Maximiliano Gabriel Gutiérrez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8712245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A sandPIT for Salmonella to play with efferosomes. Cell Host and Microbe, 2022, 30, 141-143.	11.0	3
2	Visualizing Pyrazinamide Action by Live Single-Cell Imaging of Phagosome Acidification and Mycobacterium tuberculosis pH Homeostasis. MBio, 2022, 13, e0011722.	4.1	9
3	Intracellular niche switching as host subversion strategy of bacterial pathogens. Current Opinion in Cell Biology, 2022, 76, 102081.	5.4	7
4	Progress in robotics for combating infectious diseases. Science Robotics, 2021, 6, .	17.6	67
5	Macrophage-specific responses to human- and animal-adaptedÂtubercle bacilli reveal pathogen and host factors drivingÂmultinucleated cell formation. PLoS Pathogens, 2021, 17, e1009410.	4.7	19
6	Human stem cellâ€based models for studying hostâ€pathogen interactions. Cellular Microbiology, 2021, 23, e13335.	2.1	13
7	Intracellular localisation of Mycobacterium tuberculosis affects efficacy of the antibiotic pyrazinamide. Nature Communications, 2021, 12, 3816.	12.8	39
8	Rv2577 of Mycobacterium tuberculosis Is a Virulence Factor With Dual Phosphatase and Phosphodiesterase Functions. Frontiers in Microbiology, 2020, 11, 570794.	3.5	4
9	<i>M. tuberculosis</i> infection of human iPSDM reveals complex membrane dynamics during xenophagy evasion. Journal of Cell Science, 2020, 134, .	2.0	33
10	Biocompatible Magnetic Micro―and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. Advanced Materials, 2020, 32, e2001114.	21.0	86
11	Scalable and robust SARS-CoV-2 testing in an academic center. Nature Biotechnology, 2020, 38, 927-931.	17.5	32
12	Mycobacterium tuberculosis cords within lymphatic endothelial cells to evade host immunity. JCI Insight, 2020, 5, .	5.0	28
13	Correlative light electron ion microscopy reveals in vivo localisation of bedaquiline in Mycobacterium tuberculosis–infected lungs. PLoS Biology, 2020, 18, e3000879.	5.6	13
14	<scp>LRRK</scp> 2 activation controls the repair of damaged endomembranes in macrophages. EMBO Journal, 2020, 39, e104494.	7.8	116
15	The antibiotic bedaquiline activates host macrophage innate immune resistance to bacterial infection. ELife, 2020, 9, .	6.0	66
16	<i>Mycobacterium tuberculosis</i> requires glyoxylate shunt and reverse methylcitrate cycle for lactate and pyruvate metabolism. Molecular Microbiology, 2019, 112, 1284-1307.	2.5	74
17	Subcellular antibiotic visualization reveals a dynamic drug reservoir in infected macrophages. Science, 2019, 364, 1279-1282.	12.6	117
18	Granulomatous Inflammation in Tuberculosis and Sarcoidosis: Does the Lymphatic System Contribute to Disease?. BioEssays, 2019, 41, e1900086.	2.5	11

#	Article	IF	CITATIONS
19	Comparative fitness analysis of D-cycloserine resistant mutants reveals both fitness-neutral and high-fitness cost genotypes. Nature Communications, 2019, 10, 4177.	12.8	23
20	LRRK2 in Infection: Friend or Foe?. ACS Infectious Diseases, 2019, 5, 809-815.	3.8	30
21	<i>Mycobacterium tuberculosis</i> infection of host cells in space and time. FEMS Microbiology Reviews, 2019, 43, 341-361.	8.6	234
22	Structure-Based Design of MptpB Inhibitors That Reduce Multidrug-Resistant <i>Mycobacterium tuberculosis</i> Survival and Infection Burden in Vivo. Journal of Medicinal Chemistry, 2018, 61, 8337-8352.	6.4	35
23	LRRK2 is a negative regulator of <i>Mycobacterium tuberculosis</i> phagosome maturation in macrophages. EMBO Journal, 2018, 37, .	7.8	140
24	Phthiocerol dimycocerosates promote access to the cytosol and intracellular burden of Mycobacterium tuberculosis in lymphatic endothelial cells. BMC Biology, 2018, 16, 1.	3.8	156
25	3D correlative light and electron microscopy of cultured cells using serial blockface scanning electron microscopy. Journal of Cell Science, 2017, 130, 278-291.	2.0	84
26	<i>Mycobacterium tuberculosis</i> replicates within necrotic human macrophages. Journal of Cell Biology, 2017, 216, 583-594.	5.2	105
27	A Rab20-Dependent Membrane Trafficking Pathway Controls M.Âtuberculosis Replication by Regulating Phagosome Spaciousness and Integrity. Cell Host and Microbe, 2017, 21, 619-628.e5.	11.0	74
28	Reactive Oxygen Species Localization Programs Inflammation to Clear Microbes of Different Size. Immunity, 2017, 46, 421-432.	14.3	145
29	Mycobacterium bovis Requires P27 (LprG) To Arrest Phagosome Maturation and Replicate within Bovine Macrophages. Infection and Immunity, 2017, 85, .	2.2	25
30	Quantitative Spatiotemporal Analysis of Phagosome Maturation in Live Cells. Methods in Molecular Biology, 2017, 1519, 169-184.	0.9	10
31	Rab CTPases in Immunity and Inflammation. Frontiers in Cellular and Infection Microbiology, 2017, 7, 435.	3.9	92
32	Mycobacterium tuberculosis Modulates miR-106b-5p to Control Cathepsin S Expression Resulting in Higher Pathogen Survival and Poor T-Cell Activation. Frontiers in Immunology, 2017, 8, 1819.	4.8	45
33	Relationship Between HIV Coinfection, Interleukin 10 Production, andMycobacterium tuberculosisin Human Lymph Node Granulomas. Journal of Infectious Diseases, 2016, 214, 1309-1318.	4.0	29
34	The proneurotrophin receptor sortilin is required for Mycobacterium tuberculosis control by macrophages. Scientific Reports, 2016, 6, 29332.	3.3	25
35	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
36	Lymphatic endothelial cells are a replicative niche for Mycobacterium tuberculosis. Journal of Clinical Investigation, 2016, 126, 1093-1108.	8.2	75

#	Article	IF	CITATIONS
37	Interferon-γ–inducible Rab20 regulates endosomal morphology and EGFR degradation in macrophages. Molecular Biology of the Cell, 2015, 26, 3061-3070.	2.1	11
38	The innate immune response in human tuberculosis. Cellular Microbiology, 2015, 17, 1277-1285.	2.1	108
39	Experimental selection of longâ€ŧerm intracellular mycobacteria. Cellular Microbiology, 2014, 16, 1425-1440.	2.1	5
40	Study of Phagolysosome Biogenesis in Live Macrophages. Journal of Visualized Experiments, 2014, , .	0.3	6
41	Identification of an immune regulated phagosomal Rab cascade in macrophages. Journal of Cell Science, 2014, 127, 2071-82.	2.0	29
42	Polyketide synthase (PKS) reduces fusion of Legionella pneumophila-containing vacuoles with lysosomes and contributes to bacterial competitiveness during infection. International Journal of Medical Microbiology, 2014, 304, 1169-1181.	3.6	12
43	Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nature Immunology, 2014, 15, 1017-1025.	14.5	805
44	Study of the in vivo role of Mce2R, the transcriptional regulator of mce2 operon in Mycobacterium tuberculosis. BMC Microbiology, 2013, 13, 200.	3.3	25
45	Spatial distribution of phagolysosomes is independent of the regulation of lysosome position by Rab34. International Journal of Biochemistry and Cell Biology, 2013, 45, 2057-2065.	2.8	8
46	Human Î ² -Defensin 2 Induces Extracellular Accumulation of Adenosine in Escherichia coli. Antimicrobial Agents and Chemotherapy, 2013, 57, 4387-4393.	3.2	4
47	Functional role(s) of phagosomal Rab GTPases. Small GTPases, 2013, 4, 148-158.	1.6	95
48	Immunoglobulins drive terminal maturation of splenic dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2282-2287.	7.1	12
49	Lymph nodeâ€derived lymphatic endothelial cells express functional costimulatory molecules and impair dendritic cellâ€induced allogenic Tâ€cell proliferation. FASEB Journal, 2012, 26, 2835-2846.	0.5	63
50	Size-dependent mechanism of cargo sorting during lysosome-phagosome fusion is controlled by Rab34. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20485-20490.	7.1	59
51	Dendritic Cells Are Central Coordinators of the Host Immune Response to Staphylococcus aureus Bloodstream Infection. American Journal of Pathology, 2012, 181, 1327-1337.	3.8	54
52	Immune regulation of Rab proteins expression and intracellular transport. Journal of Leukocyte Biology, 2012, 92, 41-50.	3.3	42
53	Internalization, phagolysosomal biogenesis and killing of mycobacteria in enucleated epithelial cells. Cellular Microbiology, 2011, 13, 1234-1249.	2.1	8
54	Comparison of different methods for thin section EM analysis of <i>Mycobacterium smegmatis</i> . Journal of Microscopy, 2010, 237, 23-38.	1.8	70

#	Article	IF	CITATIONS
55	Salmonella vacuole maturation: PIKfyve leads the way. EMBO Journal, 2010, 29, 1316-1317.	7.8	1
56	Golgi-to-phagosome transport of acid sphingomyelinase and prosaposin is mediated by sortilin. Journal of Cell Science, 2010, 123, 2502-2511.	2.0	70
57	Role of lipids in killing mycobacteria by macrophages: evidence for NF-κB-dependent and -independent killing induced by different lipids. Cellular Microbiology, 2009, 11, 406-420.	2.1	41
58	Porins facilitate nitric oxide-mediated killing of mycobacteria. Microbes and Infection, 2009, 11, 868-875.	1.9	21
59	NF-κB Activation Controls Phagolysosome Fusion-Mediated Killing of Mycobacteria by Macrophages. Journal of Immunology, 2008, 181, 2651-2663.	0.8	109
60	The Autophagic Pathway: A Cell Survival Strategy Against the Bacterial Pore-Forming ToxinVibrio CholeraeCytolysin. Autophagy, 2007, 3, 363-365.	9.1	27
61	Protective role of autophagy against Vibrio cholerae cytolysin, a pore-forming toxin from V. cholerae. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 1829-1834.	7.1	162
62	The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cellular Microbiology, 2007, 9, 891-909.	2.1	210
63	Coxiella burnetii Hijacks the Autophagy Pathway to Survive. , 2006, , 179-197.		0
64	Dynamic life and death interactions between Mycobacterium smegmatis and J774 macrophages. Cellular Microbiology, 2006, 8, 939-960.	2.1	110
65	The Two Faces of Autophagy: Coxiella and Mycobacterium. Autophagy, 2006, 2, 162-164.	9.1	49
66	cAMP synthesis and degradation by phagosomes regulate actin assembly and fusion events: consequences for mycobacteria. Journal of Cell Science, 2006, 119, 3686-3694.	2.0	64
67	Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cellular Microbiology, 2005, 7, 981-993.	2.1	257
68	Autophagosomes: A Fast-Food Joint for Unexpected Guests. Autophagy, 2005, 1, 179-181.	9.1	15
69	Rab7 is required for the normal progression of the autophagic pathway in mammalian cells. Journal of Cell Science, 2004, 117, 2687-2697.	2.0	583
70	Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages. Cell, 2004, 119, 753-766.	28.9	1,996
71	Coxiella burnetii Localizes in a Rab7-Labeled Compartment with Autophagic Characteristics. Infection and Immunity, 2002, 70, 5816-5821.	2.2	219