
Bartolomeo Civalleri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8711908/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal–organic frameworks properties from hybrid density functional approximations. Journal of Chemical Physics, 2022, 156, 094706.	3.0	10
2	Desmarais <i>etÂal.</i> Reply:. Physical Review Letters, 2022, 128, 099702.	7.8	0
3	Defect Engineering in Metal–Organic Framework Nanocrystals: Implications for Mechanical Properties and Performance. ACS Applied Nano Materials, 2022, 5, 6398-6409.	5.0	26
4	The Structure of Monomeric Hydroxo-Cu ^{II} Species in Cu-CHA. A Quantitative Assessment. Journal of the American Chemical Society, 2022, 144, 13079-13083.	13.7	12
5	Simulation of nanosizing effects in the decomposition of Ca(BH4)2 through atomistic thin film models. Research on Chemical Intermediates, 2021, 47, 345-356.	2.7	7
6	Mechanisms for Pressure-Induced Isostructural Phase Transitions in EuO. Physical Review Letters, 2021, 126, 196404.	7.8	7
7	Metal–Organic Frameworks in Italy: From synthesis and advanced characterization to theoretical modeling and applications. Coordination Chemistry Reviews, 2021, 437, 213861.	18.8	10
8	17O-EPR determination of the structure and dynamics of copper single-metal sites in zeolites. Nature Communications, 2021, 12, 4638.	12.8	18
9	Tunable Fluorescein-Encapsulated Zeolitic Imidazolate Framework-8 Nanoparticles for Solid-State Lighting. ACS Applied Nano Materials, 2021, 4, 10321-10333.	5.0	20
10	Elucidating the Drug Release from Metal–Organic Framework Nanocomposites via In Situ Synchrotron Microspectroscopy and Theoretical Modeling. ACS Applied Materials & Interfaces, 2020, 12, 5147-5156.	8.0	43
11	Structural and Optical Properties of Struvite. Elucidating Structure of Infrared Spectrum in High Frequency Range. Journal of Physical Chemistry A, 2020, 124, 8668-8678.	2.5	18
12	Cost-effective composite methods for large-scale solid-state calculations. Faraday Discussions, 2020, 224, 292-308.	3.2	13
13	Challenges for large scale simulation: general discussion. Faraday Discussions, 2020, 224, 309-332.	3.2	2
14	Inelastic Neutron Scattering Investigation of MgCl ₂ Nanoparticle-Based Ziegler–Natta Catalysts for Olefin Polymerization. ACS Applied Nano Materials, 2020, 3, 11118-11128.	5.0	5
15	Application of Metal-Organic Frameworks and Covalent Organic Frameworks as (Photo)Active Material in Hybrid Photovoltaic Technologies. Energies, 2020, 13, 5602.	3.1	19
16	The CRYSTAL code, 1976–2020 and beyond, a long story. Journal of Chemical Physics, 2020, 152, 204111.	3.0	133
17	Analytical calculation of the solventâ€accessible surface area and its nuclear gradients by stereographic projection: A general approach for molecules, polymers, nanotubes, helices, and surfaces. Journal of Computational Chemistry, 2020, 41, 1464-1479.	3.3	7
18	Gaussian Basis Sets for Crystalline Solids: All-Purpose Basis Set Libraries vs System-Specific Optimizations. Journal of Chemical Theory and Computation, 2020, 16, 2192-2201.	5.3	18

BARTOLOMEO CIVALLERI

#	Article	IF	CITATIONS
19	Revisiting the identity of δ-MgCl2: Part II. Morphology and exposed surfaces studied by vibrational spectroscopies and DFT calculation. Journal of Catalysis, 2020, 387, 1-11.	6.2	25
20	Revisiting the identity of δ-MgCl2: Part I. Structural disorder studied by synchrotron X-ray total scattering. Journal of Catalysis, 2020, 385, 76-86.	6.2	51
21	Elucidating the Interaction of CO2 in the Giant Metal–Organic Framework MIL-100 through Large-Scale Periodic Ab Initio Modeling. Journal of Physical Chemistry C, 2019, 123, 28677-28687.	3.1	15
22	Cost-Effective Quantum Mechanical Approach for Predicting Thermodynamic and Mechanical Stability of Pure-Silica Zeolites. ACS Omega, 2019, 4, 1838-1846.	3.5	17
23	CRYSPLOT: A new tool to visualize physical and chemical properties of molecules, polymers, surfaces, and crystalline solids. Journal of Computational Chemistry, 2019, 40, 2329-2338.	3.3	16
24	Extending and assessing composite electronic structure methods to the solid state. Journal of Chemical Physics, 2019, 151, 121101.	3.0	21
25	Quasiâ€Harmonic Lattice Dynamics of a Prototypical Metal–Organic Framework. Advanced Theory and Simulations, 2019, 2, 1900093.	2.8	21
26	Frontiers in Modeling Metal–Organic Frameworks. Advanced Theory and Simulations, 2019, 2, 1900196.	2.8	3
27	Impact of Pressure and Temperature on the Broadband Dielectric Response of the HKUST-1 Metal–Organic Framework. Journal of Physical Chemistry C, 2019, 123, 29427-29435.	3.1	14
28	Understanding and Controlling the Dielectric Response of Metal–Organic Frameworks. ChemPlusChem, 2018, 83, 308-316.	2.8	36
29	Quantumâ€mechanical condensed matter simulations with CRYSTAL. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2018, 8, e1360.	14.6	1,277
30	Ab initio calculation of nonlinear optical properties for chiral carbon nanotubes. Second harmonic generation and dc-Pockels effect. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	4
31	Dielectric Properties of Zeolitic Imidazolate Frameworks in the Broad-Band Infrared Regime. Journal of Physical Chemistry Letters, 2018, 9, 2678-2684.	4.6	31
32	Hydrogen atoms in the diamond vacancy defect. A quantum mechanical vibrational analysis. Carbon, 2018, 129, 349-356.	10.3	18
33	Interfacing CRYSTAL/AMBER to Optimize QM/MM Lennard–Jones Parameters for Water and to Study Solvation of TiO2 Nanoparticles. Molecules, 2018, 23, 2958.	3.8	9
34	Low energy excitations in NiO based on a direct Δ-SCF approach. Journal of Physics Condensed Matter, 2018, 30, 495901.	1.8	16
35	Implicit Solvation Using a Generalized Finite-Difference Approach in CRYSTAL: Implementation and Results for Molecules, Polymers, and Surfaces. Journal of Chemical Theory and Computation, 2018, 14, 5969-5983.	5.3	8
36	Assessment of Density Functional Approximations for Highly Correlated Oxides: The Case of CeO ₂ and Ce ₂ O ₃ . Journal of Chemical Theory and Computation, 2018, 14, 4914-4927.	5.3	27

#	Article	IF	CITATIONS
37	Topical collection of papers collected on the occasion of the XLI congress of the theoretical chemists of Latin expression (CHITEL 2015 - Torino - Italy). Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	Ο
38	Effect of Benzoic Acid as a Modulator in the Structure of UiO-66: An Experimental and Computational Study. Journal of Physical Chemistry C, 2017, 121, 9312-9324.	3.1	176
39	Exploring the Linear Optical Properties of Borazine (B ₃ N ₃) Doped Graphenes. OD Flakes vs 2D Sheets. Journal of Physical Chemistry C, 2017, 121, 709-722.	3.1	24
40	Probing Dielectric Properties of Metal–Organic Frameworks: MIL-53(Al) as a Model System for Theoretical Predictions and Experimental Measurements via Synchrotron Far- and Mid-Infrared Spectroscopy. Journal of Physical Chemistry Letters, 2017, 8, 5035-5040.	4.6	39
41	Detecting Molecular Rotational Dynamics Complementing the Low-Frequency Terahertz Vibrations in a Zirconium-Based Metal-Organic Framework. Physical Review Letters, 2017, 118, 255502.	7.8	60
42	On the Use of Benchmarks for Multiple Properties. Computation, 2016, 4, 20.	2.0	7
43	The unique Raman fingerprint of boron nitride substitution patterns in graphene. Physical Chemistry Chemical Physics, 2016, 18, 20270-20275.	2.8	9
44	Assessment of Different Quantum Mechanical Methods for the Prediction of Structure and Cohesive Energy of Molecular Crystals. Journal of Chemical Theory and Computation, 2016, 12, 3340-3352.	5.3	85
45	Thermal properties of molecular crystals through dispersion-corrected quasi-harmonic ab initio calculations: the case of urea. Chemical Communications, 2016, 52, 1820-1823.	4.1	65
46	Discovering connections between terahertz vibrations and elasticity underpinning the collective dynamics of the HKUST-1 metal–organic framework. CrystEngComm, 2016, 18, 4303-4312.	2.6	96
47	Isoreticular zirconium-based metal–organic frameworks: discovering mechanical trends and elastic anomalies controlling chemical structure stability. Physical Chemistry Chemical Physics, 2016, 18, 9079-9087.	2.8	46
48	Computation of Second Harmonic Generation for Crystalline Urea and KDP. An ab Initio Approach through the Coupled Perturbed Hartree–Fock/Kohn–Sham Scheme. Journal of Chemical Theory and Computation, 2016, 12, 107-113.	5.3	31
49	Range-separated double-hybrid density-functional theory applied to periodic systems. Journal of Chemical Physics, 2015, 143, 102811.	3.0	21
50	Prediction Uncertainty of Density Functional Approximations for Properties of Crystals with Cubic Symmetry. Journal of Physical Chemistry A, 2015, 119, 5288-5304.	2.5	78
51	Thermodynamic modelling of Mg(BH4)2. Journal of Alloys and Compounds, 2015, 645, S64-S68.	5.5	34
52	Metal–Organic Frameworks and Hybrid Materials: From Fundamentals to Applications. CrystEngComm, 2015, 17, 197-198.	2.6	64
53	Quantum mechanical predictions to elucidate the anisotropic elastic properties of zeolitic imidazolate frameworks: ZIF-4 vs. ZIF-zni. CrystEngComm, 2015, 17, 375-382.	2.6	95
54	Communication: A combined periodic density functional and incremental wave-function-based approach for the dispersion-accounting time-resolved dynamics of 4He nanodroplets on surfaces: 4He/graphene. Journal of Chemical Physics, 2014, 141, 151102.	3.0	34

#	Article	IF	CITATIONS
55	Double-hybrid density-functional theory applied to molecular crystals. Journal of Chemical Physics, 2014, 141, 044105.	3.0	24
56	Identifying the Role of Terahertz Vibrations in Metal-Organic Frameworks: From Gate-Opening Phenomenon to Shear-Driven Structural Destabilization. Physical Review Letters, 2014, 113, 215502.	7.8	202
57	Hydrogen storage of Mg–Zn mixed metal borohydrides. Journal of Alloys and Compounds, 2014, 615, S702-S705.	5.5	20
58	C <scp>RYSTAL14</scp> : A program for the <i>ab initio</i> investigation of crystalline solids. International Journal of Quantum Chemistry, 2014, 114, 1287-1317.	2.0	1,151
59	Oxalyl dihydrazide polymorphism: a periodic dispersion-corrected DFT and MP2 investigation. CrystEngComm, 2014, 16, 102-109.	2.6	23
60	Benchmarking dispersion and geometrical counterpoise corrections for costâ€effective largeâ€scale DFT calculations of water adsorption on graphene. Journal of Computational Chemistry, 2014, 35, 1789-1800.	3.3	24
61	Carbon Dioxide Adsorption in Amineâ€Functionalized Mixedâ€Ligand Metal–Organic Frameworks of UiOâ€66 Topology. ChemSusChem, 2014, 7, 3382-3388.	6.8	83
62	Investigation on the Decomposition Enthalpy of Novel Mixed Mg _(1–<i>x</i>) Zn _{<i>x</i>} (BH ₄) ₂ Borohydrides by Means of Periodic DFT Calculations. Journal of Physical Chemistry C, 2014, 118, 23468-23475.	3.1	12
63	Fundamental Aspects of H ₂ S Adsorption on CPO-27-Ni. Journal of Physical Chemistry C, 2013, 117, 15615-15622.	3.1	85
64	Geometrical Correction for the Inter- and Intramolecular Basis Set Superposition Error in Periodic Density Functional Theory Calculations. Journal of Physical Chemistry A, 2013, 117, 9282-9292.	2.5	123
65	Theoretical and experimental study on Mg(BH4)2–Zn(BH4)2 mixed borohydrides. Journal of Alloys and Compounds, 2013, 580, S282-S286.	5.5	27
66	IR spectroscopy of crystalline polymers from ab initio calculations: Nylon 6,6. Vibrational Spectroscopy, 2013, 66, 83-92.	2.2	32
67	Stability vs. reactivity: understanding the adsorption properties of Ni3(BTP)2 by experimental and computational methods. Dalton Transactions, 2013, 42, 6450.	3.3	27
68	Combined study of structural properties on metal-organic frameworks with same topology but different linkers or metal. Journal of Physics: Conference Series, 2013, 430, 012134.	0.4	8
69	Anisotropic displacement parameters for molecular crystals from periodic Hartree–Fock and density functional theory calculations. Acta Crystallographica Section A: Foundations and Advances, 2013, 69, 309-321.	0.3	49
70	Exceptionally Low Shear Modulus in a Prototypical Imidazole-Based Metal-Organic Framework. Physical Review Letters, 2012, 108, 095502.	7.8	210
71	Polarizability and charge density distribution in crystalline urea. AIP Conference Proceedings, 2012, , .	0.4	1
72	Theoretical and experimental characterization of pyrazolato-based Ni(ii) metal–organic frameworks. Journal of Materials Chemistry, 2012, 22, 22592.	6.7	17

#	Article	IF	CITATIONS
73	Ab Initio Calculation of the Crystalline Structure and IR Spectrum of Polymers: Nylon 6 Polymorphs. Journal of Physical Chemistry B, 2012, 116, 8299-8311.	2.6	56
74	H ₂ storage in isostructural UiO-67 and UiO-66 MOFs. Physical Chemistry Chemical Physics, 2012, 14, 1614-1626.	2.8	415
75	Structure–activity relationships of simple molecules adsorbed on CPO-27-Ni metal–organic framework: In situ experiments vs. theory. Catalysis Today, 2012, 182, 67-79.	4.4	67
76	Intermolecular Interaction Energies in Molecular Crystals: Comparison and Agreement of Localized MÃ,ller–Plesset 2, Dispersion-Corrected Density Functional, and Classical Empirical Two-Body Calculations. Journal of Physical Chemistry A, 2011, 115, 11179-11186.	2.5	169
77	Heats of Adsorption of CO and CO ₂ in Metal–Organic Frameworks: Quantum Mechanical Study of CPO-27-M (M = Mg, Ni, Zn). Journal of Physical Chemistry C, 2011, 115, 21777-21784.	3.1	122
78	Approaching the theoretical limit in periodic local MP2 calculations with atomic-orbital basis sets: The case of LiH. Journal of Chemical Physics, 2011, 134, 214105.	3.0	49
79	Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory. Chemistry of Materials, 2011, 23, 1700-1718.	6.7	1,420
80	High-pressure thermo-elastic properties of beryl (Al4Be6Si12O36) from ab initio calculations, and observations about the source of thermal expansion. Physics and Chemistry of Minerals, 2011, 38, 223-239.	0.8	52
81	Ab-Initio Fully Periodic Characterization of MOF-74-M (M = Mg, Mn, Ni, Zn): Structures and Enthalpies of Adsorption. Materials Research Society Symposia Proceedings, 2011, 1366, 1.	0.1	0
82	<i>Ab initio</i> periodic study of the conformational behavior of glycine helical homopeptides. Journal of Computational Chemistry, 2010, 31, 1777-1784.	3.3	11
83	Flexibility in a Metal–Organic Framework Material Controlled by Weak Dispersion Forces: The Bistability of MILâ€53(Al). Angewandte Chemie, 2010, 122, 7663-7665.	2.0	35
84	Flexibility in a Metal–Organic Framework Material Controlled by Weak Dispersion Forces: The Bistability of MILâ€53(Al). Angewandte Chemie - International Edition, 2010, 49, 7501-7503.	13.8	158
85	Electron-density and electrostatic-potential features of orthorhombic chlorine trifluoride. Mendeleev Communications, 2010, 20, 161-164.	1.6	26
86	On the performance of eleven DFT functionals in the description of the vibrational properties of aluminosilicates. International Journal of Quantum Chemistry, 2010, 110, 406-415.	2.0	121
87	Performance of 12 DFT functionals in the study of crystal systems: Al ₂ SiO ₅ orthosilicates and Al hydroxides as a case study. International Journal of Quantum Chemistry, 2010, 110, 2260-2273.	2.0	42
88	Magnetic interactions in Ca ₃ Fe ₂ Ge ₃ O ₁₂ and Ca ₃ Cr ₂ Ge ₃ O ₁₂ garnets. An ab initio allâ€electron quantum mechanical simulation. International Journal of Quantum Chemistry, 2010, 110, 2192-2201.	2.0	6
89	Periodic local MÃ,ller–Plesset second order perturbation theory method applied to molecular crystals: Study of solid NH3 and CO2 using extended basis sets. Journal of Chemical Physics, 2010, 132, 134706.	3.0	81
90	Thermo-chemical and thermo-physical properties of the high-pressure phase anhydrous B (Mg14Si5O24): An ab-initio all-electron investigation. American Mineralogist, 2010, 95, 563-573.	1.9	50

#	Article	IF	CITATIONS
91	Hydrophobic Behavior of Dehydroxylated Silica Surfaces: A B3LYP Periodic Study. Journal of Physical Chemistry C, 2010, 114, 19984-19992.	3.1	23
92	Comment on "Accurate Hartree-Fock energy of extended systems using large Gaussian basis sets― Physical Review B, 2010, 81, .	3.2	13
93	Computational and Experimental Studies on the Adsorption of CO, N ₂ , and CO ₂ on Mg-MOF-74. Journal of Physical Chemistry C, 2010, 114, 11185-11191.	3.1	307
94	Periodic density functional theory calculations for 3-dimensional polyacetylene with empirical dispersion terms. Physical Chemistry Chemical Physics, 2010, 12, 3289.	2.8	23
95	Role of dispersive interactions in the CO adsorption on MgO(001): periodic B3LYP calculations augmented with an empirical dispersion term. Physical Chemistry Chemical Physics, 2010, 12, 6382.	2.8	60
96	Physisorption of aromatic organic contaminants at the surface of hydrophobic/hydrophilic silica geosorbents: a B3LYP-D modeling study. Physical Chemistry Chemical Physics, 2010, 12, 6357.	2.8	60
97	Ab initio study of van der Waals and hydrogen-bonded molecular crystals with a periodic local-MP2 method. CrystEngComm, 2010, 12, 2429.	2.6	49
98	The calculation of the static first and second susceptibilities of crystalline urea: A comparison of Hartree–Fock and density functional theory results obtained with the periodic coupled perturbed Hartree–Fock/Kohn–Sham scheme. Journal of Chemical Physics, 2009, 131, 214704.	3.0	43
99	Ab initio modeling of layered materials with the CRYSTAL code: an overview. Zeitschrift Für Kristallographie, 2009, 224, 241-250.	1.1	8
100	Thermophysical properties of the α‑'β‑'γ polymorphs of Mg2SiO4: a computational study. Physics and Chemistry of Minerals, 2009, 36, 87-106.	0.8	44
101	Quantum-mechanical ab initio simulation of the Raman and IR spectra of Mn3Al2Si3O12 spessartine. Physics and Chemistry of Minerals, 2009, 36, 415-420.	0.8	19
102	Ab-initio calculation of elastic constants of crystalline systems with the CRYSTAL code. Computer Physics Communications, 2009, 180, 1753-1759.	7.5	178
103	Thermo-chemical and thermo-physical properties of stishovite: An ab-initio all-electron investigation. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33, 457-468.	1.6	27
104	Role of dispersive interactions in layered materials: a periodic B3LYP and B3LYP-D* study of Mg(OH)2, Ca(OH)2 and kaolinite. Journal of Materials Chemistry, 2009, 19, 2564.	6.7	75
105	Normal Vibrational Analysis of the Syndiotactic Polystyrene s(2/1)2 Helix. Journal of Physical Chemistry B, 2009, 113, 5059-5071.	2.6	78
106	A review of the computational studies of proton- and metal-exchanged chabazites as media for molecular hydrogen storage performed with the CRYSTAL code. International Journal of Hydrogen Energy, 2008, 33, 746-754.	7.1	20
107	Testing the combination of Hartree–Fock exchange and Wilson–Levy correlation for weakly bonded extended systems. Chemical Physics Letters, 2008, 451, 287-292.	2.6	15
108	Structure and stability of aluminium trihydroxides bayerite and gibbsite: A quantum mechanical ab initio study with the Crystal06 code. Chemical Physics Letters, 2008, 465, 220-225.	2.6	46

BARTOLOMEO CIVALLERI

#	Article	IF	CITATIONS
109	Hydroxylated crystalline edingtonite silica faces as models for the amorphous silica surface. Journal of Physics: Conference Series, 2008, 117, 012026.	0.4	13
110	B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm, 2008, 10, 405-410.	2.6	775
111	Neutral vs Zwitterionic Glycine Forms at the Water/Silica Interface: Structure, Energies, and Vibrational Features from B3LYP Periodic Simulations. Langmuir, 2008, 24, 14027-14034.	3.5	47
112	FFSiOH: a New Force Field for Silica Polymorphs and Their Hydroxylated Surfaces Based on Periodic B3LYP Calculations. Chemistry of Materials, 2008, 20, 2522-2531.	6.7	68
113	<i>Ab Initio</i> investigation of the interaction of H ₂ with lithium exchanged low-silica chabazites. Journal of Physics: Conference Series, 2008, 117, 012012.	0.4	3
114	Periodic B3LYP study of hydroxyapatite (001) surface modelled by thin layer slabs. European Journal of Mineralogy, 2007, 19, 757-767.	1.3	34
115	Ab-initio thermal physics and Cr-isotopic fractionation of MgCr2O4. American Mineralogist, 2007, 92, 98-108.	1.9	8
116	An ab initio parameterized interatomic force field for hydroxyapatite. Journal of Materials Chemistry, 2007, 17, 2061.	6.7	32
117	A comparison between plane wave and Gaussian-type orbital basis sets for hydrogen bonded systems: Formic acid as a test case. Journal of Chemical Physics, 2007, 127, 154102.	3.0	72
118	Uniplanar Orientations as a Tool To Assign Vibrational Modes of Polymer Chain. Macromolecules, 2007, 40, 3895-3897.	4.8	33
119	Interaction of H2with Alkali-Metal-Exchanged Zeolites:  a Quantum Mechanical Study. Journal of Physical Chemistry C, 2007, 111, 2505-2513.	3.1	47
120	Normal Vibrational Analysis of a trans-Planar Syndiotactic Polystyrene Chain. Journal of Physical Chemistry B, 2007, 111, 6327-6335.	2.6	47
121	Theoretical Study of Molecular Hydrogen Adsorption in Mg-Exchanged Chabazite. Journal of Physical Chemistry C, 2007, 111, 1871-1873.	3.1	34
122	The Vibrational Spectrum of α-AlOOH Diaspore:  An Ab Initio Study with the CRYSTAL Code. Journal of Physical Chemistry B, 2007, 111, 9337-9346.	2.6	66
123	Ab Initio Investigation of Structure and Cohesive Energy of Crystalline Urea. Journal of Physical Chemistry B, 2007, 111, 26-33.	2.6	87
124	A computational multiscale strategy to the study of amorphous materials. Theoretical Chemistry Accounts, 2007, 117, 933-942.	1.4	32
125	Interaction of Glycine with Isolated Hydroxyl Groups at the Silica Surface:  First Principles B3LYP Periodic Simulation. Langmuir, 2006, 22, 6593-6604.	3.5	83
126	An Ab Initio Periodic Study of Acidic Chabazite as a Candidate for Dihydrogen Storage. Journal of Physical Chemistry B, 2006, 110, 10467-10474.	2.6	23

#	Article	IF	CITATIONS
127	Influence of the exchange-correlation functional in all-electron calculations of the vibrational frequencies of corundum (α-Al2O3). International Journal of Quantum Chemistry, 2006, 106, 1703-1714.	2.0	71
128	Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Physical Chemistry Chemical Physics, 2006, 8, 2464.	2.8	153
129	Ab-initio prediction of materials properties with CRYSTAL: MOF-5 as a case study. CrystEngComm, 2006, 8, 364-371.	2.6	187
130	A quantum-mechanical study of the vinyl fluoride adsorbed on the rutile TiO2(110) surface. Surface Science, 2006, 600, 305-317.	1.9	43
131	Quantum-mechanical calculation of the vibrational spectrum of beryl (Al4Be6Si12O36) at the Γ point. Physics and Chemistry of Minerals, 2006, 33, 519-532.	0.8	24
132	Raman and infrared vibrational frequencies and elastic properties of solid BaFCl calculated with various Hamiltonians: anab initiostudy. Journal of Physics Condensed Matter, 2005, 17, 535-548.	1.8	14
133	CRYSTAL: a computational tool for the ab initio study of the electronic properties of crystals. Zeitschrift Fur Kristallographie - Crystalline Materials, 2005, 220, .	0.8	824
134	Carbon monoxide adsorption on alkali and proton-exchanged chabazite: anab-initioperiodic study using the CRYSTAL code. Molecular Physics, 2005, 103, 2559-2571.	1.7	32
135	Ab Initio Quantum Simulation in Solid State Chemistry. Reviews in Computational Chemistry, 2005, , 1-125.	1.5	120
136	The Interpretation of the Short Range Disorder in the Fluorene-TCNE Crystal Structure. International Journal of Molecular Sciences, 2004, 5, 93-100.	4.1	13
137	The katoite hydrogarnet Si-free Ca3Al2([OH]4)3: A periodic Hartree–Fock and B3-LYP study. Journal of Chemical Physics, 2004, 121, 1005-1013.	3.0	14
138	Entrapping Molecules in Zeolites Nanocavities: A Thermodynamic and Ab-Initio Study. Origins of Life and Evolution of Biospheres, 2004, 34, 69-77.	1.9	13
139	The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code. Journal of Computational Chemistry, 2004, 25, 888-897.	3.3	796
140	Structural, Electronic, and Vibrational Properties of the Tiâ^'Oâ^'Ti Quantum Wires in the Titanosilicate ETS-10. Journal of Physical Chemistry B, 2004, 108, 1328-1336.	2.6	79
141	Cation Selectivity in Alkali-Exchanged Chabazite:Â An ab Initio Periodic Study. Chemistry of Materials, 2003, 15, 3996-4004.	6.7	83
142	Acid Strength of Low-Valence Dopant Ions in Microporous Zeolites and AlPOs. Journal of Physical Chemistry B, 2003, 107, 11866-11870.	2.6	9
143	Structural, electronic, and vibrational properties of solid Sr(OH)2, calculated with different Hamiltonians. Journal of Chemical Physics, 2003, 119, 1045-1052.	3.0	23
144	Hydrogarnet defect in chabazite and sodalite zeolites: A periodic Hartree–Fock and B3-LYP study. Journal of Chemical Physics, 2002, 117, 5337-5346.	3.0	44

BARTOLOMEO CIVALLERI

#	Article	IF	CITATIONS
145	New ultrasoft pseudopotentials for the study of silicates. Molecular Simulation, 2002, 28, 213-237.	2.0	9
146	Coupling of framework modes and adsorbate vibrations for CO2 molecularly adsorbed on alkali ZSM-5 zeolites: Mid- and far-infrared spectroscopy andab initiomodeling. Journal of Chemical Physics, 2002, 117, 10274-10282.	3.0	52
147	Adducts of alkali-metal ions with the CC triple bond: an experimental and ab initio study. Physical Chemistry Chemical Physics, 2002, 4, 1658-1664.	2.8	10
148	Polarization properties of ZnO and BeO: Anab initiostudy through the Berry phase and Wannier functions approaches. Physical Review B, 2001, 65, .	3.2	213
149	(CD3CN)2H+ adducts in anhydrous H3PW12O40: a FTIR study. Physical Chemistry Chemical Physics, 2001, 3, 1345-1347.	2.8	13
150	Hartree–Fock geometry optimisation of periodic systems with the Crystal code. Chemical Physics Letters, 2001, 348, 131-138.	2.6	294
151	Modeling physisorption with the ONIOM method: the case of NH3 at the isolated hydroxyl group of the silica surface. Chemical Physics Letters, 2001, 341, 625-632.	2.6	54
152	H-Chabazite with variable Si/Al ratio: stability and OH vibrational frequency computed in a periodic LCAO B3-LYP approach. Chemical Physics Letters, 2000, 318, 247-255.	2.6	52
153	First Principles Calculations of the Adsorption of NH3on a Periodic Model of the Silica Surface. Journal of Physical Chemistry B, 2000, 104, 9491-9499.	2.6	75
154	Structure and Energetics of SiO2Polymorphs by Quantum-Mechanical and Semiclassical Approaches. Journal of Physical Chemistry B, 2000, 104, 7259-7265.	2.6	40
155	Experimental and Quantum Chemical Studies on the Adsorption of Carbon Dioxide on Alkali-Metal-Exchanged ZSM-5 Zeolites. Journal of Physical Chemistry B, 2000, 104, 10978-10988.	2.6	156
156	Cage-like clusters as models for the hydroxyls of silica: ab initio calculation of 1H and 29Si NMR chemical shifts. Chemical Physics Letters, 1999, 299, 443-450.	2.6	33
157	Quantum Mechanical ab Initio Characterization of a Simple Periodic Model of the Silica Surface. Journal of Physical Chemistry B, 1999, 103, 2165-2171.	2.6	74
158	Spectroscopic and thermodynamic study of the H-bonding of olefins onto the isolated hydroxyl of amorphous silica. Physical Chemistry Chemical Physics, 1999, 1, 4649-4654.	2.8	13
159	Periodic B3-LYP calculations on H-Edingtonites, both alone and interacting with acetylene. Physical Chemistry Chemical Physics, 1999, 1, 545-553.	2.8	31
160	Cagelike Clusters as Models for the Isolated Hydroxyls of Silica:ÂAb InitioB3-LYP Calculations of the Interaction with Ammoniaâ€. Langmuir, 1999, 15, 5829-5835.	3.5	25
161	A periodic ab initio study of the structure and relative stability of silica polymorphs. Chemical Physics Letters, 1998, 292, 394-402.	2.6	74
162	Vibrational modes of isolated hydroxyls of silica computed ab initio in a cluster approach. Chemical Physics Letters, 1998, 294, 103-108.	2.6	49

10

#	Article	IF	CITATIONS
163	H3SiOH and F3SiOH as models for isolated hydroxyl groups of amorphous silica: an ab initio study of the adducts with dihydrogen and carbon monoxide. Surface Science, 1998, 412-413, 141-157.	1.9	9
164	HCl and HClâ^'Base Adducts in Silicalite Channels as Models of Acidâ^'Base Interactions in Zeolites:Â An IR and Theoretical Study. Journal of Physical Chemistry B, 1998, 102, 10753-10764.	2.6	14
165	Ab Initio Study of the Adducts of Small Molecules with the Isolated Hydroxyl of Silica and the BrĄ̃,nsted Site in Zeolites:  A Comparison between B3-LYP and MP2 Methods. Journal of Physical Chemistry B, 1998, 102, 2373-2382.	2.6	55
166	Repulsive and attractive interactions between Brnsted sites and hydrocarbon species with partial carbocationic character in restricted spaces: comparison of IR results and ab initiocalculations. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3893-3898.	1.7	14
167	Density functional study of hydrogen-bonded systems: Energetic and vibrational features of some gas-phase adducts of hydrogen fluoride. Computational and Theoretical Chemistry, 1997, 419, 227-238.	1.5	35
168	Density functional study of hydrogen-bonded systems: from gas-phase adducts to catalytically relevant systems. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1997, 19, 1765-1771.	0.4	2
169	On choosing the best density functional approximation. Chemical Modelling, 0, , 168-185.	0.4	38