
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8711040/publications.pdf Version: 2024-02-01

Ι ΠΟΙΔΝΙ ΒΑΙΑ

#	Article	IF	CITATIONS
1	Structural investigations of copper doped B2O3–Bi2O3 glasses with high bismuth oxide content. Journal of Non-Crystalline Solids, 2002, 303, 379-386.	3.1	213
2	Vibrational spectroscopy of highly iron doped B2O3–Bi2O3 glass systems. Journal of Non-Crystalline Solids, 2003, 324, 109-117.	3.1	167
3	Controlling gold nanoparticle assemblies for efficient surface-enhanced Raman scattering and localized surface plasmon resonance sensors. Nanotechnology, 2007, 18, 255702.	2.6	124
4	Gold Films Deposited over Regular Arrays of Polystyrene Nanospheres as Highly Effective SERS Substrates from Visible to NIR. Journal of Physical Chemistry B, 2006, 110, 23982-23986.	2.6	118
5	Structural properties of silver nanoclusters–phosphate glass composites. Vibrational Spectroscopy, 2007, 43, 313-318.	2.2	110
6	Probing the enhancement mechanisms of SERS with p-aminothiophenol molecules adsorbed on self-assembled gold colloidal nanoparticles. Chemical Physics Letters, 2006, 422, 127-132.	2.6	103
7	Experimental assessment of the phonon confinement in TiO ₂ anatase nanocrystallites by Raman spectroscopy. Journal of Raman Spectroscopy, 2012, 43, 876-883.	2.5	84
8	Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings. Applied Physics Letters, 2006, 88, 143121.	3.3	83
9	Raman and IR spectroscopic studies of manganese doped GeO 2 –Bi 2 O 3 glasses. Journal of Molecular Structure, 2001, 599, 9-13.	3.6	81
10	The photocatalytic activity of TiO2/WO3/noble metal (Au or Pt) nanoarchitectures obtained by selective photodeposition. Catalysis Today, 2013, 208, 19-27.	4.4	81
11	Gold nanostructured films deposited on polystyrene colloidal crystal templates for surface-enhanced Raman spectroscopy. Chemical Physics Letters, 2005, 404, 3-8.	2.6	80
12	Structural characteristics of B2O3?Bi2O3 glasses with high transition metal oxide content. Journal of Raman Spectroscopy, 2005, 36, 262-266.	2.5	75
13	Active Packaging System Based on Ag/TiO ₂ Nanocomposite Used for Extending the Shelf Life of Bread. Chemical and Microbiological Investigations. Packaging Technology and Science, 2015, 28, 271-284.	2.8	69
14	Photocatalytic hydrogen production using TiO2–Pt aerogels. Chemical Engineering Journal, 2014, 242, 96-101.	12.7	66
15	Confocal Micro-Raman Spectroscopy: Theory and Application to a Hybrid Polymer Coating. Applied Spectroscopy, 2002, 56, 536-540.	2.2	60
16	Structural and morphological properties of silver nanoparticles–phosphate glass composites. Chemical Physics, 2006, 327, 63-69.	1.9	57
17	Synthesis and nanostructural characterization of TiO2 aerogels for photovoltaic devices. Thin Solid Films, 2006, 511-512, 512-516.	1.8	53
18	Silver effect on the structure of SiO2-CaO-P2O5 ternary system. Materials Science and Engineering C, 2012, 32, 178-183.	7.3	53

#	Article	IF	CITATIONS
19	The effect of the synthesis temperature and duration on the morphology and photocatalytic activity of BiOX (X = Cl, Br, I) materials. Applied Surface Science, 2019, 479, 745-756.	6.1	53
20	Synthesis, structural characterization, and photocatalytic properties of iron-doped TiO2 aerogels. Journal of Materials Science, 2009, 44, 358-364.	3.7	52
21	Skin wound regeneration with bioactive glass-gold nanoparticles ointment. Biomedical Materials (Bristol), 2019, 14, 025011.	3.3	51
22	Confocal Raman investigations on hybrid polymer coatings. Vibrational Spectroscopy, 2002, 29, 245-249.	2.2	46
23	Bismuth doped carbon xerogel nanocomposite incorporated in chitosan matrix for ultrasensitive voltammetric detection of Pb(II) and Cd(II). Sensors and Actuators B: Chemical, 2015, 220, 712-719.	7.8	46
24	Bioactive and biocompatible copper containing glass-ceramics with remarkable antibacterial properties and high cell viability designed for future in vivo trials. Biomaterials Science, 2016, 4, 1252-1265.	5.4	42
25	Title is missing!. Journal of Sol-Gel Science and Technology, 2003, 26, 369-373.	2.4	41
26	The study of the structure and bioactivity of the B ₂ O ₃ • Na ₂ O • P ₂ O _{5Raman Spectroscopy, 2013, 44, 1187-1194.}	> systæm. Jo	our isa l of
27	TiO2/WO3/Au nanoarchitectures' photocatalytic activity, "from degradation intermediates to catalysts' structural peculiaritiesâ€, Part I: Aeroxide P25 based composites. Applied Catalysis B: Environmental, 2014, 147, 508-517.	20.2	37
28	UV Light-Assisted Degradation of Methyl Orange, Methylene Blue, Phenol, Salicylic Acid, and Rhodamine B: Photolysis Versus Photocatalyis. Water, Air, and Soil Pollution, 2017, 228, 1.	2.4	37
29	Surface-Enhanced Raman Scattering and Density Functional Theoretical Study of Anthranil Adsorbed on Colloidal Silver Particles. Journal of Physical Chemistry B, 2004, 108, 17491-17496.	2.6	36
30	Multilayer Structures of Selfâ€Assembled Gold Nanoparticles as a Unique SERS and SEIRA Substrate. ChemPhysChem, 2009, 10, 1106-1111.	2.1	35
31	Bioactivity and protein attachment onto bioactive glasses containing silver nanoparticles. Journal of Biomedical Materials Research - Part A, 2012, 100A, 1179-1186.	4.0	34
32	Preparation of TiO2/WO3 composite photocatalysts by the adjustment of the semiconductors' surface charge. Materials Science in Semiconductor Processing, 2016, 42, 66-71.	4.0	34
33	The influence of manganese cations on the structure of lead high bismuthate glasses and glass ceramics. Vibrational Spectroscopy, 2005, 39, 127-130.	2.2	32
34	Changes in the microbiological and chemical characteristics of white bread during storage in paper packages modified with Ag/TiO2–SiO2, Ag/N–TiO2 or Au/TiO2. Food Chemistry, 2016, 197, 790-798.	8.2	31
35	Efficient dual functionality of highly porous nanocomposites based on TiO2 and noble metal particles. Journal of Alloys and Compounds, 2011, 509, 2672-2678.	5.5	30
36	Bioactivity evolution of the surface functionalized bioactive glasses. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 261-272.	3.4	30

#	Article	IF	CITATIONS
37	Synthesis of Shape-Tailored WO3 Micro-/Nanocrystals and the Photocatalytic Activity of WO3/TiO2 Composites. Materials, 2016, 9, 258.	2.9	28
38	Addressing the optimal silver content in bioactive glass systems in terms of BSA adsorption. Journal of Materials Chemistry B, 2014, 2, 5799-5808.	5.8	27
39	Hydrothermal crystallization of bismuth oxybromide (BiOBr) in the presence of different shape controlling agents. Applied Surface Science, 2020, 518, 146184.	6.1	27
40	Dynamic changes on the surface during the calcination of rapid heat treated TiO2 photocatalysts. Applied Catalysis B: Environmental, 2012, 111-112, 595-604.	20.2	26
41	TiO2/WO3/Au nanoarchitectures' photocatalytic activity "from degradation intermediates to catalysts' structural peculiarities―Part II: Aerogel based composites – fine details by spectroscopic means. Applied Catalysis B: Environmental, 2014, 148-149, 589-600.	20.2	26
42	Versatile self-assembled graphene oxide membranes obtained under ambient conditions by using a water–ethanol suspension. Journal of Materials Chemistry A, 2017, 5, 2132-2142.	10.3	26
43	The silver influence on the structure and antibacterial properties of the bioactive 10B2O3â^'30Na2Oâ^'60P2O2 glass. Journal of Non-Crystalline Solids, 2014, 402, 182-186.	3.1	25
44	Polyhedral Pt vs. spherical Pt nanoparticles on commercial titanias: Is shape tailoring a guarantee of achieving high activity?. Journal of Catalysis, 2015, 325, 156-167.	6.2	24
45	Correlating the visible light photoactivity of N-doped TiO2 with brookite particle size and bridged-nitro surface species. Catalysis Communications, 2012, 17, 1-7.	3.3	23
46	Shape-controlled agglomeration of TiO 2 nanoparticles. New insights on polycrystallinity vs. single crystals in photocatalysis. Ceramics International, 2016, 42, 3077-3087.	4.8	22
47	Novel synthesis approaches for WO3â€TiO2/MWCNT composite photocatalysts- problematic issues of photoactivity enhancement factors. Catalysis Today, 2018, 300, 28-38.	4.4	22
48	Structure–property correlations in hybrid sol–gel coatings as revealed by Raman spectroscopy. Optical Materials, 2004, 26, 173-179.	3.6	20
49	Photocatalytic, Morphological and Structural Properties of the TiO2-SiO2-Ag Porous Structures Based System. Materials, 2015, 8, 1059-1073.	2.9	20
50	Novel bioactive glass-AuNP composites for biomedical applications. Materials Science and Engineering C, 2017, 76, 752-759.	7.3	20
51	Porous nanoarchitectures based on TiO2 aerogels and Au particles as potential SERS sensor for monitoring of water quality. Vibrational Spectroscopy, 2008, 48, 206-209.	2.2	19
52	Behavior of gold nanoparticles in a titania aerogel matrix: Photocatalytic activity assessment and structure investigations. Chinese Journal of Catalysis, 2013, 34, 734-740.	14.0	19
53	Detailed Spectroscopic and Structural Analysis of TiO2/WO3 Composite Semiconductors. Journal of Spectroscopy, 2018, 2018, 1-7.	1.3	19
54	Characterization of Diffusion Processes of Pharmacologically Relevant Molecules through Polydimethylsiloxane Membranes by Confocal Micro-resonance Raman Spectroscopy. ChemPhysChem, 2003, 4, 296-299.	2.1	18

#	Article	IF	CITATIONS
55	The anchoring of fibrinogen to a bioactive glass investigated by FT-IR spectroscopy. Vibrational Spectroscopy, 2012, 62, 172-179.	2.2	18
56	Gold nanoparticles developed in sol–gel derived apatite—bioactive glass composites. Journal of Materials Science: Materials in Medicine, 2012, 23, 1193-1201.	3.6	18
57	Towards TiO2Ag porous nanocomposites based SERS sensors for chemical pollutant detection. Journal of Molecular Structure, 2014, 1073, 51-57.	3.6	18
58	Silver functionalized titania-silica xerogels: Preparation, morpho-structural and photocatalytic properties, kinetic modeling. Journal of Alloys and Compounds, 2015, 648, 890-902.	5.5	18
59	Bioactivity evolution of calcium-free borophosphate glass with addition of titanium dioxide. Journal of Non-Crystalline Solids, 2015, 410, 112-117.	3.1	18
60	Peroxo group enhanced nanorutile as visible light active photocatalyst. Catalysis Today, 2017, 284, 129-136.	4.4	18
61	Solvothermal synthesis of ZnO spheres: Tuning the structure and morphology from nano- to micro-meter range and its impact on their photocatalytic activity. Catalysis Today, 2022, 397-399, 16-27.	4.4	18
62	Fabric impregnated with TiO ₂ gel with self leaning property. International Journal of Applied Ceramic Technology, 2019, 16, 666-681.	2.1	17
63	Bone regeneration response in an experimental long bone defect orthotopically implanted with alginateâ€pullulanâ€glassâ€ceramic composite scaffolds. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2020, 108, 1129-1140.	3.4	17
64	Pt/N–TiO2 Aerogel Composites Used for Hydrogen Production Via Photocatalysis Process. Catalysis Letters, 2014, 144, 1955-1961.	2.6	16
65	Mapping the Photocatalytic Activity and Ecotoxicology of Au, Pt/TiO ₂ Composite Photocatalysts. ACS Sustainable Chemistry and Engineering, 2018, 6, 12993-13006.	6.7	16
66	Bioactive glass-biopolymers‑gold nanoparticle based composites for tissue engineering applications. Materials Science and Engineering C, 2021, 123, 112006.	7.3	16
67	Dependence of cationic dyes' adsorption upon α-MoO3 structural properties. Applied Surface Science, 2022, 573, 151584.	6.1	16
68	The investigation of the photocatalytic efficiency of spherical gold nanocages/TiO 2 and silver nanospheres/TiO 2 composites. Separation and Purification Technology, 2017, 183, 216-225.	7.9	15
69	Insights into the morphological and structural particularities of highly sensitive porous bismuth-carbon nanocomposites based electrochemical sensors. Sensors and Actuators B: Chemical, 2018, 268, 398-410.	7.8	15
70	Structural properties of some transition metal highly doped carbon aerogels. Journal of Alloys and Compounds, 2007, 434-435, 854-857.	5.5	14
71	TiO ₂ /WO ₃ /Au/MWCNT composite materials for photocatalytic hydrogen production: Advantages and drawâ€backs. Physica Status Solidi (B): Basic Research, 2012, 249, 2592-2595.	1.5	14
72	Highlighting of structural units of B2O3–Li2O–P2O5 system under heat treatment. Materials Chemistry and Physics, 2014, 143, 1271-1277.	4.0	14

#	Article	IF	CITATIONS
73	Optical Properties of Composites Based on Graphene Oxide and Polystyrene. Molecules, 2020, 25, 2419.	3.8	14
74	Application of TiO2-Cu Composites in Photocatalytic Degradation Different Pollutants and Hydrogen Production. Catalysts, 2020, 10, 85.	3.5	14
75	Poly(Vinyl Chloride) Spheres Coated with Graphene Oxide Sheets: From Synthesis to Optical Properties and Their Applications as Flame-Retardant Agents. Polymers, 2021, 13, 565.	4.5	14
76	Hydrogen peroxide versus water synthesis of bioglass–nanocrystalline hydroxyapatite composites. Journal of Materials Science, 2011, 46, 7393-7400.	3.7	13
77	Efficiency of Cu/TiO ₂ to remove salicylic acid by photocatalytic decomposition: kinetic modelling. Materials Technology, 2014, 29, 129-133.	3.0	13
78	Laser-induced chemical transformation of free-standing graphene oxide membranes in liquid and gas ammonia environments. RSC Advances, 2016, 6, 50034-50042.	3.6	13
79	Probing into the mesoporous structure of carbon xerogels via the low-field NMR relaxometry of water and cyclohexane molecules. Microporous and Mesoporous Materials, 2017, 251, 19-25.	4.4	13
80	Shape tailored Pd nanoparticles' effect on the photocatalytic activity of commercial TiO 2. Catalysis Today, 2017, 284, 137-145.	4.4	13
81	New alginate-pullulan-bioactive glass composites with copper oxide for bone tissue regeneration trials. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 2112-2121.	2.7	13
82	Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS. Journal of Physics: Conference Series, 2011, 304, 012059.	0.4	12
83	Differently Shaped Au Nanoparticles: A Case Study on the Enhancement of the Photocatalytic Activity of Commercial TiO2. Materials, 2015, 8, 162-180.	2.9	12
84	Impact of drying procedure on the morphology and structure of TiO2 xerogels and the performance of dye sensitized solar cells. Journal of Sol-Gel Science and Technology, 2017, 81, 693-703.	2.4	12
85	Photocatalytic Efficiency of Zeoliteâ€Based TiO ₂ Composites for Reduction of Cu (<scp>II</scp>): Kinetic Models. International Journal of Applied Ceramic Technology, 2014, 11, 568-581.	2.1	11
86	"Crystallographic―holes: new insights for a beneficial structural feature for photocatalytic applications. Nanoscale, 2015, 7, 5776-5786.	5.6	11
87	Visible light driven photocatalytic elimination of organic- and microbial pollution by rutile-phase titanium dioxides: new insights on the dynamic relationship between morpho-structural parameters and photocatalytic performance. RSC Advances, 2015, 5, 66636-66643.	3.6	11
88	Thiourea and Triton X-100 as shape manipulating tools or more for Bi 2 WO 6 photocatalysts?. Materials Science in Semiconductor Processing, 2018, 74, 21-30.	4.0	11
89	Insights into the effect of gold nanospheres, nanotriangles and spherical nanocages on the structural, morphological and biological properties of bioactive glasses. Journal of Non-Crystalline Solids, 2019, 522, 119552.	3.1	11
90	Insights on Ag doped porous TiO2 nanostructures: a comprehensive study of their structural and morphological characteristics. RSC Advances, 2012, 2, 5358.	3.6	10

#	Article	IF	CITATIONS
91	Structural investigations of TiO2–WO3–Au porous composites. Journal of Molecular Structure, 2014, 1073, 150-156.	3.6	10
92	Vibrational and EPR spectroscopic investigation of heavy-metal-oxide glasses and vitroceramics containing manganese. Journal of Raman Spectroscopy, 2006, 37, 183-188.	2.5	9
93	Commercial and home-made nitrogen modified titanias. A short reflection about the advantageous/disadvantageous properties of nitrogen doping in the frame of their applicability. Journal of Molecular Structure, 2014, 1073, 157-163.	3.6	9
94	The effects of PEG assisted synthesis and zinc addition on gamma irradiated bioactive glasses. Composites Part B: Engineering, 2014, 66, 83-88.	12.0	9
95	Silicosis, tuberculosis time bomb?. Revista Portuguesa De Pneumologia, 2016, 22, 355-357.	0.7	9
96	The impact of copper oxide nanoparticles on the structure and applicability of bioactive glasses. Journal of Sol-Gel Science and Technology, 2019, 91, 634-643.	2.4	9
97	Weighting the influence of TiO2 anatase/brookite ratio in TiO2–Ag porous nanocomposites on visible photocatalytic performances. Materials Chemistry and Physics, 2013, 141, 234-239.	4.0	8
98	Hybrid composite material based on graphene and polyhemin for electrochemical detection of hydrogen peroxide. Journal of Electroanalytical Chemistry, 2017, 802, 40-47.	3.8	8
99	The Comparison of the Photocatalytic Performance Shown by TiO ₂ and TiO ₂ /WO ₃ Composites— A Parametric and Kinetic Study. Journal of Nanoscience and Nanotechnology, 2019, 19, 356-365.	0.9	8
100	Multi-analyses of gallstones and correlation between their properties with the laboratory results. Analytical Biochemistry, 2020, 593, 113587.	2.4	8
101	Optimization Method of the Solvothermal Parameters Using Box–Behnken Experimental Design—The Case Study of ZnO Structural and Catalytic Tailoring. Nanomaterials, 2021, 11, 1334.	4.1	8
102	Influence of different silver species on the structure of bioactive silicate glasses. Journal of Non-Crystalline Solids, 2022, 583, 121498.	3.1	8
103	Noble metal modified (002)-oriented ZnO hollow spheres for the degradation of a broad range of pollutants. Journal of Environmental Chemical Engineering, 2022, 10, 107655.	6.7	8
104	New Insights on the Simultaneous Removal by Adsorption on Organoclays of Humic Acid and Phenol. Water (Switzerland), 2016, 8, 21.	2.7	7
105	New Insights into The Photoactivity of Shape-Tailored BiVO4 Semiconductors via Photocatalytic Degradation Reactions and Classical Reduction Processes. Molecules, 2020, 25, 4842.	3.8	7
106	New fabrication method for producing reduced graphene oxide flexible electrodes by using a low-power visible laser diode engraving system. Nanotechnology, 2020, 31, 325402.	2.6	7
107	The Impact of Composites with Silicate-Based Glasses and Cold Nanoparticles on Skin Wound Regeneration. Molecules, 2021, 26, 620.	3.8	7
108	The impact of Au nanoparticles and lanthanide-doped NaYF4 on the photocatalytic activity of titania photocatalyst. Applied Surface Science, 2021, 547, 149123.	6.1	7

#	Article	IF	CITATIONS
109	The Influence of the Au Nanoparticles Dimension on the Photocatalytic Performances of TiO ₂ -Au Porous Composites. Acta Physica Polonica A, 2012, 121, 208-210.	0.5	7
110	Titania effect on the bioactivity of silicate bioactive glasses. Journal of Raman Spectroscopy, 2016, 47, 1102-1108.	2.5	6
111	Attachment and conformational changes of collagen on bioactive glass surface. Bio-Medical Materials and Engineering, 2016, 27, 63-74.	0.6	6
112	Innovative visualization of the effects of crystal morphology on semiconductor photocatalysts. Tuning the H¼ckel polarity of the shape-tailoring agents: the case of Bi2WO6. CrystEngComm, 2019, 21, 1267-1278.	2.6	6
113	Designed and controlled synthesis of visible light active copper(I)oxide photocatalyst: From cubes towards the polyhedrons - with Cu nanoparticles. Applied Surface Science, 2019, 484, 175-183.	6.1	6
114	Preparation and Characterization of Carbon Xerogel Based Composites for Electrochemical Sensing and Photocatalytic Degradation. Journal of Nanoscience and Nanotechnology, 2021, 21, 2323-2333.	0.9	6
115	New insights regarding the calcination as a critical parameter in the synthesis of sol–gel made titania powders. Journal of Sol-Gel Science and Technology, 2013, 65, 277-282.	2.4	5
116	Important Aspects on the Removal of Humic Acid and Phenolic Compounds with Clay Minerals. "Synergism Provided by the Pollutants, Efficiency Given by the Media― Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	5
117	Detailed Investigation of Phenol Degradation on Au/TiO ₂ Composite Materials. Journal of Nanoscience and Nanotechnology, 2019, 19, 407-413.	0.9	5
118	Controlled formation of Ag-AgxO nanoparticles on the surface of commercial TiO2 based composites for enhanced photocatalytic degradation of oxalic acid and phenol. Catalysis Today, 2020, , .	4.4	5
119	Significance of the surface and bulk features of hierarchical TiO2 in their photocatalytic properties. Ceramics International, 2021, 47, 7088-7100.	4.8	5
120	Mixture of Graphene Oxide/Phosphoric Acid/Melamine as Coating for Improved Fire Protective Performance and Enhancement of Surface Electrical Properties on Wood Chipboard. Journal of Nanoscience and Nanotechnology, 2021, 21, 2312-2322.	0.9	5
121	Carbon Xerogel Nanostructures with Integrated Bi and Fe Components for Hydrogen Peroxide and Heavy Metal Detection. Molecules, 2021, 26, 117.	3.8	5
122	Composites based on silicate bioactive glasses and silver iodide microcrystals for tissue engineering applications. Journal of Non-Crystalline Solids, 2020, 547, 120293.	3.1	4
123	Vibrational Spectroscopic Studies of Germanium-High Bismuthate Glasses and Vitroceramics. Zeitschrift Fur Physikalische Chemie, 2011, 225, 647-660.	2.8	3
124	Pilot-plant scaled water treatment technologies, standards for the removal of contaminants of emerging concern based on photocatalytic materials. , 2020, , 493-523.		3
125	SERS-active substrates based on graphene oxide or reduced graphene oxide and silver nanoparticles. Materials Today: Proceedings, 2021, 45, 4096-4099.	1.8	3
126	Shape tailoring of AgBr microstructures: effect of the cations of different bromide sources and applied surfactants. RSC Advances, 2021, 11, 9709-9720.	3.6	3

#	Article	IF	CITATIONS
127	Pyrolysis and combustion of polystyrene composites based on graphene oxide functionalized with 3-(methacryloyloxy)-propyltrimethoxysilane. Journal of Polymer Engineering, 2021, 41, 615-626.	1.4	3
128	Insights into the Influence of Key Preparation Parameters on the Performance of MoS2/Graphene Oxide Composites as Active Materials in Supercapacitors. Catalysts, 2021, 11, 1553.	3.5	3
129	Simion Simon. Journal of Molecular Structure, 2014, 1073, 1-2.	3.6	2
130	Thermal evolution of silver nanoparticles onto porous TiO 2 nanostructures. Catalysis Today, 2017, 284, 221-228.	4.4	2
131	Novel Applications and Future Perspectives of Nanocomposites. Springer Series on Polymer and Composite Materials, 2017, , 333-398.	0.7	2
132	Improved bioactivity properties of SiO2-CaO-P2O5 glasses by using calcium l-lactate pentahydrate as calcium oxide precursor. Journal of Non-Crystalline Solids, 2018, 498, 199-203.	3.1	2
133	Insights Into Graphene-Based Materials as Counter Electrodes for Dye-Sensitized Solar Cells. , 2019, , 341-396.		2
134	Controlled Synthesis of Visible Light Active CuxS Photocatalyst: The Effect of Heat Treatment on Their Adsorption Capacity and Photoactivity. Materials, 2020, 13, 3665.	2.9	2
135	The Effect of the Reducing Sugars in the Synthesis of Visible-Light-Active Copper(I) Oxide Photocatalyst. Molecules, 2021, 26, 1149.	3.8	2
136	Solvothermal Crystallization of Ag/AgxO-AgCl Composites: Effect of Different Chloride Sources/Shape-Tailoring Agents. Catalysts, 2021, 11, 379.	3.5	2
137	Morphological and structural investigation of the poly(vinyl chloride) / graphene oxide composites. Studia Universitatis Babes-Bolyai Chemia, 2020, 65, 245-258.	0.2	2
138	Bioactive Properties of Composites Based on Silicate Glasses and Different Silver and Gold Structures. Materials, 2022, 15, 1655.	2.9	2
139	Thermal Evolution of C–Fe–Bi Nanocomposite System: From Nanoparticle Formation to Heterogeneous Graphitization Stage. Microscopy and Microanalysis, 2022, 28, 317-329.	0.4	2
140	Myth or reality? A disquisition concerning the photostability of bismuth-based photocatalysts. Journal of Environmental Chemical Engineering, 2022, 10, 107624.	6.7	2
141	Probing the connectivity and wettability of carbon aerogels and xerogels via low-field NMR. AIP Conference Proceedings, 2017, , .	0.4	1
142	The Influence of the Ratio of Au and Pt Nanoparticles in Ternary Composites with TiO2. Metals, 2021, 11, 628.	2.3	1
143	Developments And Perspectives In The Field Of Sers Based Biosensors. Journal of Biosensors & Bioelectronics, 2012, 03, .	0.4	1
144	<i>A Special Section on</i> Shape Tailored Nanocrystals in Catalysis. Journal of Nanoscience and Nanotechnology, 2019, 19, 277-279.	0.9	0

#	Article	IF	CITATIONS
145	When the nanostructures meet the environmental health key issues. , 2020, , 1-33.		ο
146	Perspectives of environmental health issues addressed by advanced nanostructures. , 2020, , 525-547.		0