
Jeffery L Dangl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8712639/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The plant immune system. Nature, 2006, 444, 323-329.	27.8	10,939
2	Plant pathogens and integrated defence responses to infection. Nature, 2001, 411, 826-833.	27.8	3,460
3	Defining the core Arabidopsis thaliana root microbiome. Nature, 2012, 488, 86-90.	27.8	2,475
4	Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proceedings of the United States of America, 2013, 110, 6548-6553.	7.1	1,594
5	RIN4 Interacts with Pseudomonas syringae Type III Effector Molecules and Is Required for RPM1-Mediated Resistance in Arabidopsis. Cell, 2002, 108, 743-754.	28.9	1,055
6	Pivoting the Plant Immune System from Dissection to Deployment. Science, 2013, 341, 746-751.	12.6	1,008
7	Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science, 2015, 349, 860-864.	12.6	957
8	Arabidopsis RIN4 Is a Target of the Type III Virulence Effector AvrRpt2 and Modulates RPS2-Mediated Resistance. Cell, 2003, 112, 379-389.	28.9	852
9	Intracellular innate immune surveillance devices in plants and animals. Science, 2016, 354, .	12.6	834
10	Practical innovations for high-throughput amplicon sequencing. Nature Methods, 2013, 10, 999-1002.	19.0	787
11	Independently Evolved Virulence Effectors Converge onto Hubs in a Plant Immune System Network. Science, 2011, 333, 596-601.	12.6	776
12	Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nature Communications, 2016, 7, 12151.	12.8	754
13	Root microbiota drive direct integration of phosphate stress and immunity. Nature, 2017, 543, 513-518.	27.8	669
14	Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biology, 2017, 15, e2001793.	5.6	640
15	Understanding and exploiting plant beneficial microbes. Current Opinion in Plant Biology, 2017, 38, 155-163.	7.1	538
16	Genomic features of bacterial adaptation to plants. Nature Genetics, 2018, 50, 138-150.	21.4	480
17	Intragenic Recombination and Diversifying Selection Contribute to the Evolution of Downy Mildew Resistance at the RPP8 Locus of Arabidopsis. Plant Cell, 1998, 10, 1861-1874.	6.6	453
18	Primer and platform effects on 16S rRNA tag sequencing. Frontiers in Microbiology, 2015, 6, 771.	3.5	435

#	Article	IF	CITATIONS
19	Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proceedings of the United States of America, 2018, 115, 7368-7373.	7.1	435
20	The hypersensitive response and the induction of cell death in plants. Cell Death and Differentiation, 1997, 4, 671-683.	11.2	399
21	Convergent Targeting of a Common Host Protein-Network by Pathogen Effectors from Three Kingdoms of Life. Cell Host and Microbe, 2014, 16, 364-375.	11.0	367
22	Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16463-16468.	7.1	346
23	TIR domains of plant immune receptors are NAD ⁺ -cleaving enzymes that promote cell death. Science, 2019, 365, 799-803.	12.6	337
24	Eukaryotic Fatty Acylation Drives Plasma Membrane Targeting and Enhances Function of Several Type III Effector Proteins from Pseudomonas syringae. Cell, 2000, 101, 353-363.	28.9	308
25	A Species-Wide Inventory of NLR Genes and Alleles in Arabidopsis thaliana. Cell, 2019, 178, 1260-1272.e14.	28.9	265
26	The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 6496-6501.	7.1	250
27	The Disease Resistance Signaling Components <i>EDS1</i> and <i>PAD4</i> Are Essential Regulators of the Cell Death Pathway Controlled by <i>LSD1</i> in Arabidopsis. Plant Cell, 2001, 13, 2211-2224.	6.6	249
28	A single bacterial genus maintains root growth in a complex microbiome. Nature, 2020, 587, 103-108.	27.8	245
29	The Plant Microbiome: From Ecology to Reductionism and Beyond. Annual Review of Microbiology, 2020, 74, 81-100.	7.3	225
30	The EDS1–PAD4–ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature, 2021, 598, 495-499.	27.8	223
31	Arabidopsis RIN4 Negatively Regulates Disease Resistance Mediated by RPS2 and RPM1 Downstream or Independent of the NDR1 Signal Modulator and Is Not Required for the Virulence Functions of Bacterial Type III Effectors AvrRpt2 or AvrRpm1. Plant Cell, 2004, 16, 2822-2835.	6.6	222
32	Plant "helper―immune receptors are Ca ²⁺ -permeable nonselective cation channels. Science, 2021, 373, 420-425.	12.6	217
33	A gene encoding maize caffeoyl-CoA O-methyltransferase confers quantitative resistance to multiple pathogens. Nature Genetics, 2017, 49, 1364-1372.	21.4	199
34	Help wanted: helper NLRs and plant immune responses. Current Opinion in Plant Biology, 2019, 50, 82-94.	7.1	196
35	Design of synthetic bacterial communities for predictable plant phenotypes. PLoS Biology, 2018, 16, e2003962.	5.6	182
36	Genome-Wide Assessment of Efficiency and Specificity in CRISPR/Cas9 Mediated Multiple Site Targeting in Arabidopsis. PLoS ONE, 2016, 11, e0162169.	2.5	178

#	Article	IF	CITATIONS
37	Plant intracellular innate immune receptor Resistance to <i>Pseudomonas syringae pv. maculicola 1</i> (RPM1) is activated at, and functions on, the plasma membrane. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7619-7624.	7.1	176
38	Genome-wide identification of bacterial plant colonization genes. PLoS Biology, 2017, 15, e2002860.	5.6	173
39	Beyond pathogens: microbiota interactions with the plant immune system. Current Opinion in Microbiology, 2019, 49, 7-17.	5.1	171
40	Specific Threonine Phosphorylation of a Host Target by Two Unrelated Type III Effectors Activates a Host Innate Immune Receptor in Plants. Cell Host and Microbe, 2011, 9, 125-136.	11.0	168
41	Phospholipase-dependent signalling during the AvrRpm1- and AvrRpt2-induced disease resistance resistance responses inArabidopsis thaliana. Plant Journal, 2006, 47, 947-959.	5.7	160
42	Extracellular leucine-rich repeats as a platform for receptor/coreceptor complex formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8503-8507.	7.1	146
43	TIR-only protein RBA1 recognizes a pathogen effector to regulate cell death in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2053-E2062.	7.1	146
44	The growth–defense pivot: crisis management in plants mediated by LRR-RK surface receptors. Trends in Biochemical Sciences, 2014, 39, 447-456.	7.5	135
45	Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science, 2021, 371, .	12.6	133
46	Elucidating Bacterial Gene Functions in the Plant Microbiome. Cell Host and Microbe, 2018, 24, 475-485.	11.0	129
47	A Truncated NLR Protein, TIR-NBS2, Is Required for Activated Defense Responses in the exo70B1 Mutant. PLoS Genetics, 2015, 11, e1004945.	3.5	127
48	The effects of soil phosphorus content on plant microbiota are driven by the plant phosphate starvation response. PLoS Biology, 2019, 17, e3000534.	5.6	126
49	Two unequally redundant "helper" immune receptor families mediate Arabidopsis thaliana intracellular "sensor"Âimmune receptor functions. PLoS Biology, 2020, 18, e3000783.	5.6	125
50	Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence. Cell Host and Microbe, 2017, 21, 156-168.	11.0	115
51	Genetic Requirements for Signaling from an Autoactive Plant NB-LRR Intracellular Innate Immune Receptor. PLoS Genetics, 2013, 9, e1003465.	3.5	111
52	Molecular and Functional Analyses of a Maize Autoactive NB-LRR Protein Identify Precise Structural Requirements for Activity. PLoS Pathogens, 2015, 11, e1004674.	4.7	110
53	Signaling from the plasma-membrane localized plant immune receptor RPM1 requires self-association of the full-length protein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7385-E7394.	7.1	108
54	<scp>TNL</scp> â€mediated immunity in <i><scp>A</scp>rabidopsis</i> requires complex regulation of the redundant <i><scp>ADR</scp>1</i> gene family. New Phytologist, 2016, 210, 960-973.	7.3	98

#	Article	IF	CITATIONS
55	Two modes of pathogen recognition by plants. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 8575-8576.	7.1	93
56	A Plant Phosphoswitch Platform Repeatedly Targeted by Type III Effector Proteins Regulates the Output of Both Tiers of Plant Immune Receptors. Cell Host and Microbe, 2014, 16, 484-494.	11.0	90
57	Type III Effector Activation via Nucleotide Binding, Phosphorylation, and Host Target Interaction. PLoS Pathogens, 2007, 3, e48.	4.7	89
58	Specific modulation of the root immune system by a community of commensal bacteria. Proceedings of the United States of America, 2021, 118, .	7.1	81
59	Crystal Structures of the Type III Effector Protein AvrPphF and Its Chaperone Reveal Residues Required for Plant Pathogenesis. Structure, 2004, 12, 1669-1681.	3.3	73
60	Activation of a Plant NLR Complex through Heteromeric Association with an Autoimmune Risk Variant of Another NLR. Current Biology, 2017, 27, 1148-1160.	3.9	73
61	A complex immune response to flagellin epitope variation in commensal communities. Cell Host and Microbe, 2021, 29, 635-649.e9.	11.0	73
62	Plant immune system activation is necessary for efficient root colonization by auxin-secreting beneficial bacteria. Cell Host and Microbe, 2021, 29, 1507-1520.e4.	11.0	70
63	Retromer Contributes to Immunity-Associated Cell Death in Arabidopsis. Plant Cell, 2015, 27, 463-479.	6.6	67
64	<i>Pseudomonas syringae</i> type III effector HopAF1 suppresses plant immunity by targeting methionine recycling to block ethylene induction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3577-86.	7.1	66
65	Shared TIR enzymatic functions regulate cell death and immunity across the tree of life. Science, 2022, 377, .	12.6	59
66	Multilab EcoFAB study shows highly reproducible physiology and depletion of soil metabolites by a model grass. New Phytologist, 2019, 222, 1149-1160.	7.3	55
67	At <scp>SERPIN</scp> 1 is an inhibitor of the metacaspase At <scp>MC</scp> 1â€mediated cell death and autocatalytic processing <i>in planta</i> . New Phytologist, 2018, 218, 1156-1166.	7.3	47
68	AvrRpm1 Functions as an ADP-Ribosyl Transferase to Modify NOI-domain Containing Proteins, Including Arabidopsis and Soybean RPM1-interacting Protein 4. Plant Cell, 2019, 31, tpc.00020.2019.	6.6	45
69	Signatures of antagonistic pleiotropy in a bacterial flagellin epitope. Cell Host and Microbe, 2021, 29, 620-634.e9.	11.0	44
70	Arabidopsis AtMORC4 and AtMORC7 Form Nuclear Bodies and Repress a Large Number of Protein-Coding Genes. PLoS Genetics, 2016, 12, e1005998.	3.5	42
71	A host target of a bacterial cysteine protease virulence effector plays a key role in convergent evolution of plant innate immune system receptors. New Phytologist, 2020, 225, 1327-1342.	7.3	41
72	Suppressors of the Arabidopsis lsd5 Cell Death Mutation Identify Genes Involved in Regulating Disease Resistance Responses. Genetics, 1999, 151, 305-319.	2.9	40

#	Article	IF	CITATIONS
73	Variable Suites of Non-effector Genes Are Co-regulated in the Type III Secretion Virulence Regulon across the Pseudomonas syringae Phylogeny. PLoS Pathogens, 2014, 10, e1003807.	4.7	39
74	Learning Microbial Interaction Networks from Metagenomic Count Data. Journal of Computational Biology, 2016, 23, 526-535.	1.6	39
75	Con a ²⁺ â€ŧenating plant immune responses via calciumâ€permeable cation channels. New Phytologist, 2022, 234, 813-818.	7.3	39
76	Effector-Triggered Immune Response in <i>Arabidopsis thaliana</i> Is a Quantitative Trait. Genetics, 2016, 204, 337-353.	2.9	38
77	Phevamine A, a small molecule that suppresses plant immune responses. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9514-E9522.	7.1	37
78	Arabidopsis ADR1 helper NLR immune receptors localize and function at the plasma membrane in a phospholipid dependent manner. New Phytologist, 2021, 232, 2440-2456.	7.3	36
79	Concerted Action of Evolutionarily Ancient and Novel SNARE Complexes in Flowering-Plant Cytokinesis. Developmental Cell, 2018, 44, 500-511.e4.	7.0	35
80	Treasure Your Exceptions: Unusual Domains in Immune Receptors Reveal Host Virulence Targets. Cell, 2015, 161, 957-960.	28.9	32
81	A pentangular plant inflammasome. Science, 2019, 364, 31-32.	12.6	28
82	AvrRpm1 Missense Mutations Weakly Activate RPS2-Mediated Immune Response in Arabidopsis thaliana. PLoS ONE, 2012, 7, e42633.	2.5	25
83	Identification of beneficial and detrimental bacteria impacting sorghum responses to drought using multi-scale and multi-system microbiome comparisons. ISME Journal, 2022, 16, 1957-1969.	9.8	25
84	MT-Toolbox: improved amplicon sequencing using molecule tags. BMC Bioinformatics, 2014, 15, 284.	2.6	22
85	Root Microbiome Modulates Plant Growth Promotion Induced by Low Doses of Glyphosate. MSphere, 2020, 5, .	2.9	19
86	Tradict enables accurate prediction of eukaryotic transcriptional states from 100 marker genes. Nature Communications, 2017, 8, 15309.	12.8	18
87	PLANT SCIENCE: Nibbling at the Plant Cell Nucleus. Science, 2007, 315, 1088-1089.	12.6	14
88	New Horizons for Plant Translational Research. PLoS Biology, 2014, 12, e1001880.	5.6	10
89	CRAGE-Duet Facilitates Modular Assembly of Biological Systems for Studying Plant–Microbe Interactions. ACS Synthetic Biology, 2020, 9, 2610-2615.	3.8	9
90	Corrigendum to WagneretÂal.: Natural soil microbes alter flowering phenology and the intensity of selection on flowering time in a wild Arabidopsis relative. Ecology Letters, 2015, 18, 218-220.	6.4	8

#	Article	IF	CITATIONS
91	An integrated workflow for phenazine-modifying enzyme characterization. Journal of Industrial Microbiology and Biotechnology, 2018, 45, 567-577.	3.0	6
92	Molecular call-and-response: how Salmonella learns the gospel from its host. Trends in Microbiology, 2003, 11, 245-246.	7.7	2
93	Editorial overview: An embarrassment of riches. Current Opinion in Plant Biology, 2021, 62, 102105.	7.1	2
94	Title is missing!. , 2020, 18, e3000783.		0
95	Title is missing!. , 2020, 18, e3000783.		0
96	Title is missing!. , 2020, 18, e3000783.		0
97	Title is missing!. , 2020, 18, e3000783.		0
98	Title is missing!. , 2020, 18, e3000783.		0
99	Title is missing!. , 2020, 18, e3000783.		0