
Zhu Zhihong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8712670/publications.pdf Version: 2024-02-01

<u>7ни 7ниномс</u>

#	Article	IF	CITATIONS
1	Broadband terahertz absorber based on multi-band continuous plasmon resonances in geometrically gradient dielectric-loaded graphene plasmon structure. Scientific Reports, 2018, 8, 3239.	3.3	64
2	Graphene-Based Perfect Absorption Structures in the Visible to Terahertz Band and Their Optoelectronics Applications. Nanomaterials, 2018, 8, 1033.	4.1	57
3	Graphene Thermal Emitter with Enhanced Joule Heating and Localized Light Emission in Air. ACS Photonics, 2019, 6, 2117-2125.	6.6	53
4	High responsivity graphene photodetectors from visible to near-infrared by photogating effect. AIP Advances, 2018, 8, 115106.	1.3	46
5	Light-induced irreversible structural phase transition in trilayer graphene. Light: Science and Applications, 2020, 9, 174.	16.6	40
6	High-Performance Photodetectors Based on MoTe ₂ –MoS ₂ van der Waals Heterostructures. ACS Omega, 2022, 7, 10049-10055.	3.5	24
7	Controllable Epitaxial Growth of MoSe ₂ Bilayers with Different Stacking Orders by Reverse-Flow Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2020, 12, 23347-23355.	8.0	21
8	Highly Tunable Carrier Tunneling in Vertical Graphene–WS ₂ –Graphene van der Waals Heterostructures. ACS Nano, 2022, 16, 7880-7889.	14.6	17
9	Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping. Nanomaterials, 2016, 6, 155.	4.1	15
10	High Mobility Two-Dimensional Bismuth Oxyselenide Single Crystals with Large Grain Size Grown by Reverse-Flow Chemical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 49153-49162.	8.0	14
11	Interface engineering of cobalt–sulfide–selenium core–shell nanostructures as bifunctional electrocatalysts toward overall water splitting. Nanoscale, 2021, 13, 6890-6901.	5.6	12
12	Direct Visualization and Manipulation of Stacking Orders in Few-Layer Graphene by Dynamic Atomic Force Microscopy. Journal of Physical Chemistry Letters, 2021, 12, 7328-7334.	4.6	9
13	Highly degenerate photonic flat bands arising from complete graph configurations. Physical Review A, 2019, 100, .	2.5	7
14	Graphene plasmonically induced analogue of tunable electromagnetically induced transparency without structurally or spatially asymmetry. Scientific Reports, 2019, 9, 20312.	3.3	7
15	Porous Cobalt Sulfide Selenium Nanorods for Electrochemical Hydrogen Evolution. ACS Omega, 2021, 6, 23300-23310.	3.5	7
16	Carbon-Based Metallic Cobalt Pyrite Nanotubes as Stable Electrode Materials for Electrochemical Hydrogen Evolution. ACS Applied Nano Materials, 2020, 3, 8335-8342.	5.0	6
17	Strain-Induced Alternating Photoluminescence Segmentation in Hexagonal Monolayer Tungsten Disulfide Grown by Physical Vapor Deposition. ACS Applied Materials & Interfaces, 2021, 13, 46164-46170.	8.0	5
18	Concentration modulate engineering of cobalt-selenium-sulfide electrodes toward water splitting: A first principle study. Applied Surface Science, 2021, 570, 151229.	6.1	5

#	Article	IF	CITATIONS
19	Electrically Controlled Wavelength-Tunable Photoluminescence from van der Waals Heterostructures. ACS Applied Materials & Interfaces, 2022, 14, 19869-19877.	8.0	4