
Michael Khonsari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8709394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Entropic Characterization of Fatigue in Composite Materials. , 2022, , 147-162.		6
2	Tensile Properties of Additively Manufactured C-18150 Copper Alloys. Metals and Materials International, 2022, 28, 168-180.	3.4	11
3	On the kinetic formulation of fracture fatigue entropy of metals. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45, 565-577.	3.4	11
4	Fatigue assessment of additively-manufactured C-18150 copper alloy at room and elevated temperatures via a microstructure-sensitive algorithm. International Journal of Fatigue, 2022, 159, 106777.	5.7	8
5	Strain energy-based fatigue failure analyses of LB-PBF Inconel 718: Effect of build orientation. Additive Manufacturing, 2022, 52, 102661.	3.0	4
6	Thermodynamic Characterization of Grease Oxidation–Thermal Stability via Pressure Differential Scanning Calorimetry. Tribology Transactions, 2022, 65, 542-554.	2.0	5
7	Investigation of metal fatigue using a coupled entropy-kinetic model. International Journal of Fatigue, 2022, 161, 106907.	5.7	10
8	Relationship between subsurface stress and wear particle size in sliding contacts during running-in. Mechanics Research Communications, 2022, 123, 103891.	1.8	2
9	Experimentally verified prediction of friction coefficient and wear rate during running-in dry contact. Tribology International, 2022, 170, 107508.	5.9	22
10	Evaluation of fatigue in unidirectional and cross-ply laminated composites using a coupled entropy-kinetic concept. Journal of Composite Materials, 2022, 56, 2443-2454.	2.4	5
11	On the thermohydrodynamic performance of aerated lubricants in steadily- and dynamically-loaded journal bearings. Tribology International, 2022, 173, 107606.	5.9	10
12	Fatigue analysis of high-carbon steel at different environmental temperatures considering the blue brittleness effect. International Journal of Mechanical Sciences, 2022, 230, 107546.	6.7	4
13	Applying load-sharing method to the sliding contact in the presence of nano-lubricants. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2021, 235, 786-797.	1.8	5
14	In-situ Technique for Fatigue Life Prediction of Metals Based on Temperature Evolution. International Journal of Mechanical Sciences, 2021, 192, 106113.	6.7	19
15	Friction behavior of Radial Shaft Sealing Ring subjected to unsteady motion. Mechanism and Machine Theory, 2021, 156, 104171.	4.5	0
16	Microstructure-sensitive estimation of fatigue life using cyclic thermodynamic entropy as an index for metals. Theoretical and Applied Fracture Mechanics, 2021, 112, 102854.	4.7	18
17	Directional interfacial motion of liquids: Fundamentals, evaluations, and manipulation strategies. Tribology International, 2021, 154, 106749.	5.9	31
18	On the determination of cyclic plastic strain energy with the provision for microplasticity. International Journal of Fatigue, 2021, 142, 105966.	5.7	14

#	Article	IF	CITATIONS
19	Evaluating Grease Degradation through Contact Angle Approach. Lubricants, 2021, 9, 11.	2.9	2
20	Experimental and numerical study of the running-in wear coefficient during dry sliding contact. Surface Topography: Metrology and Properties, 2021, 9, 015009.	1.6	13
21	Testing Grease Consistency. Lubricants, 2021, 9, 14.	2.9	8
22	On the effect of internal friction on torsional and axial cyclic loading. International Journal of Fatigue, 2021, 145, 106113.	5.7	19
23	On the intrinsic dissipation and fracture fatigue entropy of metals. Mechanics of Materials, 2021, 155, 103734.	3.2	22
24	A theoretical calculation of stacking fault energy of Ni alloys: The effects of temperature and composition. Computational Materials Science, 2021, 191, 110326.	3.0	25
25	Rapid prediction of fatigue life based on thermodynamic entropy generation. International Journal of Fatigue, 2021, 145, 106105.	5.7	24
26	General quantification of fatigue damage with provision for microstructure: A review. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1973-1999.	3.4	15
27	On the prediction of fatigue life subjected to variable loading sequence. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 2962-2974.	3.4	14
28	On the running-in nature of metallic tribo-components: A review. Wear, 2021, 474-475, 203871.	3.1	29
29	An approach for fatigue life prediction based on external heating. International Journal of Mechanical Sciences, 2021, 204, 106510.	6.7	9
30	On the application of fracture fatigue entropy to multiaxial loading. International Journal of Fatigue, 2021, 150, 106321.	5.7	16
31	Experimentally validated thermodynamic theory of metal fatigue. Mechanics of Materials, 2021, 160, 103927.	3.2	10
32	A new model for fatigue life prediction under multiaxial loadings based on energy dissipation. International Journal of Fatigue, 2021, 151, 106255.	5.7	14
33	CFD investigation of oil-free granular lubrication. Tribology International, 2021, 164, 107238.	5.9	3
34	Application of thermoelectricity in fatigue of metals. Fatigue and Fracture of Engineering Materials and Structures, 2021, 44, 1162-1177.	3.4	4
35	A Unified Treatment of Tribo-Components Degradation Using Thermodynamics Framework: A Review on Adhesive Wear. Entropy, 2021, 23, 1329.	2.2	4
36	Application of Continuum Damage Mechanics to Predict Wear in Systems Subjected to Variable Loading. Tribology Letters, 2021, 69, 1.	2.6	7

#	Article	IF	CITATIONS
37	Some Fundamental Issues in Foil Bearings. Lecture Notes in Mechanical Engineering, 2021, , 317-325.	0.4	1
38	Online monitoring of metal fatigue life. Structural Health Monitoring, 2020, 19, 938-952.	7.5	4
39	Nondestructive estimation of remaining fatigue life without the loading history. International Journal of Damage Mechanics, 2020, 29, 482-502.	4.2	11
40	On the wear of dynamically-loaded engine bearings with provision for misalignment and surface roughness. Tribology International, 2020, 141, 105919.	5.9	34
41	Wetting translucency of graphene on plasmonic nanohole arrays. 2D Materials, 2020, 7, 011004.	4.4	2
42	Thermographic evaluation of metal crack propagation during cyclic loading. Theoretical and Applied Fracture Mechanics, 2020, 105, 102385.	4.7	11
43	Effect of alloying elements on the γ' antiphase boundary energy in Ni-base superalloys. Intermetallics, 2020, 117, 106670.	3.9	49
44	On the entropy of fatigue crack propagation. International Journal of Fatigue, 2020, 133, 105413.	5.7	30
45	The Relation Between Subsurface Stresses and Useful Wear Life in Sliding Contacts. Tribology Letters, 2020, 68, 1.	2.6	7
46	Assessment of Water Contamination on Grease Using the Contact Angle Approach. Tribology Letters, 2020, 68, 1.	2.6	4
47	Characterization of multiple wear mechanisms through entropy. Tribology International, 2020, 152, 106548.	5.9	17
48	An Overview of Grease Water Resistance. Lubricants, 2020, 8, 86.	2.9	7
49	On the Recovery and Fatigue Life Extension of Stainless Steel 316 Metals by Means of Recovery Heat Treatment. Metals, 2020, 10, 1290.	2.3	0
50	On the failure mechanisms of Cr-coated 316 stainless steel in bending fatigue tests. International Journal of Fatigue, 2020, 139, 105733.	5.7	6
51	A simple approach for predicting fatigue crack propagation rate based on thermography. Theoretical and Applied Fracture Mechanics, 2020, 107, 102534.	4.7	15
52	Temperature-induced buckling of ductile metals during cyclic loading and the subsequent early fracture. International Journal of Mechanical Sciences, 2020, 176, 105525.	6.7	19
53	Characterization of abrasive wear using degradation coefficient. Wear, 2020, 450-451, 203220.	3.1	6
54	Theoretical and experimental analysis of relation between entropy and tension–compression fatigue of aluminum 6061-T6. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42, 1.	1.6	2

#	Article	IF	CITATIONS
55	The thermocapillary migration on rough surfaces. Lubrication Science, 2019, 31, 163-170.	2.1	11
56	On the assessment of variable loading in adhesive wear. Tribology International, 2019, 129, 167-176.	5.9	13
57	Overview: Additive Manufacturing Enabled Accelerated Design of Ni-based Alloys for Improved Fatigue Life. Additive Manufacturing, 2019, 29, 100779.	3.0	22
58	Application of thermodynamic principles in determining the degradation of tribo-components subjected to oscillating motion in boundary and mixed lubrication regimes. Wear, 2019, 436-437, 203002.	3.1	10
59	The Use of Entropy in Modeling the Mechanical Degradation of Grease. Lubricants, 2019, 7, 82.	2.9	15
60	On the Assessment of Mechanical Degradation of Grease Using Entropy Generation Rate. Tribology Letters, 2019, 67, 1.	2.6	15
61	On the removal of extrusions and intrusions via repolishing to improve metal fatigue life. Theoretical and Applied Fracture Mechanics, 2019, 103, 102248.	4.7	7
62	Experimental investigation of the chemical degradation of lubricating grease from an energy point of view. Tribology International, 2019, 137, 289-302.	5.9	16
63	Critical operating stress of persistent slip bands in Cu. Computational Materials Science, 2019, 165, 114-120.	3.0	12
64	Improvement of Tribological and Biocompatibility Properties of Orthopedic Materials Using Piezoelectric Direct Discharge Plasma Surface Modification. ACS Biomaterials Science and Engineering, 2019, 5, 2147-2159.	5.2	15
65	Experimental verification of textured mechanical seal designed using multi-objective optimization. Industrial Lubrication and Tribology, 2019, 71, 766-771.	1.3	10
66	The evolution of foil bearing technology. Tribology International, 2019, 135, 305-323.	5.9	93
67	Wear anisotropy of selective laser melted 316L stainless steel. Wear, 2019, 428-429, 376-386.	3.1	103
68	On the degradation of tribo-components undergoing oscillating sliding contact. Tribology International, 2019, 135, 18-28.	5.9	14
69	On the Degradation of Tribo-components in Boundary and Mixed Lubrication Regimes. Tribology Letters, 2019, 67, 1.	2.6	22
70	On the onset of steady state during transient adhesive wear. Tribology International, 2019, 130, 378-386.	5.9	14
71	Non-destructive testing and fatigue life prediction at different environmental temperatures. Infrared Physics and Technology, 2019, 96, 291-297.	2.9	18
72	Performance and characterization of dynamically-loaded engine bearings with provision for misalignment. Tribology International, 2019, 130, 387-399.	5.9	26

#	Article	IF	CITATIONS
73	Theoretical and experimental study on interdependence of wear and wetting in metallic surfaces. Tribology International, 2018, 123, 61-70.	5.9	3
74	Dynamics Analysis of Torsional Vibration Induced by Clutch and Gear Set in Automatic Transmission. International Journal of Automotive Technology, 2018, 19, 473-488.	1.4	25
75	Viscosity wedge effect of dimpled surfaces considering cavitation effect. Tribology International, 2018, 122, 58-66.	5.9	23
76	The limiting load-carrying capacity of foil thrust bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2018, 232, 1046-1052.	1.8	5
77	On the thermoelastic instability of foil bearings. Tribology International, 2018, 121, 10-20.	5.9	23
78	Heat-transfer augmentation techniques to improve seal life. Sealing Technology, 2018, 2018, 5-9.	0.0	1
79	Ringlike Migration of a Droplet Propelled by an Omnidirectional Thermal Gradient. Langmuir, 2018, 34, 3806-3812.	3.5	21
80	Damage accumulation and crack initiation detection based on the evolution of surface roughness parameters. International Journal of Fatigue, 2018, 107, 130-144.	5.7	44
81	An investigation into the transient behavior of journal bearing with surface texture based on fluid-structure interaction approach. Tribology International, 2018, 118, 246-255.	5.9	75
82	On the running-in behavior of cam-follower mechanism. Tribology International, 2018, 118, 301-313.	5.9	27
83	A method for correcting a moving heat source in analyses with coarse temporal discretization. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2018, 232, 2736-2750.	2.1	1
84	Neutron interferometry detection of early crack formation caused by bending fatigue in additively manufactured SS316 dogbones. Materials and Design, 2018, 140, 420-430.	7.0	21
85	On the application of fracture fatigue entropy to variable frequency and loading amplitude. Theoretical and Applied Fracture Mechanics, 2018, 98, 30-37.	4.7	29
86	On the useful life of tribo-pairs experiencing variable loading and sliding speed. Wear, 2018, 416-417, 103-114.	3.1	12
87	Evaluation of fatigue performance of additively manufactured SS316 via internal damping. Manufacturing Letters, 2018, 18, 12-15.	2.2	5
88	On the integrated degradation coefficient for adhesive wear: A thermodynamic approach. Wear, 2018, 408-409, 138-150.	3.1	32
89	Material characterization and lubricating behaviors of porous stainless steel fabricated by selective laser melting. Journal of Materials Processing Technology, 2018, 262, 41-52.	6.3	26
90	On the evaluation of fracture fatigue entropy. Theoretical and Applied Fracture Mechanics, 2018, 96, 351-361.	4.7	56

#	Article	IF	CITATIONS
91	Frequency dependent deformation reversibility during cyclic loading. Materials Research Letters, 2018, 6, 390-397.	8.7	17
92	Effect of Untampered Plasma Coating and Surface Texturing on Friction and Running-in Behavior of Piston Rings. Coatings, 2018, 8, 110.	2.6	29
93	Inter-book normal fault-related shear heating in brittle bookshelf faults. Marine and Petroleum Geology, 2018, 97, 45-48.	3.3	24
94	On the Modeling of Adhesive Wear with Consideration of Loading Sequence. Tribology Letters, 2018, 66, 1.	2.6	28
95	On the role of internal friction in low-and high-cycle fatigue. International Journal of Fatigue, 2018, 114, 159-166.	5.7	54
96	Mixed lubrication of soft contacts: An engineering look. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 263-273.	1.8	8
97	On the migration of a droplet on an incline. Journal of Colloid and Interface Science, 2017, 494, 8-14.	9.4	13
98	Mechanical degradation of lubricating grease in an EHL line contact. Tribology International, 2017, 109, 541-551.	5.9	13
99	Parametric analysis of wear factors of a wet clutch friction material with different groove patterns. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2017, 231, 1056-1067.	1.8	13
100	Statistical Analysis of Surface Texture Performance With Provisions With Uncertainty in Texture Dimensions. IEEE Access, 2017, 5, 5388-5398.	4.2	9
101	On the effect of viscosity wedge in micro-textured parallel surfaces. Tribology International, 2017, 107, 116-124.	5.9	20
102	Brittle rotational faults and the associated shear heating. Marine and Petroleum Geology, 2017, 88, 551-554.	3.3	29
103	On the Performance of EHL Contacts with Textured Surfaces. Tribology Letters, 2017, 65, 1.	2.6	19
104	On the degradation of superhydrophobic surfaces: A review. Wear, 2017, 372-373, 145-157.	3.1	61
105	Statistical Analysis of the Influence of Imperfect Texture Shape and Dimensional Uncertainty on Surface Texture Performance. IEEE Access, 2017, 5, 27023-27035.	4.2	6
106	Acoustic Entropy of the Materials in the Course of Degradation. Entropy, 2016, 18, 280.	2.2	23
107	On Monitoring Physical and Chemical Degradation and Life Estimation Models for Lubricating Greases. Lubricants, 2016, 4, 34.	2.9	26
108	Application of a Thermodynamically Based Wear Estimation Methodology. Journal of Tribology, 2016, 138, .	1.9	16

#	Article	IF	CITATIONS
109	Texture Shape Optimization for Seal-Like Parallel Surfaces: Theory and Experiment. Tribology Transactions, 2016, 59, 698-706.	2.0	52
110	Fatigue analysis of metals using damping parameter. International Journal of Fatigue, 2016, 91, 124-135.	5.7	18
111	Wear simulation for the journal bearings operating under aligned shaft and steady load during start-up and coast-down conditions. Tribology International, 2016, 97, 440-466.	5.9	63
112	Tribological Performance of Polyamide-Imide Seal Ring Under Seawater Lubrication. Tribology Letters, 2016, 62, 1.	2.6	18
113	The effect of laser machined pockets on the lubrication of piston ring prototypes. Tribology International, 2016, 101, 273-283.	5.9	48
114	Tribological and Sealing Performance of Laser Pocketed Piston Rings in a Diesel Engine. Tribology Letters, 2016, 64, 1.	2.6	36
115	Model validation and uncertainty analysis in the wear prediction of a wet clutch. Wear, 2016, 364-365, 112-121.	3.1	17
116	An engineering model to estimate consistency reduction of lubricating grease subjected to mechanical degradation under shear. Tribology International, 2016, 103, 465-474.	5.9	23
117	On the Applicability of Miner's Rule to Adhesive Wear. Tribology Letters, 2016, 63, 1.	2.6	25
118	Thermocapillary Migration of Liquid Droplets Induced by a Unidirectional Thermal Gradient. Langmuir, 2016, 32, 7485-7492.	3.5	57
119	On the Prediction of Transient Wear. Journal of Tribology, 2016, 138, .	1.9	20
120	On the Relationship Between Journal Misalignment and Web Deflection in Crankshafts. Journal of Engineering for Gas Turbines and Power, 2016, 138, .	1.1	8
121	On the thermally-induced failure of rolling element bearings. Tribology International, 2016, 94, 661-674.	5.9	31
122	Analysis and life prediction of a composite laminate under cyclic loading. Composites Part B: Engineering, 2016, 84, 98-108.	12.0	18
123	Experimental Investigation on the Effect of Operating Conditions on the Running-in Behavior of Lubricated Elliptical Contacts. Tribology Letters, 2015, 59, 1.	2.6	20
124	Reply to Comment by Chung on "On the Correlation Between Mechanical Degradation of Lubricating Grease and Entropy― Tribology Letters, 2015, 60, 1.	2.6	4
125	A study on the effect of starvation in mixed elastohydrodynamic lubrication. Tribology International, 2015, 85, 26-36.	5.9	26
126	Improving Bearings Thermal and Tribological Performance with Built-In Heat Pipe. Tribology Letters, 2015, 57, 1.	2.6	2

#	Article	IF	CITATIONS
127	Validation simulations for the variational approach to fracture. Computer Methods in Applied Mechanics and Engineering, 2015, 290, 420-437.	6.6	142
128	On the dynamic performance of roller bearings operating under low rotational speeds with consideration of surface roughness. Tribology International, 2015, 86, 62-71.	5.9	37
129	On the anelasticity and fatigue fracture entropy in high-cycle metal fatigue. Materials and Design, 2015, 82, 18-27.	7.0	52
130	An engineering approach for rapid evaluation of traction coefficient and wear in mixed EHL. Tribology International, 2015, 92, 184-190.	5.9	60
131	On the thermally-induced seizure in bearings: A review. Tribology International, 2015, 91, 118-130.	5.9	51
132	On the wear prediction of the paper-based friction materialin a wet clutch. Wear, 2015, 334-335, 56-66.	3.1	34
133	On the Characteristics of Misaligned Journal Bearings. Lubricants, 2015, 3, 27-53.	2.9	66
134	Energy dissipation in the course of the fatigue degradation: Mathematical derivation and experimental quantification. International Journal of Solids and Structures, 2015, 77, 74-85.	2.7	35
135	On the prediction of steady-state wear rate in spur gears. Wear, 2015, 342-343, 234-243.	3.1	55
136	On the effect of surface roughness in point-contact EHL: Formulas for film thickness and asperity load. Tribology International, 2015, 82, 228-244.	5.9	114
137	Improving thermal performance of mechanical seals via surface texturing. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229, 350-361.	1.8	6
138	Numerical optimization of texture shape for parallel surfaces under unidirectional and bidirectional sliding. Tribology International, 2015, 82, 1-11.	5.9	116
139	Entropic characterization of metal fatigue with stress concentration. International Journal of Fatigue, 2015, 70, 223-234.	5.7	48
140	On the Correlation Between Mechanical Degradation of Lubricating Grease and Entropy. Tribology Letters, 2014, 56, 197-204.	2.6	48
141	On the Contact of Curved Rough Surfaces: Contact Behavior and Predictive Formulas. Journal of Applied Mechanics, Transactions ASME, 2014, 81, .	2.2	25
142	Parametric analysis for a paper-based wet clutch with groove consideration. Tribology International, 2014, 80, 222-233.	5.9	53
143	Thermal performance of mechanical face seal with built-in heat pipe. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 498-510.	1.8	1
144	Mixed elastohydrodynamic lubrication line-contact formulas with different surface patterns. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2014, 228, 849-859.	1.8	19

#	Article	IF	CITATIONS
145	Nondestructive Testing and Prediction of Remaining Fatigue Life of Metals. Journal of Nondestructive Evaluation, 2014, 33, 309-316.	2.4	9
146	Prediction of Crack Nucleation in Rough Line-Contact Fretting via Continuum Damage Mechanics Approach. Tribology Letters, 2014, 53, 631-643.	2.6	14
147	An experimental approach to estimate damage and remaining life of metals under uniaxial fatigue loading. Materials & Design, 2014, 57, 289-297.	5.1	60
148	Theoretical and experimental investigation of traction coefficient in line-contact EHL of rough surfaces. Tribology International, 2014, 70, 179-189.	5.9	94
149	On the Influence of Traction Coefficient on the Cage Angular Velocity in Roller Bearings. Tribology Transactions, 2014, 57, 793-805.	2.0	25
150	Prediction of wear in grease-lubricated oscillatory journal bearings via energy-based approach. Wear, 2014, 318, 188-201.	3.1	23
151	Rapid estimation of fatigue entropy and toughness in metals. Materials & Design, 2014, 62, 149-157.	5.1	48
152	Criticality of degradation in composite materials subjected to cyclic loading. Composites Part B: Engineering, 2014, 61, 375-382.	12.0	24
153	Thermoelastic Instability in Mechanical Systems with Provision for Surface Roughness. , 2014, , 5699-5714.		1
154	Probabilistic simulation of fatigue damage and life scatter of metallic components. International Journal of Plasticity, 2013, 43, 101-115.	8.8	56
155	On the Magnitude of Cavitation Pressure of Steady-State Lubrication. Tribology Letters, 2013, 51, 153-160.	2.6	47
156	Effect of Surface Cooling on Fatigue Life Improvement. Journal of Failure Analysis and Prevention, 2013, 13, 183-187.	0.9	3
157	An engineering approach for the prediction of wear in mixed lubricated contacts. Wear, 2013, 308, 121-131.	3.1	92
158	Effect of Dimple's Internal Structure on Hydrodynamic Lubrication. Tribology Letters, 2013, 52, 415-430.	2.6	85
159	On the optimum groove shapes for load-carrying capacity enhancement in parallel flat surface bearings: Theory and experiment. Tribology International, 2013, 67, 254-262.	5.9	87
160	A thermographic method for remaining fatigue life prediction of welded joints. Materials & Design, 2013, 51, 916-923.	5.1	46
161	A variational approach to the fracture of brittle thin films subject to out-of-plane loading. Journal of the Mechanics and Physics of Solids, 2013, 61, 2360-2379.	4.8	28
162	Deterministic surface tractions in rough contact under stick–slip condition: Application to fretting fatigue crack initiation. International Journal of Fatigue, 2013, 56, 75-85.	5.7	14

#	Article	IF	CITATIONS
163	On the optimization of running-in operating conditions in applications involving EHL line contact. Wear, 2013, 303, 130-137.	3.1	27
164	Experimental testing and thermal analysis of ball bearings. Tribology International, 2013, 60, 93-103.	5.9	140
165	Prediction of Wear in Reciprocating Dry Sliding via Dissipated Energy and Temperature Rise. Tribology Letters, 2013, 50, 365-378.	2.6	31
166	On the role of damage energy in the fatigue degradation characterization of a composite laminate. Composites Part B: Engineering, 2013, 45, 528-537.	12.0	53
167	Lubrication Regimes â \in " Line Contacts. , 2013, , 2113-2116.		2
168	On the role of cooling on fatigue failure of a woven glass/epoxy laminate. Journal of Composite Materials, 2013, 47, 1803-1815.	2.4	10
169	Stochastic analysis of inter- and intra-laminar damage in notched PEEK laminates. EXPRESS Polymer Letters, 2013, 7, 383-395.	2.1	19
170	On the modeling and shape optimization of hydrodynamic flexible-pad thrust bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2013, 227, 548-558.	1.8	6
171	Grease and Grease Life. , 2013, , 1555-1561.		5
172	Wet Clutch Friction Material: The Surfaced Groove Effect. , 2013, , 4102-4108.		3
173	A Review of Mechanical Seals Heat Transfer Augmentation Techniques. Recent Patents on Mechanical Engineering, 2013, 6, 87-96.	0.3	9
174	An Application of Dimensional Analysis to Entropy-Wear Relationship. Journal of Tribology, 2012, 134, .	1.9	22
175	Film Thickness and Asperity Load Formulas for Line-Contact Elastohydrodynamic Lubrication With Provision for Surface Roughness. Journal of Tribology, 2012, 134, .	1.9	123
176	Thermohydrodynamic Analysis of Spiral Groove Mechanical Face Seal for Liquid Applications. Journal of Tribology, 2012, 134, .	1.9	37
177	A comprehensive fatigue failure criterion based on thermodynamic approach. Journal of Composite Materials, 2012, 46, 437-447.	2.4	33
178	On the Role of Entropy Generation in Processes Involving Fatigue. Entropy, 2012, 14, 24-31.	2.2	72
179	Nondestructive Estimation of Remaining Fatigue Life: Thermography Technique. Journal of Failure Analysis and Prevention, 2012, 12, 683-688.	0.9	21
180	Authors' Closure to "Discussion of â€~An Application of Dimensional Analysis to Entropy-Wear Relationship,' ―(2012, ASME J. Tribol., 134, p. 011604). Journal of Tribology, 2012, 134, .	1.9	0

#	Article	IF	CITATIONS
181	Dissipated thermal energy and damage evolution of Glass/Epoxy using infrared thermography and acoustic emission. Composites Part B: Engineering, 2012, 43, 1613-1620.	12.0	110
182	Thermodynamic analysis of fatigue failure in a composite laminate. Mechanics of Materials, 2012, 46, 113-122.	3.2	73
183	Thermal performance of mechanical seals with textured side-wall. Tribology International, 2012, 45, 1-7.	5.9	30
184	On the fretting crack nucleation with provision for size effect. Tribology International, 2012, 47, 32-43.	5.9	26
185	Asperity micro-contact models as applied to the deformation of rough line contact. Tribology International, 2012, 52, 61-74.	5.9	110
186	Topological and shape optimization of thrust bearings for enhanced load-carrying capacity. Tribology International, 2012, 53, 12-21.	5.9	49
187	A Modification of the Switch Function in the Elrod Cavitation Algorithm. Journal of Tribology, 2011, 133, .	1.9	82
188	On the Shape Optimization of Self-Adaptive Grooves. Tribology Transactions, 2011, 54, 256-264.	2.0	16
189	Investigation of tribological behaviors of annular rings with spiral groove. Tribology International, 2011, 44, 1610-1619.	5.9	58
190	On the prediction of fatigue crack initiation in rolling/sliding contacts with provision for loading sequence effect. Tribology International, 2011, 44, 1620-1628.	5.9	47
191	On the Characterization of Thermal-Conductivity Degradation During Torsional Fatigue. International Journal of Thermophysics, 2011, 32, 693-703.	2.1	1
192	On the correlation between wear and entropy in dry sliding contact. Wear, 2011, 270, 781-790.	3.1	58
193	Experimental and theoretical investigation of running-in. Tribology International, 2011, 44, 92-100.	5.9	56
194	Experimental investigation of tribological performance of laser textured stainless steel rings. Tribology International, 2011, 44, 635-644.	5.9	181
195	Three-Dimensional Thermohydrodynamic Analysis of a Wet Clutch With Consideration of Grooved Friction Surfaces. Journal of Tribology, 2011, 133, .	1.9	41
196	Three-Dimensional Heat Transfer Analysis of Pin-Bushing System With Oscillatory Motion: Theory and Experiment. Journal of Tribology, 2011, 133, .	1.9	3
197	Performance Analysis of Full-Film Textured Surfaces With Consideration of Roughness Effects. Journal of Tribology, 2011, 133, .	1.9	91
198	An Experimental Approach to Evaluate the Critical Damage. International Journal of Damage Mechanics, 2011, 20, 89-112.	4.2	81

#	Article	IF	CITATIONS
199	On Self-Adaptive Surface Grooves. Tribology Transactions, 2010, 53, 871-880.	2.0	9
200	On the Behavior of Friction in Lubricated Point Contact With Provision for Surface Roughness. Journal of Tribology, 2010, 132, .	1.9	9
201	On the Modeling of Quasi-Steady and Unsteady Dynamic Friction in Sliding Lubricated Line Contact. Journal of Tribology, 2010, 132, .	1.9	13
202	On the Thermodynamics of Friction and Wear―A Review. Entropy, 2010, 12, 1021-1049.	2.2	155
203	A thermodynamic approach to fatigue damage accumulation under variable loading. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 6133-6139.	5.6	69
204	Effect of Surface Pattern on Stribeck Curve. Tribology Letters, 2010, 37, 477-486.	2.6	56
205	The Effect of Load (Pressure) for Quantitative EHL Film Thickness. Tribology Letters, 2010, 37, 613-622.	2.6	41
206	On the Relationship Between Wear and Thermal Response in Sliding Systems. Tribology Letters, 2010, 38, 147-154.	2.6	17
207	A Thermodynamic Approach for Prediction of Wear Coefficient Under Unlubricated Sliding Condition. Tribology Letters, 2010, 38, 347-354.	2.6	50
208	Life prediction of metals undergoing fatigue load based on temperature evolution. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1555-1559.	5.6	92
209	Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load. International Journal of Fatigue, 2010, 32, 382-389.	5.7	162
210	On the tribological behavior of MoS2-coated thrust ball bearings operating under oscillating motion. Wear, 2010, 269, 547-556.	3.1	15
211	An experimental approach to low-cycle fatigue damage based on thermodynamic entropy. International Journal of Solids and Structures, 2010, 47, 875-880.	2.7	93
212	On the effects of sliding velocity and operating pressure differential in rotary O-ring seals. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 649-657.	1.8	6
213	On the thermodynamic entropy of fatigue fracture. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 423-438.	2.1	193
214	Anharmonic variations in elastohydrodynamic film thickness resulting from harmonically varying entrainment velocity. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2010, 224, 239-247.	1.8	5
215	Condition Monitoring of Molybdenum Disulphide Coated Thrust Ball Bearings Using Time-Frequency Signal Analysis. Journal of Tribology, 2010, 132, .	1.9	9
216	On the Behavior of Misaligned Journal Bearings Based on Mass-Conservative Thermohydrodynamic Analysis. Journal of Tribology, 2010, 132, .	1.9	36

#	Article	IF	CITATIONS
217	Elastohydrodynamic Line-Contact of Compressible Shear Thinning Fluids With Consideration of the Surface Roughness. Journal of Tribology, 2010, 132, .	1.9	10
218	On the Prediction of Running-In Behavior in Mixed-Lubrication Line Contact. Journal of Tribology, 2010, 132, .	1.9	54
219	On the Temperature Rise of Bodies Subjected to Unidirectional or Oscillating Frictional Heating and Surface Convective Cooling. Tribology Transactions, 2009, 52, 310-322.	2.0	5
220	Traction in EHL Line Contacts Using Free-Volume Pressure-Viscosity Relationship With Thermal and Shear-Thinning Effects. Journal of Tribology, 2009, 131, .	1.9	31
221	On the Prediction of Cavitation in Dimples Using a Mass-Conservative Algorithm. Journal of Tribology, 2009, 131, .	1.9	158
222	A thermohydrodynamic analysis of a lubrication film between rough seal faces. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2009, 223, 665-673.	1.8	9
223	Transient heat conduction in rolling/sliding components by a dual reciprocity boundary element method. International Journal of Heat and Mass Transfer, 2009, 52, 1600-1607.	4.8	14
224	An Experimental Validation of the Recently Discovered Scale Effect in Generalized Newtonian EHL. Tribology Letters, 2009, 33, 127-135.	2.6	47
225	Thermomechanical effects on transient temperature in non-conformal contacts experiencing reciprocating sliding motion. International Journal of Heat and Mass Transfer, 2009, 52, 4390-4399.	4.8	6
226	Heat transfer correlations for laminar flows within a mechanical seal chamber. Tribology International, 2009, 42, 770-778.	5.9	24
227	Analysis of conjugate heat transfer and turbulent flow in mechanical seals. Tribology International, 2009, 42, 762-769.	5.9	23
228	On the role of lubricant rheology and piezo-viscous properties in line and point contact EHL. Tribology International, 2009, 42, 1522-1530.	5.9	56
229	Online coated ball bearing health monitoring using degree of randomness and Hidden Markov Model. , 2009, , .		1
230	Thermomechanical Coupling in Oscillatory Systems With Application to Journal Bearing Seizure. Journal of Tribology, 2009, 131, .	1.9	3
231	Full EHL Simulations Using the Actual Ree–Eyring Model for Shear-Thinning Lubricants. Journal of Tribology, 2009, 131, .	1.9	18
232	Prediction of Steady State Adhesive Wear in Spur Gears Using the EHL Load Sharing Concept. Journal of Tribology, 2009, 131, .	1.9	47
233	Thermoelastohydrodynamic Analysis of Spur Gears with Consideration of Surface Roughness. Tribology Letters, 2008, 32, 129-141.	2.6	54
234	Effect of Starvation on Traction and Film Thickness in Thermo-EHL Line Contacts with Shear-Thinning Lubricants. Tribology Letters, 2008, 32, 171-177.	2.6	16

#	Article	IF	CITATIONS
235	Fretting behavior of a rubber coating: Effect of temperature and surface roughness variations. Wear, 2008, 265, 620-625.	3.1	11
236	Effects of oil inlet pressure and inlet position of axially grooved infinitely long journal bearings. Part I: Analytical solutions and static performance. Tribology International, 2008, 41, 119-131.	5.9	35
237	Effects of oil inlet pressure and inlet position of axially grooved infinitely long journal bearings. Part II: Nonlinear instability analysis. Tribology International, 2008, 41, 132-140.	5.9	32
238	On the thermodynamics of degradation. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2008, 464, 2001-2014.	2.1	149
239	Effect of particle size dispersion on granular lubrication regimes. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008, 222, 725-739.	1.8	22
240	Combined Effects of Shear Thinning and Viscous Heating on EHL Characteristics of Rolling/Sliding Line Contacts. Journal of Tribology, 2008, 130, .	1.9	29
241	EHL Circular Contact Film Thickness Correction Factor for Shear-Thinning Fluids. Journal of Tribology, 2008, 130, .	1.9	29
242	Performance of Spur Gears Considering Surface Roughness and Shear Thinning Lubricant. Journal of Tribology, 2008, 130, .	1.9	85
243	Scale Effects in Generalized Newtonian Elastohydrodynamic Films. Journal of Tribology, 2008, 130, .	1.9	12
244	On the effect of enduring contact on the flow and thermal characteristics in powder lubrication. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008, 222, 741-759.	1.8	7
245	A note on the lubricating film in hydrostatic mechanical face seals. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2008, 222, 559-567.	1.8	1
246	Linear Squeeze Film with Constant Rotational Speed. Tribology Transactions, 2008, 51, 361-371.	2.0	3
247	Application of Degradation-Entropy Generation Theorem to Dry Sliding Friction and Wear. , 2008, , .		3
248	Correction Factor Formula to Predict the Central and Minimum Film Thickness for Shear-Thinning Fluids in EHL. Journal of Tribology, 2008, 130, .	1.9	23
249	Experimental Investigation on the Stick-Slip Phenomenon in Granular Collision Lubrication. Journal of Tribology, 2008, 130, .	1.9	21
250	An Experimental Study of Oil-Lubricated Journal Bearings Undergoing Oscillatory Motion. Journal of Tribology, 2008, 130, .	1.9	9
251	Computational Fluid Dynamics Analysis of Turbulent Flow Within a Mechanical Seal Chamber. Journal of Tribology, 2007, 129, 120-128.	1.9	21
252	An Experimental Study of Grease-Lubricated Journal Bearings Undergoing Oscillatory Motion. Journal of Tribology, 2007, 129, 640-646.	1.9	8

#	Article	IF	CITATIONS
253	An Experimental Investigation of Grease-Lubricated Journal Bearings. Journal of Tribology, 2007, 129, 84-90.	1.9	15
254	Heat transfer analysis in mechanical seals using fin theory. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2007, 221, 717-725.	1.8	12
255	Granular Collision Lubrication: Experimental Investigation and Comparison to Theory. Journal of Tribology, 2007, 129, 923-932.	1.9	29
256	Transient Temperature Involving Oscillatory Heat Source With Application in Fretting Contact. Journal of Tribology, 2007, 129, 517-527.	1.9	21
257	Online tribology ball bearing fault detection and identification. , 2007, , .		1
258	On the elastohydrodynamic analysis of shear-thinning fluids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 463, 3271-3290.	2.1	57
259	Analytical Formulation for the Temperature Profile by Duhamel's Theorem in Bodies Subjected to an Oscillatory Heat Source. Journal of Heat Transfer, 2007, 129, 236-240.	2.1	9
260	Thermal influence on torque transfer of wet clutches in limited slip differential applications. Tribology International, 2007, 40, 876-884.	5.9	88
261	An Experimental Investigation of Dimple Effect on the Stribeck Curve of Journal Bearings. Tribology Letters, 2007, 27, 169-176.	2.6	221
262	Analysis of Heat Partitioning in Wheel/Rail and Wheel/Brake Shoe Friction Contact: An Analytical Approach. Tribology Transactions, 2006, 49, 635-642.	2.0	9
263	The Stribeck Curve: Experimental Results and Theoretical Prediction. Journal of Tribology, 2006, 128, 789.	1.9	194
264	Evaluation of Critical Design Factors on the Thermal Behavior Due to Frictional Heat in the Oscillatory Sliding Conformal Contact. , 2006, , 105.		0
265	Prediction of the Stability Envelope of Rotor-Bearing System. Journal of Vibration and Acoustics, Transactions of the ASME, 2006, 128, 197-202.	1.6	25
266	On the Hysteresis Phenomenon Associated With Instability of Rotor-Bearing Systems. Journal of Tribology, 2006, 128, 188-196.	1.9	28
267	A new derivation for journal bearing stiffness and damping coefficients in polar coordinates. Journal of Sound and Vibration, 2006, 290, 500-507.	3.9	12
268	Fretting behavior of a rubber coating: Friction characteristics of rubber debris. Wear, 2006, 261, 1114-1120.	3.1	12
269	Application of Hopf bifurcation theory to rotor-bearing systems with consideration of turbulent effects. Tribology International, 2006, 39, 701-714.	5.9	40
270	Bifurcation Analysis of a Flexible Rotor Supported by Two Fluid-Film Journal Bearings. Journal of Tribology, 2006, 128, 594-603.	1.9	58

#	Article	IF	CITATIONS
271	Influence of Inlet Oil Temperature on the Instability Threshold of Rotor-Bearing Systems. Journal of Tribology, 2006, 128, 319-326.	1.9	13
272	A Thermohydrodynamic Analysis of Foil Journal Bearings. Journal of Tribology, 2006, 128, 534-541.	1.9	92
273	Temperature Analysis of a Gasket for an Internal Combustion Engine. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2006, 220, 793-803.	1.9	0
274	Effect of Contamination on the Performance of Hydrodynamic Bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220, 419-428.	1.8	24
275	On the Role of Enduring Contact in Powder Lubrication. Journal of Tribology, 2006, 128, 168-175.	1.9	19
276	Reynolds Equations for Common Generalized Newtonian Models and an Approximate Reynolds-Carreau Equation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2006, 220, 365-374.	1.8	17
277	Numerical Simulations of the Flow Field Around the Rings of Mechanical Seals. Journal of Tribology, 2006, 128, 559-565.	1.9	31
278	Surface Temperature in Oscillating Sliding Interfaces. Journal of Tribology, 2005, 127, 1-9.	1.9	26
279	Thermomechanical analysis of oscillatory pin-bushing performance. Revue Europeenne Des Elements, 2005, 14, 255-269.	0.1	2
280	Friction and wear of a rubber coating in fretting. Wear, 2005, 258, 898-905.	3.1	19
281	Generalized Reynolds equations for line contact with double-Newtonian shear-thinning. Tribology Letters, 2005, 18, 513-520.	2.6	11
282	A thermodynamic approach for predicting fretting fatigue life. Tribology Letters, 2005, 19, 169-175.	2.6	34
283	On the Lift-off Speed in Journal Bearings. Tribology Letters, 2005, 20, 299-305.	2.6	42
284	A simplified thermohydrodynamic stability analysis of journal bearings. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2005, 219, 225-234.	1.8	16
285	Influence of Drag Force on the Dynamic Performance of a Rotor-Bearing System. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2005, 219, 291-295.	1.8	5
286	On the granular lubrication theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 3255-3278.	2.1	29
287	On the Limiting Load-Carrying Capacity of Foil Bearings. Journal of Tribology, 2004, 126, 817-818.	1.9	46
288	Hydrodynamic Analysis of Compliant Foil Bearings With Compressible Air Flow. Journal of Tribology, 2004, 126, 542-546.	1.9	98

#	Article	IF	CITATIONS
289	Thermoelastic Instability of Two-Conductor Friction System Including Surface Roughness. Journal of Applied Mechanics, Transactions ASME, 2004, 71, 57-68.	2.2	9
290	On the Growth Rate of Thermoelastic Instability. Journal of Tribology, 2004, 126, 50-55.	1.9	15
291	Granular Lubrication: Toward an Understanding of the Transition Between Kinetic and Quasi-Fluid Regime. Journal of Tribology, 2004, 126, 137-145.	1.9	78
292	On the active stabilization of tilting-pad journal bearings. Journal of Sound and Vibration, 2004, 273, 421-428.	3.9	16
293	Design of bearings on the basis of thermohydrodynamic analysis. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2004, 218, 355-363.	1.8	27
294	A generalized thermoelastic instability analysis. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459, 309-329.	2.1	35
295	On the thermoelastic instability of a thin-film-lubricated sliding contact: A closed-form solution. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2003, 217, 197-204.	1.8	6
296	Stability Boundaries of a Conservative Gyroscopic System. Journal of Applied Mechanics, Transactions ASME, 2003, 70, 561-567.	2.2	0
297	Flow Characterization and Performance of a Powder Lubricated Slider Bearing. Journal of Tribology, 2003, 125, 135-144.	1.9	13
298	Thermally Induced Seizure in Journal Bearings During Startup and Transient Flow Disturbance. Journal of Tribology, 2003, 125, 833-841.	1.9	25
299	On the Formation of Hot Spots in Wet Clutch Systems. Journal of Tribology, 2002, 124, 336-345.	1.9	24
300	Application of analysis of variance to wet clutch engagement. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2002, 216, 117-125.	1.8	11
301	Influence of Inlet Conditions on the Thermohydrodynamic State of a Fully Circumferentially Grooved Journal Bearing. Journal of Tribology, 2001, 123, 525-532.	1.9	10
302	On the thermohydrodynamic analysis of a Bingham fluid in slider bearings. Acta Mechanica, 2001, 148, 165-185.	2.1	7
303	Thermal and Dynamic Characterization of Wet Clutch Engagement With Provision for Drive Torque. Journal of Tribology, 2001, 123, 313-323.	1.9	31
304	Scuffing Failure of Hydrodynamic Bearings Due to an Abrasive Contaminant Partially Penetrated in the Bearing Over-Layer. Journal of Tribology, 2001, 123, 430-433.	1.9	20
305	Friction and wear characteristics of ceramic nanocomposite coatings: Titanium carbide/amorphous hydrocarbon. Applied Physics Letters, 2001, 79, 329-331.	3.3	54
306	Hydrodynamics of a Soft Contact Lens During Sliding Motion. Journal of Tribology, 2000, 122, 573-577.	1.9	12

#	Article	IF	CITATIONS
307	Thermoelastic Instability With Consideration of Surface Roughness and Hydrodynamic Lubrication. Journal of Tribology, 2000, 122, 725-732.	1.9	28
308	Experimental Characterization of Sliding Friction: Crossing From Deformation to Plowing Contact. Journal of Tribology, 2000, 122, 856-863.	1.9	22
309	Flow Characteristics of a Powder Lubricant Sheared Between Parallel Plates. Journal of Tribology, 2000, 122, 147-155.	1.9	36
310	On the Scuffing Failure of Hydrodynamic Bearings in the Presence of an Abrasive Contaminant. Journal of Tribology, 1999, 121, 90-96.	1.9	30
311	Thermal Characteristics of a Wet Clutch. Journal of Tribology, 1999, 121, 610-617.	1.9	81
312	Thermoelastic Instability Including Surface Roughness Effects. Journal of Tribology, 1999, 121, 648-654.	1.9	18
313	On the Frictional Characteristics of Ball Bearings Coated With Solid Lubricants. Journal of Tribology, 1999, 121, 761-767.	1.9	10
314	High-pressure rheology of lubricants and limitations of the Reynolds equation. Tribology International, 1998, 31, 573-586.	5.9	83
315	Modeling Aspects of a Rate-Controlled Seizure in an Unloaded Journal Bearing. Tribology Transactions, 1998, 41, 481-488.	2.0	14
316	Thermohydrodynamic Seizure: Experimental and Theoretical Analysis. Journal of Tribology, 1998, 120, 8-15.	1.9	19
317	On the Choking of the Flow of Piezoviscous Liquids. Journal of Fluids Engineering, Transactions of the ASME, 1998, 120, 621-625.	1.5	1
318	CFD Based Design Techniques for Thermal Prediction in a Generic Two-Axial Groove Hydrodynamic Journal Bearing. Journal of Tribology, 1997, 119, 428-435.	1.9	37
319	Frictional Analysis of MoS2 Coated Ball Bearings: A Three-Dimensional Finite Element Analysis. Journal of Tribology, 1997, 119, 754-763.	1.9	26
320	Heat Transfer in a Thin-Film Flow in the Presence of Squeeze and Shear Thinning: Application to Piston Rings. Journal of Heat Transfer, 1997, 119, 249-257.	2.1	27
321	Parameter Identification of Hysteresis Friction for Coated Ball Bearings Based on Three-Dimensional FEM Analysis. Journal of Tribology, 1997, 119, 462-470.	1.9	18
322	Thermohydrodynamic Design Charts for Slider Bearings. Journal of Tribology, 1997, 119, 733-740.	1.9	24
323	Performance Analysis of Grease-Lubricated Journal Bearings Including Thermal Effects. Journal of Tribology, 1997, 119, 859-868.	1.9	8
324	On the modeling of multi-body interaction problems in tribology. Wear, 1997, 207, 55-62.	3.1	36

#	Article	IF	CITATIONS
325	Fundamentals of Elastohydrodynamic Lubrication. , 1997, , .		2
326	On the Ceneralization of Thermohydrodynamic Analyses for Journal Bearings. Journal of Tribology, 1996, 118, 571-579.	1.9	93
327	Elastohydrodynamic Lubrication by Powder Slurries. Journal of Tribology, 1996, 118, 67-73.	1.9	16
328	Generalized Boundary Interactions for Powder Lubricated Couette Flows. Journal of Tribology, 1996, 118, 580-588.	1.9	34
329	A finite element analysis of the frictional forces between a cylindrical bearing element and MoS2 coated and uncoated surfaces. Wear, 1996, 194, 60-70.	3.1	41
330	Hydro-Roll: A Novel Bearing Design with Superior Thermal Characteristics. Tribology Transactions, 1996, 39, 455-461.	2.0	7
331	Dynamic Friction Measurements of MoS2 Coated Ball Bearing Surfaces. Journal of Tribology, 1996, 118, 858-864.	1.9	9
332	An Analysis of Powder Lubricated Slider Bearings. Journal of Tribology, 1996, 118, 206-214.	1.9	31
333	Comparison of the Low-Speed Frictional Characteristics of Silicon Nitride and Steel Balls Using Conventional Lubricants. Journal of Tribology, 1996, 118, 43-51.	1.9	12
334	Discussion: "A Study of the Starting Characteristics of an Unlubricated Journal Bearing―(Sun, D. C.,) Tj ETQ	q0 0 0 rgB 1.9	T /Overlock 1
335	On the Modeling of a Thermomechanical Seizure. Journal of Tribology, 1995, 117, 744-747.	1.9	20
336	Application of Transient Elastohydrodynamic Lubrication Analysis for Gear Transmissions. Tribology Transactions, 1995, 38, 905-913.	2.0	46
337	Discussion: "Angular-Compliant Hydrodynamic Bearing Performance Under Dynamic Loads―(Harnoy,) Tj ET	Qq1 1 0.78	84314 rgBT /(
338	Closure to "Discussion of â€~Adiabatic Shear Localization in a Liquid Lubricant Under Pressure'―(1994,)) Tj ETQq0	0 g rgBT /Ove
339	Adiabatic Shear Localization in a Liquid Lubricant Under Pressure. Journal of Tribology, 1994, 116, 705-708.	1.9	35
340	A Theory of Hydrodynamic Lubrication Involving the Mixture of Two Fluids. Journal of Applied Mechanics, Transactions ASME, 1994, 61, 634-641.	2.2	23
341	Experimental Measurements of the Rest-Slope and Steady Torque on Ball Bearings Experiencing Small Angular Rotations. Tribology Transactions, 1994, 37, 261-268.	2.0	15
342	On the Lubrication Mechanism of Grain Flows. Tribology Transactions, 1994, 37, 516-524.	2.0	43

#	Article	IF	CITATIONS
343	Effect of viscous dissipation on the lubrication characteristics of micropolar fluids. Acta Mechanica, 1994, 105, 57-68.	2.1	26
344	Thermal Elastohydrodynamic Analysis Using a Generalized Non-Newtonian Formulation With Application to Bair-Winer Constitutive Equation. Journal of Tribology, 1994, 116, 37-46.	1.9	45
345	Generalized Reynolds Equation for Solid-Liquid Lubricated Bearings. Journal of Applied Mechanics, Transactions ASME, 1994, 61, 460-466.	2.2	3
346	Generalized non-Newtonian elastohydrodynamic lubrication. Tribology International, 1993, 26, 405-411.	5.9	17
347	A Continuum Theory of a Lubrication Problem With Solid Particles. Journal of Applied Mechanics, Transactions ASME, 1993, 60, 48-58.	2.2	23
348	The Response of Balls Undergoing Oscillatory Motion: Crossing From Boundary to Mixed Lubrication Regimes. Journal of Tribology, 1993, 115, 261-266.	1.9	21
349	Stability Boundary of Non-Linear Orbits Within Clearance Circle of Journal Bearings. Journal of Vibration and Acoustics, Transactions of the ASME, 1993, 115, 303-307.	1.6	62
350	Low-Speed Friction Torque on Balls Undergoing Rolling Motion. Tribology Transactions, 1993, 36, 290-296.	2.0	15
351	Thermal Response of Rolling Components Under Mixed Boundary Conditions: An Analytical Approach. Journal of Heat Transfer, 1993, 115, 857-865.	2.1	6
352	On the Main Flow Pattern in Hydrocyclones. Journal of Fluids Engineering, Transactions of the ASME, 1993, 115, 21-25.	1.5	16
353	Evaluation of Ultra-Low-Speed Jitter in Rolling Balls. Journal of Tribology, 1992, 114, 589-594.	1.9	17
354	On the Mixture Flow Problem in Lubrication of Hydrodynamic Bearings: Small Solid Volume Fraction. Tribology Transactions, 1992, 35, 45-52.	2.0	10
355	Notes on Transient THD Effects in a Lubricating Film. Tribology Transactions, 1992, 35, 177-183.	2.0	42
356	Finite element model of journal bearings undergoing rapid thermally induced seizure. Tribology International, 1992, 25, 177-182.	5.9	27
357	Thermoelastic behaviour of journal bearings undergoing seizure. Tribology International, 1992, 25, 183-187.	5.9	25
358	Analytical solution for a mixture of a newtonian fluid and granules in hydrodynamic bearings. Wear, 1992, 156, 327-344.	3.1	5
359	On the solution of a lubrication problem with particulate solids. International Journal of Engineering Science, 1991, 29, 1019-1033.	5.0	10
360	On The Fluid-Solid Interaction in Reference to Thermoelastohydrodynamic Analysis of Journal Bearings. Journal of Tribology, 1991, 113, 398-404.	1.9	72

#	Article	IF	CITATIONS
361	On the Maximum Temperature in Double-Layered Journal Bearings. Journal of Tribology, 1991, 113, 464-469.	1.9	14
362	A Theory of Thermo-Elastohydrodynamic Lubrication of Liquid-Solid Lubricated Cylinders. Journal of Tribology, 1990, 112, 259-265.	1.9	15
363	Discussion: "A Finite Volume Analysis of the Thermohydrodynamic Performance of Finite Journal Bearings―(Han, T., and Paranjpe, R. S., 1990, ASME J. Tribol., 112, pp. 557–565). Journal of Tribology, 1990, 112, 565-565.	1.9	0
364	On the self-excited whirl orbits of a journal in a sleeve bearing lubricated with micropolar fluids. Acta Mechanica, 1990, 81, 235-244.	2.1	46
365	On the role of particulate contamination in scuffing failure. Wear, 1990, 137, 51-62.	3.1	31
366	On the Performance of Finite Journal Bearings Lubricated with Micropolar Fluids. Tribology Transactions, 1989, 32, 155-160.	2.0	126
367	Discussion: "Thermally Induced Seizures of Journal Bearings―(Dufrane, K. F., and Kannel, J. W., 1989,) Tj ETÇ	q110.78	4314 rgBT 0
368	A Theory of Liquid-Solid Lubrication in Elastohydrodynamic Regime. Journal of Tribology, 1989, 111, 440-444.	1.9	24
369	On Thermally Induced Seizure in Journal Bearings. Journal of Tribology, 1989, 111, 661-667.	1.9	39
370	Effect of Shaft Frequency on Cavitation in a Journal Bearing for Noncentered Circular Whirl. Tribology Transactions, 1988, 31, 54-60.	2.0	5
371	Thermohydrodynamic Analysis of Solid-Liquid Lubricated Journal Bearings. Journal of Tribology, 1988, 110, 367-374.	1.9	17
372	Stability of a Rigid Rotor Supported on Flexible Oil Journal Bearings. Journal of Tribology, 1988, 110, 181-187.	1.9	29
373	Discussion: "The Effects of Fluid Inertia Forces on the Dynamic Behavior of Short Journal Bearings in Superlaminar Flow Regime―(Hashimoto, H., Wada, S., and Sumitomo, M., 1988, ASME J. Tribol., 110, pp.) Tj ETC)q 1. 9 0.78	34 0 14 rgBT
374	A Review of Thermal Effects in Hydrodynamic Bearings Part I: Slider and Thrust Bearings. ASLE Transactions, 1987, 30, 19-25.	0.6	69
375	A Review of Thermal Effects in Hydrodynamic Bearings. Part II: Journal Bearings. ASLE Transactions, 1987, 30, 26-33.	0.6	87
376	Thermohydrodynamic Analysis of Laminar Incompressible Journal Bearings. ASLE Transactions, 1986, 29, 141-150.	0.6	91
377	Adaptive control of active tilting-pad bearings. , 0, , .		9

#	Article	IF	CITATIONS
379	Lubricants and Lubrication. , 0, , 23-61.		Ο
380	Appendix B: Viscosity Conversions. , 0, , 555-556.		1
381	Reynolds Equation and Applications. , 0, , 143-171.		4
382	Introduction to Thermodynamics of Mechanical Fatigue. , 0, , .		29
383	Appendix A: Unit Conversion Factors. , 0, , 551-553.		Ο
384	Tribology– Friction, Wear, and Lubrication. , 0, , 1-21.		0
385	Hydrostatic Bearings. , 0, , 299-319.		Ο
386	Gas Bearings. , 0, , 321-359.		0
387	Dry and Starved Bearings. , 0, , 361-387.		Ο
388	Selecting Bearing Type and Size. , 0, , 389-423.		0
389	Principles and Operating Limits. , 0, , 425-457.		Ο
390	Friction, Wear and Lubrication. , 0, , 459-485.		0
391	Seal Fundamentals. , 0, , 487-529.		Ο
392	Condition Monitoring and Failure Analysis. , 0, , 531-550.		0
393	Surface Texture and Interactions. , 0, , 63-88.		0
394	Fundamentals of Viscous Flow. , 0, , 113-142.		0
395	Thrust Bearings. , 0, , 173-199.		0
396	Journal Bearings. , 0, , 201-261.		0

#	Article	IF	CITATIONS
397	Squeeze-Film Bearings. , 0, , 263-298.		1