis and Optoelectronic Properties of Nonpolar Polyrotaxane Insulated Molecular Wires with High Solubility in Organic Solvents. Advanced Functional Materials, 2008, 18, 3367-3376.	14.9	51
67	Wavelength-Multiplexed Polymer LEDs: Towards 55 Mb/s Organic Visible Light Communications. IEEE Journal on Selected Areas in Communications, 2015, 33, 1819-1828.	14.0	51
68	Modifying the Size of Ultrasound-Induced Liquid-Phase Exfoliated Graphene: From Nanosheets to Nanodots. ACS Nano, 2016, 10, 10768-10777.	14.6	51
69	Neutron Radiation Tolerance of Two Benchmark Thiophene-Based Conjugated Polymers: the Importance of Crystallinity for Organic Avionics. Scientific Reports, 2017, 7, 41013.	3.3	51
70	Preparation and Characterization of Dense Films of Poly(amidoamine) Dendrimers on Indium Tin Oxide. Langmuir, 2007, 23, 8916-8924.	3.5	50
71	Time dependence and freezing-in of the electrode oxygen plasma-induced work function enhancement in polymer semiconductor heterostructures. Organic Electronics, 2011, 12, 623-633.	2.6	50
72	Emission Color Trajectory and White Electroluminescence Through Supramolecular Control of Energy Transfer and Exciplex Formation in Binary Blends of Conjugated Polyrotaxanes. Advanced Functional Materials, 2012, 22, 4284-4291.	14.9	50

#	Article	IF	CITATIONS
73	Polymorphism, Fluorescence, and Optoelectronic Properties of a Borazine Derivative. Chemistry - A European Journal, 2013, 19, 7771-7779.	3.3	49
74	Efficient Nearâ€Infrared Electroluminescence at 840 nm with "Metalâ€Free―Smallâ€Molecule:Polymer Blends. Advanced Materials, 2018, 30, e1706584.	21.0	49
75	Optical and Electroluminescent Properties of Conjugated Polyrotaxanes. Small, 2010, 6, 2796-2820.	10.0	48
76	Triazolobenzothiadiazoleâ€Based Copolymers for Polymer Lightâ€Emitting Diodes: Pure Nearâ€Infrared Emission via Optimized Energy and Charge Transfer. Advanced Optical Materials, 2016, 4, 2068-2076.	7.3	48
77	Efficient green lightâ€emitting diodes from a phenylated derivative of poly(pâ€phenylene–vinylene). Applied Physics Letters, 1996, 69, 3794-3796.	3.3	46
78	Perspectives of Organic and Perovskiteâ€Based Spintronics. Advanced Optical Materials, 2021, 9, 2100215.	7.3	46
79	Towards efficient near-infrared fluorescent organic light-emitting diodes. Light: Science and Applications, 2021, 10, 18.	16.6	46
80	The synthesis, optical and charge transport properties of poly(aromatic oxadiazole)s. Synthetic Metals, 1996, 76, 153-156.	3.9	45
81	Polyfluorene-based light-emitting diodes with an azide photocross-linked poly(3,4-ethylene) Tj ETQq1 1 0.78431 103308.	4 rgBT /O ⁵ 3.3	verlock 10 Tf 44
82	Excitation energy transfer and spatial exciton confinement in polyfluorene blends for application in light-emitting diodes. Journal of Materials Chemistry, 2002, 12, 3523-3527.	6.7	42
83	Synthesis of a polyphenylene light-emitting polymer. Synthetic Metals, 1994, 67, 161-163.	3.9	41
84	Ultraviolet–visible near-field microscopy of phase-separated blends of polyfluorene-based conjugated semiconductors. Applied Physics Letters, 2001, 79, 833-835.	3.3	41
85	Electrochemical and luminescent properties of poly(fluorene) derivatives for optoelectronic applications. Chemical Communications, 2001, , 1216-1217.	4.1	41
86	Tuning the optoelectronic properties of polyfluorenes by copolymerisation with thiophene moieties. Synthetic Metals, 2002, 127, 251-254.	3.9	40
87	Thia- and selena-diazole containing polymers for near-infrared light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 2792-2797.	5.5	40
88	10  Mb/s visible light transmission system using a polymer light-emitting diode with orthogonal frequency division multiplexing. Optics Letters, 2014, 39, 3876.	3.3	39
89	Highâ€Resolution Scanning Nearâ€Field Optical Lithography of Conjugated Polymers. Advanced Functional Materials, 2010, 20, 2842-2847.	14.9	38
90	Straightforward access to diketopyrrolopyrrole (DPP) dimers. Dyes and Pigments, 2013, 97, 198-208.	3.7	38

#	ARTICLE	IF	CITATIONS
91	Multifunctional materials for OFETs, LEFETs and NIR PLEDs. Journal of Materials Chemistry C, 2014, 2, 5133-5141.	5.5	38
92	Lanthanide-Induced Photoluminescence in Lead-Free Cs ₂ AgBiBr ₆ Bulk Perovskite: Insights from Optical and Theoretical Investigations. Journal of Physical Chemistry Letters, 2020, 11, 8893-8900.	4.6	38
93	Environmental aging of poly(p-phenylenevinylene) based light-emitting diodes. Synthetic Metals, 2000, 114, 189-196.	3.9	37
94	Chiral Oligothiophenes with Remarkable Circularly Polarized Luminescence and Electroluminescence in Thin Films. Chemistry - A European Journal, 2020, 26, 16622-16627.	3.3	37
95	Gas and vapour effects on the resistance fluctuation spectra of conducting polymer thin-film resistors. Sensors and Actuators B: Chemical, 1994, 19, 421-425.	7.8	36
96	Luminescence properties of poly(p-phenylenevinylene): Role of the conversion temperature on the photoluminescence and electroluminescence efficiencies. Journal of Applied Physics, 1999, 85, 1784-1791.	2.5	36
97	Cyclodextrinâ€Threaded Conjugated Polyrotaxanes for Organic Electronics: The Influence of the Counter Cations. Advanced Functional Materials, 2008, 18, 2419-2427.	14.9	36
98	Self-assembly surface modified indiumÂtin oxide anodes for single-layer light-emitting diodes. Journal Physics D: Applied Physics, 2003, 36, 434-438.	2.8	35
99	Influence of cyclodextrin size on fluorescence quenching in conjugated polyrotaxanes by methyl viologen in aqueous solution. Journal of Materials Chemistry, 2009, 19, 2846.	6.7	35
100	Perovskite solar cell resilience to fast neutrons. Sustainable Energy and Fuels, 2019, 3, 2561-2566.	4.9	35
101	Organic semiconductors for the new millennium. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 173-192.	3.4	34
102	Supramolecular architectures. Materials Today, 2004, 7, 24-32.	14.2	34
103	Ultraâ€Broad Optical Amplification and Twoâ€Colour Amplified Spontaneous Emission in Binary Blends of Insulated Molecular Wires. Advanced Materials, 2010, 22, 3690-3694.	21.0	34
104	Enhanced crystallinity and film retention of P3HT thin-films for efficient organic solar cells by use of preformed nanofibers in solution. Journal of Materials Chemistry C, 2013, 1, 7748.	5.5	34
105	Nearâ€Infrared Polymer Lightâ€Emitting Diodes Based on Lowâ€Energy Gap Oligomers Copolymerized into a Highâ€Gap Polymer Host. Macromolecular Rapid Communications, 2013, 34, 990-996.	3.9	34
106	Ionic Strength Responsive Sulfonated Polystyrene Opals. ACS Applied Materials & Interfaces, 2017, 9, 4818-4827.	8.0	34
107	Light-emitting and photoconductive diodes fabricated with conjugated polymers. Thin Solid Films, 1996, 276, 13-20.	1.8	32
108	Structural and dynamical characterization of P3HT/PCBM blends. Chemical Physics, 2013, 427, 142-146.	1.9	32

#	Article	IF	CITATIONS
109	Efficient red electroluminescence from diketopyrrolopyrrole copolymerised with a polyfluorene. APL Materials, 2013, 1, .	5.1	32
110	Surface wetting properties of treated indium tin oxide anodes for polymer light-emitting diodes. Synthetic Metals, 2000, 111-112, 369-372.	3.9	31
111	Dual functions of a novel low-gap polymer for near infra-red photovoltaics and light-emitting diodes. Chemical Communications, 2011, 47, 8820.	4.1	31
112	A Conjugated Thiopheneâ€Based Rotaxane: Synthesis, Spectroscopy, and Modeling. Chemistry - A European Journal, 2010, 16, 3933-3941.	3.3	29
113	Optical and morphological investigations of non-homogeneity in polyfluorene blends. Synthetic Metals, 2001, 124, 63-66.	3.9	28
114	Immune responses of Octopus vulgaris (Mollusca: Cephalopoda) exposed to titanium dioxide nanoparticles. Journal of Experimental Marine Biology and Ecology, 2013, 447, 123-127.	1.5	28
115	Local Probing of Photocurrent and Photoluminescence in a Phase-Separated Conjugated-Polymer Blend by Means of Near-Field Excitation. Advanced Functional Materials, 2006, 16, 469-476.	14.9	27
116	Synthesis, Characterization, and Surface Initiated Polymerization of Carbazole Functionalized Isocyanides. Chemistry of Materials, 2010, 22, 2597-2607.	6.7	27
117	Optical mode structure in a single-layer polymer microcavity. Synthetic Metals, 1996, 76, 137-140.	3.9	26
118	Surface and bulk phenomena in conjugated polymers devices. Synthetic Metals, 2000, 109, 7-11.	3.9	26
119	Effect of poly(3,4-ethylene dioxythiophene) on the built-in field in polymer light-emitting diodes probed by electroabsorption spectroscopy. Synthetic Metals, 2000, 111-112, 285-287.	3.9	26
120	Highly Polarized Emission from Oriented Films Incorporating Water oluble Conjugated Polymers in a Polyvinyl Alcohol Matrix. Advanced Materials, 2011, 23, 1855-1859.	21.0	26
121	Blue light-emitting diodes from a meta-linked 2,3 substituted alkoxy poly(p-phenylenevinylene). Synthetic Metals, 2000, 111-112, 155-158.	3.9	25
122	Synthesis of type II/type I CdTe/CdS/ZnS quantum dots and their use in cellular imaging. Journal of Materials Chemistry, 2009, 19, 8341.	6.7	25
123	A 20-Mb/s VLC Link With a Polymer LED and a Multilayer Perceptron Equalizer. IEEE Photonics Technology Letters, 2014, 26, 1975-1978.	2.5	25
124	Doubly Encapsulated Perylene Diimides: Effect of Molecular Encapsulation on Photophysical Properties. Journal of Organic Chemistry, 2020, 85, 207-214.	3.2	25
125	Sensing properties of polypyrrole-polytetrafluoroethylene composite thin films from granular metal-polymer precursors. Sensors and Actuators A: Physical, 1992, 32, 313-317.	4.1	24
126	Holographic nanopatterning of the organic semiconductor poly(p-phenylene vinylene). Applied Physics Letters, 1998, 73, 3926-3928.	3.3	24

#	Article	IF	CITATIONS
127	Light-emitting electrochemical cells based on poly(p-phenylene vinylene) copolymers with ion-transporting side groups. Synthetic Metals, 2001, 122, 111-113.	3.9	24
128	Photoacid cross-linkable polyfluorenes for optoelectronics applications. Synthetic Metals, 2008, 158, 643-653.	3.9	24
129	Selfâ€Assembled Conjugated Thiopheneâ€Based Rotaxane Architectures: Structural, Computational, and Spectroscopic Insights into Molecular Aggregation. Advanced Functional Materials, 2011, 21, 834-844.	14.9	24
130	Effect of permodified β-cyclodextrin on the photophysical properties of poly[2,7-(9,9-dioctylfluorene)- <i>alt</i> -(5,5′-bithiophene)] main chain polyrotaxanes. Journal of Polymer Science Part A, 2014, 52, 460-471.	2.3	24
131	High finesse organic microcavities. Optical Materials, 1998, 9, 18-24.	3.6	23
132	Efficient blue–green light emitting poly(1,4-phenylene vinylene) copolymers. Chemical Communications, 2000, , 291-292.	4.1	23
133	Suppressing Solid-State Quenching in Red-Emitting Conjugated Polymers. Chemistry of Materials, 2020, 32, 10140-10145.	6.7	23
134	A green emitting, alkoxy disubstituted poly(p-phenylene vinylene) for Electroluminescent Devices. Synthetic Metals, 1999, 102, 924-925.	3.9	22
135	Electrochemical and Electroluminescent Properties of Random Copolymers of Fluorine- and Alkoxy-Substituted Poly(p-phenylene vinylene)s. Macromolecules, 2000, 33, 3337-3341.	4.8	22
136	Fabrication of conjugated polymers nanostructures via direct near-field optical lithography. Ultramicroscopy, 2004, 100, 449-455.	1.9	22
137	Optical probing of sample heating in scanning near-field experiments with apertured probes. Applied Physics Letters, 2005, 86, 011102.	3.3	22
138	Resonance Raman Investigation of β-Cyclodextrin-Encapsulated π-Conjugated Polymers. Journal of Physical Chemistry B, 2013, 117, 5737-5747.	2.6	22
139	Luminescent Neutral Cu(I) Complexes: Synthesis, Characterization and Application in Solution-Processed OLED. ECS Journal of Solid State Science and Technology, 2016, 5, R83-R90.	1.8	22
140	Conjugated and electroluminescent polymers. Current Opinion in Colloid and Interface Science, 1999, 4, 159-164.	7.4	21
141	Electroluminescence lifetime and efficiency of polymer LEDs with surface-treated anodes. Synthetic Metals, 1999, 102, 1065-1066.	3.9	21
142	The Builtâ€In Potential in Blue Polyfluoreneâ€Based Lightâ€Emitting Diodes. Advanced Materials, 2008, 20, 2410-2415.	21.0	21
143	Low-temperature treatment of semiconducting interlayers for high-efficiency light-emitting diodes based on a green-emitting polyfluorene derivative. Applied Physics Letters, 2011, 99, .	3.3	21
144	Synthesis and Photophysics of Coaxial Threaded Molecular Wires: Polyrotaxanes with Triarylamine Jackets. Journal of Physical Chemistry C, 2014, 118, 4553-4566.	3.1	21

#	Article	IF	CITATIONS
145	Black GaAs by Metal-Assisted Chemical Etching. ACS Applied Materials & Interfaces, 2018, 10, 33434-33440.	8.0	21
146	Low-Temperature Solution-Processed Thin SnO ₂ /Al ₂ O ₃ Double Electron Transport Layers Toward 20% Efficient Perovskite Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 1309-1315.	2.5	21
147	Versatile synthesis of various conjugated aromatic homo- and copolymers. Synthetic Metals, 2001, 122, 1-5.	3.9	20
148	Local Surface Potential of ï€â€€onjugated Nanostructures by Kelvin Probe Force Microscopy: Effect of the Sampling Depth. Small, 2011, 7, 634-639.	10.0	20
149	Low-Temperature Photoluminescence Spectroscopy of Solvent-Free PCBM Single-Crystals. Journal of Physical Chemistry C, 2015, 119, 11846-11851.	3.1	20
150	Luminescent Properties of a Waterâ€Soluble Conjugated Polymer Incorporating Grapheneâ€Oxide Quantum Dots. ChemPhysChem, 2015, 16, 1258-1262.	2.1	20
151	Siteâ€selective chemicalâ€vaporâ€deposition of submicronâ€wide conducting polypyrrole films: Morphological investigations with the scanning electron and the atomic force microscope. Journal of Applied Physics, 1996, 80, 70-75.	2.5	19
152	A highly luminescent polymer for LEDs. Synthetic Metals, 1999, 102, 935-936.	3.9	19
153	Luminescence properties of PPV-based copolymers with crown ether substituents. Synthetic Metals, 2000, 111-112, 449-452.	3.9	19
154	Neutron polarisation analysis of Polymer:Fullerene blends for organic photovoltaics. Polymer, 2016, 105, 407-413.	3.8	19
155	Ultrathin, Ultraâ€Conformable, and Freeâ€Standing Tattooable Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2021, 7, 2001145.	5.1	19
156	Poly(distyrylbenzene-block-sexi(ethylene oxide)), a highly luminescent processable derivative of PPV. Chemical Communications, 2001, , 1778-1779.	4.1	18
157	Virtually pure near-infrared electroluminescence from exciplexes at polyfluorene/hexaazatrinaphthylene interfaces. Applied Physics Letters, 2014, 105, .	3.3	18
158	Highly red-shifted NIR emission from a novel anthracene conjugated polymer backbone containing Pt(<scp>ii</scp>) porphyrins. Polymer Chemistry, 2016, 7, 722-730.	3.9	18
159	Polystyrene nanoparticle-templated hollow titania nanosphere monolayers as ordered scaffolds. Journal of Materials Chemistry C, 2018, 6, 2502-2508.	5.5	18
160	Molecular Encapsulation of Naphthalene Diimide (NDI) Based Ï€â€Conjugated Polymers: A Tool for Understanding Photoluminescence. Angewandte Chemie - International Edition, 2021, 60, 25005-25012.	13.8	18
161	Lowâ€frequency resistance fluctuation measurements on conducting polymer thinâ€film resistors. Journal of Applied Physics, 1994, 76, 3640-3644.	2.5	17
162	Precursor route chemistry and optoelectronic properties of poly(pyridine vinylene). Synthetic Metals, 1997, 84, 159-160.	3.9	17

#	Article	IF	CITATIONS
163	Self-assembled monolayers of protonated poly(amidoamine) dendrimers on indium tin oxide. Applied Physics Letters, 2008, 92, 013511.	3.3	17
164	The influence of LiF thickness on the built-in potential of blue polymer light-emitting diodes with LiF/Al cathodes. Synthetic Metals, 2001, 124, 15-17.	3.9	16
165	Modelling topographical artifacts in scanning near-field optical microscopy. Synthetic Metals, 2004, 147, 171-173.	3.9	16
166	Thermal processes in metal-coated fiber probes for near-field experiments. Applied Physics Letters, 2005, 87, 033109.	3.3	16
167	Scanning force microscopy and optical spectroscopy of phase-segregated thin films of poly(9,9′-dioctylfluorene-alt-benzothiadiazole) and poly(ethylene oxide). Journal of Materials Chemistry, 2007, 17, 1387-1391.	6.7	16
168	Phase Segregation in Thin Films of Conjugated Polyrotaxane– Poly(ethylene oxide) Blends: A Scanning Force Microscopy Study. Advanced Functional Materials, 2007, 17, 927-932.	14.9	16
169	Enhanced luminescence properties of highly threaded conjugated polyelectrolytes with potassium counter-ions upon blending with poly(ethylene oxide). Journal of Applied Physics, 2010, 107, 124509.	2.5	16
170	Electrical and luminescent properties of double-layer oligomeric/ polymeric light-emitting diodes. Synthetic Metals, 1996, 76, 145-148.	3.9	15
171	Synthesis and properties of poly(arylene vinylene)s with controlled structures. Optical Materials, 1999, 12, 315-319.	3.6	15
172	Synthesis of porphyrin-PPV copolymers for application in LEDs. Journal of Materials Science: Materials in Electronics, 2000, 11, 97-103.	2.2	15
173	Hall measurements of treated indium tin oxide surfaces. Synthetic Metals, 2000, 111-112, 363-367.	3.9	15
174	Polymer electronics: the skill lies in the blending. Journal of Physics Condensed Matter, 2002, 14, V9-V11.	1.8	15
175	Observation of tip-to-sample heat transfer in near-field optical microscopy using metal-coated fiber probes. Applied Physics Letters, 2005, 86, 203109.	3.3	15
176	Towards Complex Functions from Complex Materials. Advanced Materials, 2006, 18, 1235-1238.	21.0	15
177	Superficial fluoropolymer layers for efficient light-emitting diodes. Organic Electronics, 2012, 13, 992-998.	2.6	15
178	Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes. APL Materials, 2013, 1, .	5.1	15
179	Synthesis and optoelectronic properties of aromatic oxadiazole polymers. Journal of the Chemical Society Chemical Communications, 1995, , 2211-2212.	2.0	14
180	Synthesis of porphyrin-PPV copolymers for applications in LEDs. Synthetic Metals, 1999, 102, 1024-1025.	3.9	14

11

#	Article	IF	CITATIONS
181	Shape dependent thermal effects in apertured fiber probes for scanning near-field optical microscopy. Journal of Applied Physics, 2006, 99, 084303.	2.5	14
182	Dopant optimization for triplet harvesting in polymer photovoltaics. Journal of Applied Physics, 2011, 110, 124504.	2.5	14
183	Twoâ€Dimensional Array of Photoluminescent Light Sources by Selective Integration of Conjugated Luminescent Polymers into Threeâ€Dimensional Silicon Microstructures. Advanced Optical Materials, 2013, 1, 894-898.	7.3	14
184	Geometric and Electronic Structures of Boron(III) ored Dyes Tailored by Incorporation of Heteroatoms into Ligands. Chemistry - an Asian Journal, 2015, 10, 709-714.	3.3	14
185	Tuning Fullerene Intercalation in a Poly (thiophene) derivative by Controlling the Polymer Degree of Self-Organisation. Scientific Reports, 2016, 6, 34609.	3.3	14
186	Modulating the luminance of organic light-emitting diodes <i>via</i> optical stimulation of a photochromic molecular monolayer at transparent oxide electrode. Nanoscale, 2020, 12, 5444-5451.	5.6	14
187	Non-toxic near-infrared light-emitting diodes. IScience, 2021, 24, 102545.	4.1	14
188	The Synthesis And Optoelectronic Properties Of Oxadiazole-Based Polymers. Materials Research Society Symposia Proceedings, 1995, 413, 13.	0.1	13
189	Light-emitting diodes fabricated with conjugated polymers. Solid-State Electronics, 1996, 40, 477-485.	1.4	13
190	Recent developments in the controlled synthesis and manipulation of electroactive organic polymers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1997, 355, 707-714.	3.4	13
191	Blue Light Emitting Diodes based on a partially conjugated Si-containing PPV-copolymer in a multilayer configuration. Synthetic Metals, 1997, 85, 1253-1254.	3.9	13
192	On the influence of regioregularity on electronic and optical properties of poly(alkylthiophenes). Synthetic Metals, 1999, 101, 296-297.	3.9	13
193	Synthesis and characterisation of poly(distyrylbenzene-block-hexa(ethylene oxide)) and its fluorinated analogue—two new block copolymers and their application in electroluminescent devices. Polymer, 2002, 43, 3555-3561.	3.8	13
194	Near–field microscopy and lithography of light–emitting polymers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 771-786.	3.4	13
195	Control of luminescence in conjugated polymers through control of chain microstructure. Journal of Materials Chemistry, 2007, 17, 907-912.	6.7	13
196	New Luminescent PPV Derivatives for Led Applications. Materials Research Society Symposia Proceedings, 1997, 488, 87.	0.1	12
197	Ultrafast study of spontaneous emission from conjugated polymer microcavities. Physical Review B, 1997, 56, 4798-4801.	3.2	12
198	Naphthalimide polymers for organic light-emitting diodes. Optical Materials, 1998, 9, 163-167.	3.6	12

#	Article	IF	CITATIONS
199	Synthesis and luminescence properties of a new polyfluorene copolymer with regulated solubility. Synthetic Metals, 2004, 147, 275-279.	3.9	12
200	Investigation Of The Bragg-Snell Law In Photonic Crystals. , 0, , .		12
201	Fluorine-substituted poly(p-phenylenes vinylenes) copolymers. Synthetic Metals, 2001, 124, 67-69.	3.9	11
202	Energy level line-up in polymer light-emitting diodes via electroabsorption spectroscopy. IEE Proceedings: Optoelectronics, 2001, 148, 74-80.	0.8	11
203	The influence of subgap features in the electromodulation and built-in voltage measurements of polyfluorene blue light-emitting diodes with anodic charge injection layers. Journal of Applied Physics, 2007, 101, 084507.	2.5	11
204	Thermal treatment and chemical doping of semi-transparent graphene films. Organic Electronics, 2015, 18, 53-60.	2.6	11
205	Interference phenomena in polymer light-emitting diodes: photoluminescence and modelling. Optical Materials, 1998, 9, 168-172.	3.6	10
206	Luminescence properties of polyfluorenes blends. Synthetic Metals, 2003, 137, 1039-1040.	3.9	10
207	Cross-linking of a poly(3,4-ethylene dioxythiophene):(polystyrene sulfonic acid) hole injection layer with a bis-azide salt and the effect of atmospheric processing conditions on device properties. Applied Physics Letters, 2012, 100, 053309.	3.3	10
208	A 10 Mb/s visible light communication system using a low bandwidth polymer light-emitting diode. , 2014, , .		10
209	Traceable atomic force microscopy of high-quality solvent-free crystals of [6,6]-phenyl-C ₆₁ -butyric acid methyl ester. Applied Physics Letters, 2016, 108, 053303.	3.3	10
210	Cyano-Derivatives Of Poly (P-Phenylene Vinylene) For Use In Thin-Film Light-Emitting Diodes. Materials Research Society Symposia Proceedings, 1993, 328, 351.	0.1	9
211	Interfacial dipole dynamics of light-emitting diodes incorporating a poly(amidoamine) dendrimer monolayer. Applied Physics Letters, 2010, 97, 043304.	3.3	9
212	White luminescence from single-layer devices of nonresonant polymer blends. Applied Physics Letters, 2010, 96, 213301.	3.3	9
213	Increased efficiency of light-emitting diodes incorporating anodes functionalized with fluorinated azobenzene monolayers and a green-emitting polyfluorene derivative. Applied Physics Letters, 2012, 101,	3.3	9
214	Synthesis and photophysical characteristics of polyfluorene polyrotaxanes. Beilstein Journal of Organic Chemistry, 2015, 11, 2677-2688.	2.2	9
215	High photo and electroluminescence efficiency oligothiophenes. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 612-615.	2.7	8
216	Luminescence properties of a PPV-based statistical copolymer with glyme-like side groups. Synthetic Metals, 2001, 119, 595-596.	3.9	8

#	Article	IF	CITATIONS
217	A two-dimensional photonic structure made from a conjugated, fluorescent polymer. Journal of Optics, 2005, 7, S207-S212.	1.5	8
218	Experimental and Computational Study on the Temperature Behavior of CNT Networks. IEEE Nanotechnology Magazine, 2016, 15, 171-178.	2.0	8
219	Inverted organic photovoltaics with a solution-processed ZnO/MgO electron transport bilayer. Journal of Materials Chemistry C, 2021, 9, 3901-3910.	5.5	8
220	Efficient electroluminescent poly(p-phenylene vinylene) copolymers for application in LEDs. Synthetic Metals, 2001, 119, 43-44.	3.9	7
221	A Quaterthiopheneâ€Based Rotaxane: Synthesis, Spectroscopy, and Selfâ€Assembly at Surfaces. Small, 2012, 8, 1835-1839.	10.0	7
222	A film-forming graphene/diketopyrrolopyrrole covalent hybrid with far-red optical features: Evidence of photo-stability. Synthetic Metals, 2019, 258, 116201.	3.9	7
223	Expanded Multiband Super-Nyquist CAP Modulation for Highly Bandlimited Organic Visible Light Communications. IEEE Systems Journal, 2020, 14, 2544-2550.	4.6	7
224	Nanoscale Photoluminescence Manipulation in Monolithic Porous Silicon Oxide Microcavity Coated with Rhodamine‣abeled Polyelectrolyte via Electrostatic Nanoassembling. Advanced Optical Materials, 2021, 9, 2100036.	7.3	7
225	Efficient green light emitting diodes from a phenylated derivative of poly(p-Phenylene-Vinylene). Synthetic Metals, 1997, 84, 643-644.	3.9	6
226	Role of indium chloride on the luminescence properties of PPV. Synthetic Metals, 2000, 111-112, 549-552.	3.9	6
227	The copolymer route to new luminescent materials for LEDs. Macromolecular Symposia, 2000, 154, 177-186.	0.7	6
228	Effect of a dipolar self-assembly monolayer formation on indium-tin oxide on the performance of single-layer polymer-based light-emitting diodes. Macromolecular Symposia, 2004, 212, 381-386.	0.7	6
229	Indium-tin oxide anodes modified by self-assembly for light-emitting diodes based on blue-emitting polyfluorenes. Synthetic Metals, 2005, 154, 153-156.	3.9	6
230	Organic visible light communications: Recent progress. , 2014, , .		6
231	Deep-red electrophosphorescence from a platinum(II)–porphyrin complex copolymerised with polyfluorene for efficient energy transfer and triplet harvesting. Journal of Organic Semiconductors, 2015, 3, 1-7.	1.2	6
232	The resurgence of organic photovoltaics. Current Opinion in Green and Sustainable Chemistry, 2019, 17, 15-20.	5.9	6
233	A porphyrin pentamer as a bright emitter for NIR OLEDs. Journal of Materials Chemistry C, 2022, 10, 5929-5933.	5.5	6
234	Precision and control in polymer synthesis why it's important and some recent examples of how to do it. Macromolecular Symposia, 1999, 143, 81-93.	0.7	5

#	Article	IF	CITATIONS
235	Investigation of heating effects in near-field experiments with luminescent organic semiconductors. Synthetic Metals, 2004, 147, 165-169.	3.9	5
236	The influence of the substrate thermal conductivity on scanning thermochemical lithography. Journal of Applied Physics, 2012, 111, .	2.5	5
237	Efficient light confinement with nanostructured optical microfiber tips. Optics Communications, 2012, 285, 4688-4697.	2.1	5
238	Next Generation Visible Light Communications: 10 Mb/s with Polymer Light-Emitting Diodes. , 2014, , .		5
239	Template-Assisted Preparation of Micrometric Suspended Membrane Lattices of Photoluminescent and Non-Photoluminescent Polymers by Capillarity-Driven Solvent Evaporation: Application to Microtagging. Scientific Reports, 2017, 7, 8351.	3.3	5
240	Experimental Demonstration of Staggered CAP Modulation for Low Bandwidth Red-Emitting Polymer-LED Based Visible Light Communications. , 2019, , .		5
241	Stability of optical and electroluminescence properties of a semiconducting polymer over a decade. Organic Electronics, 2010, 11, 1445-1448.	2.6	4
242	Assembly of graphene nanoflake–quantum dot hybrids in aqueous solution and their performance in light-harvesting applications. Nanoscale, 2018, 10, 19678-19683.	5.6	4
243	C-Si hybrid photonic structures by full infiltration of conjugated polymers into porous silicon rugate filters. Nanomaterials and Nanotechnology, 2018, 8, 184798041878840.	3.0	4
244	Hybrid-Organic Photonic Structures for Light Emission Modification. , 2015, , 339-358.		4
245	Diarylethenes in Optically Switchable Organic Lightâ€Emitting Diodes: Direct Investigation of the Reversible Charge Carrier Trapping Process. Advanced Optical Materials, 2022, 10, 2101116.	7.3	4
246	Cathodes incorporating thin fluoride layers for efficient injection in blue polymer light-emitting diodes. , 2002, , .		3
247	Steady state and time-resolved photoluminescence properties of alternating polyfluorene copolymers. Synthetic Metals, 2003, 135-136, 387-388.	3.9	3
248	Growth of ordered poly(ethylene-oxide) thin films from solutions: an SFM study. Synthetic Metals, 2004, 147, 123-125.	3.9	3
249	Mastering Self-Organization of Functional Materials at Different Length Scale. Advanced Functional Materials, 2011, 21, 1210-1211.	14.9	3
250	Increased luminescence efficiency by synergistic exploitation of lipo/hydrophilic co-solvency and supramolecular design. Journal of Materials Chemistry C, 2016, 4, 10893-10902.	5.5	3
251	Hybrid Super-Nyquist CAP Modulation based VLC with Low Bandwidth Polymer LEDs. , 2019, , .		3
252	Intrinsic photogeneration of long-lived charges in a donor-orthogonal acceptor conjugated polymer. Chemical Science, 2021, 12, 8165-8177.	7.4	3

#	Article	IF	CITATIONS
253	Light-Emitting Conjugated Polymers in Optical Microcavities. Synthetic Metals, 1997, 84, 533-534.	3.9	2

Chemical and electronic structure of a novel conjugated polymer: poly(4,4 $\hat{a}\in^2$ -diphenylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 To 254

255	The influence of polymerization conditions on the properties of poly(4,4′-dialkyl-2,2′-bithiophenes). Synthetic Metals, 1999, 101, 142.	3.9	2
256	Optical properties of cross-linkable fluorene copolymers. , 2006, , .		2
257	Experimental and computational study on the temperature behavior of CNT networks. , 2015, , .		2
258	Thermally induced suppression of interchain interactions in dilute aqueous solutions of conjugated polyelectrolyte rotaxanes and their analogues. Applied Physics Letters, 2017, 111, 083301.	3.3	2
259	Molecular Encapsulation of Naphthalene Diimide (NDI) Based π onjugated Polymers: A Tool for Understanding Photoluminescence. Angewandte Chemie, 0, , .	2.0	2
260	<title>New organic and polymeric materials for thin-film luminescent devices</title> ., 1998, 3476, 24.		1
261	Characterisation of the physico-chemical properties of surface-treated indium tin oxide anodes for organic light-emitting diodes. Materials Research Society Symposia Proceedings, 1999, 558, 427.	0.1	1
262	Improved electroluminescence lifetime and efficiency of polymer light- emitting diodes with plasma-treated indium tin oxide anodes. Materials Research Society Symposia Proceedings, 1999, 558, 439.	0.1	1
263	Alteration of the photo and electroluminescent properties of poly(p-phenylene vinylene) upon addition of indium chloride. Synthetic Metals, 2001, 122, 119-121.	3.9	1
264	New family of polyfluorene copolymers for light-emitting devices. , 2002, , .		1
265	Organic Electronics: Non-conventional Processing and Post-processing Methods for the Nanostructuring of Conjugated Materials for Organic Electronics (Adv. Funct. Mater. 7/2011). Advanced Functional Materials, 2011, 21, 1206-1206.	14.9	1
266	Cyclodextrins: Highly Polarized Emission from Oriented Films Incorporating Water-Soluble Conjugated Polymers in a Polyvinyl Alcohol Matrix (Adv. Mater. 16/2011). Advanced Materials, 2011, 23, 1804-1804.	21.0	1
267	Low-gap polymers incorporating a dicarboxylic imide moiety for near-infrared polymer light-emitting diodes. , 2015, , .		1
268	Electrostatic discharge sensitivity investigation on organic field-effect thin film transistors. , 2015, , .		1
269	Organic visible light communications: Methods to achieve 10 Mb/s. , 2017, , .		1
270	Mapping Subâ€Surface Structure of Thin Films in Three Dimensions with an Optical Nearâ€Field. Advanced Theory and Simulations, 2019, 2, 1900033.	2.8	1

#	Article	IF	CITATIONS
271	Perspectives of Organic and Perovskiteâ€Based Spintronics (Advanced Optical Materials 14/2021). Advanced Optical Materials, 2021, 9, 2170053.	7.3	1
272	Inverted organic photovoltaics with a solution-processed Mg-doped ZnO electron transport layer annealed at 150 A°C. Sustainable Energy and Fuels, 0, , .	4.9	1
273	<title>Interference effects in polymer light-emitting diodes</title> . , 1997, , .		0
274	<title>Light-emitting diodes with naphtalimide side-chain polymers: basic properties and role of polymer thickness in two-layer devices</title> . , 1997, 3148, 290.		0
275	Versatile Syntheses of Various Homo- and Copolymers of Poly(1,4-Arylene Vinylene)S. Materials Research Society Symposia Proceedings, 1999, 598, 118.	0.1	0
276	Photo and Electroluminescent Properties of a Porphyrin-Poly(p-Phenylene Vinylene) Derivative. Materials Research Society Symposia Proceedings, 1999, 598, 297.	0.1	0
277	Design and synthesis of conjugated materials for efficient optoelectronic devices. , 1999, 3797, 48.		0
278	Synthesis of New Building Blocks for Light Emitting Polymers. Materials Research Society Symposia Proceedings, 2000, 660, .	0.1	0
279	Near-field photoconductivity imaging of a conjugated polymer blend. Materials Research Society Symposia Proceedings, 2001, 708, 3171.	0.1	0
280	Design of Luminescent Polymers for Leds. Materials Research Society Symposia Proceedings, 2001, 708, 521.	0.1	0
281	New routes to monomers and polymers for LEDs. , 2001, , .		0
282	Synthesis of Conjugated Polyrotaxanes ChemInform, 2004, 35, no.	0.0	0
283	Thermal effects in near-field optical microscopy experiments. , 2005, , .		0
284	Investigation of Charge-Injection Barriers in Finished PLEDs by Means of Non-Invasive Optical Probing. , 2006, , OPWC3.		0
285	Taming Complexity: From Supramolecules to Suprafunctions. Advanced Materials, 2009, 21, 1037-1040.	21.0	0
286	Conjugated Polymers: High-Resolution Scanning Near-Field Optical Lithography of Conjugated Polymers (Adv. Funct. Mater. 17/2010). Advanced Functional Materials, 2010, 20, n/a-n/a.	14.9	0
287	Sub-wavelength focusing of high intensities in microfibre tips. , 2012, , .		0
288	Conjugated Polymers: Twoâ€Dimensional Array of Photoluminescent Light Sources by Selective Integration of Conjugated Luminescent Polymers into Threeâ€Dimensional Silicon Microstructures (Advanced Optical Materials 12/2013). Advanced Optical Materials, 2013, 1, 888-888.	7.3	0

#	Article	IF	CITATIONS
289	Analysis of sprayed Carbon nanotube films on rigid and flexible substrates. , 2014, , .		0
290	Optoelectronic Modelling, Circuit Design and Modulation for Polymer-Light Emitting Diodes for Visible Light Communication Systems. , 2019, , .		0
291	Will This Be the Century of Photonics? An Organic and Bioâ€Inspired Materials Perspective. Advanced Functional Materials, 2019, 29, 1902112.	14.9	0
292	Strategies for organic VLC: effects of clipping on the performance of multi-band CAP modulation with polymer-based light-emitting diodes. , 2019, , .		0
293	Synthesis of New Building Blocks for Light Emitting Polymers. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	0
294	Injecting Inter-Layers and the Built-in Potential of Blue Polymer Light-Emitting Diodes. Materials Research Society Symposia Proceedings, 2000, 660, 1.	0.1	0
295	Organic semiconductors nanostructures: From near-field direct lithography of a conjugated polymer to insulated molecular wires for plastic electronics. , 2003, , .		0
296	Polyrotaxanes (Conjugated). , 2013, , 1-13.		0
297	Using Microcavities to Manipulate Luminescence in Conjugated Polymers. , 1996, , 407-417.		0
298	Polyrotaxanes (Conjugated). , 2015, , 2047-2059.		0
299	Perovskite Solar Cells: A Photovoltaic Technology With Outstanding Light-Harvesting Capabilities Under Indoor Illumination. , 2018, , .		Ο