Seung-Kuy Cha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8713548/publications.pdf

Version: 2024-02-01

430874 526287 1,616 27 18 27 citations g-index h-index papers 27 27 27 2159 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Soluble αKlotho downregulates Orai1-mediated store-operated Ca2+ entry via PI3K-dependent signaling. Pflugers Archiv European Journal of Physiology, 2021, 473, 647-658.	2.8	11
2	Protective effects of klotho on palmitate-induced podocyte injury in diabetic nephropathy. PLoS ONE, 2021, 16, e0250666.	2.5	14
3	Insulin-activated store-operated Ca2+ entry via Orai1 induces podocyte actin remodeling and causes proteinuria. Nature Communications, 2021, 12, 6537.	12.8	14
4	Epinephrine minimizes the use of bipolar coagulation and preserves ovarian reserve in laparoscopic ovarian cystectomy: a randomized controlled trial. Scientific Reports, 2020, 10, 20911.	3.3	2
5	Oxidative stress by Ca ²⁺ overload is critical for phosphate-induced vascular calcification. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1302-H1312.	3.2	26
6	Angiotensin II-mediated MYH9 downregulation causes structural and functional podocyte injury in diabetic kidney disease. Scientific Reports, 2019, 9, 7679.	3.3	44
7	WNK1 promotes renal tumor progression by activating TRPC6â€NFAT pathway. FASEB Journal, 2019, 33, 8588-8599.	0.5	36
8	Inhibition of oncogenic Src induces FABP4-mediated lipolysis via PPAR \hat{I}^3 activation exerting cancer growth suppression. EBioMedicine, 2019, 41, 134-145.	6.1	37
9	WNK1 kinase is essential for insulinâ€stimulated GLUT4 trafficking in skeletal muscle. FEBS Open Bio, 2018, 8, 1866-1874.	2.3	21
10	Klotho May Ameliorate Proteinuria by Targeting TRPC6 Channels in Podocytes. Journal of the American Society of Nephrology: JASN, 2017, 28, 140-151.	6.1	70
11	Orai1 Expression Is Closely Related with Favorable Prognostic Factors in Clear Cell Renal Cell Carcinoma. Journal of Korean Medical Science, 2016, 31, 879.	2.5	4
12	Klotho plays a critical role in clear cell renal cell carcinoma progression and clinical outcome. Korean Journal of Physiology and Pharmacology, 2016, 20, 297.	1.2	8
13	Intracellular alkalinization by phosphate uptake <i>via</i> type III sodium–phosphate cotransporter participates in highâ€phosphateâ€induced mitochondrial oxidative stress and defective insulin secretion. FASEB Journal, 2016, 30, 3979-3988.	0.5	16
14	Effect of Function-Enhanced Mesenchymal Stem Cells Infected With Decorin-Expressing Adenovirus on Hepatic Fibrosis. Stem Cells Translational Medicine, 2016, 5, 1247-1256.	3.3	35
15	Mitochondrial oxidative stress mediates high-phosphate-induced secretory defects and apoptosis in insulin-secreting cells. American Journal of Physiology - Endocrinology and Metabolism, 2015, 308, E933-E941.	3.5	49
16	Autocrine insulin increases plasma membrane KATP channel via PI3K-VAMP2 pathway in MIN6 cells. Biochemical and Biophysical Research Communications, 2015, 468, 752-757.	2.1	8
17	Upregulation of mitochondrial Nox4 mediates TGF-Î ² -induced apoptosis in cultured mouse podocytes. American Journal of Physiology - Renal Physiology, 2014, 306, F155-F167.	2.7	89
18	Orai1 and STIM1 are critical for cell migration and proliferation of clear cell renal cell carcinoma. Biochemical and Biophysical Research Communications, 2014, 448, 76-82.	2.1	82

#	Article	IF	CITATIONS
19	Flow-induced activation of TRPV5 and TRPV6 channels stimulates Ca2+-activated K+ channel causing membrane hyperpolarization. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3046-3053.	4.1	19
20	Cardioprotection by Klotho through downregulation of TRPC6 channels in the mouse heart. Nature Communications, 2012, 3, 1238.	12.8	282
21	WNK1 Promotes PIP2 Synthesis to Coordinate Growth Factor and GPCR-Gq Signaling. Current Biology, 2011, 21, 1979-1987.	3.9	27
22	Calcium-sensing Receptor Decreases Cell Surface Expression of the Inwardly Rectifying K+ Channel Kir4.1. Journal of Biological Chemistry, 2011, 286, 1828-1835.	3.4	41
23	WNK4 Kinase Stimulates Caveola-mediated Endocytosis of TRPV5 Amplifying the Dynamic Range of Regulation of the Channel by Protein Kinase C. Journal of Biological Chemistry, 2010, 285, 6604-6611.	3.4	33
24	Regulation of Renal Outer Medullary Potassium Channel and Renal K ⁺ Excretion by Klotho. Molecular Pharmacology, 2009, 76, 38-46.	2.3	171
25	Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9805-9810.	7.1	361
26	Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. American Journal of Physiology - Renal Physiology, 2008, 294, F1212-F1221.	2.7	94
27	Regulation of TRPV5 Single-Channel Activity by Intracellular pH. Journal of Membrane Biology, 2007, 220, 79-85.	2.1	22