
## Qian-Tao Jiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8709147/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | IF                | CITATIONS         |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
| 1  | A major vernalization-independent QTL for tiller angle on chromosome arm 2BL in bread wheat. Crop<br>Journal, 2022, 10, 185-193.                                                                                               | 5.2               | 6                 |
| 2  | Characterization and fine mapping of a lesion mimic mutant (Lm5) with enhanced stripe rust and powdery mildew resistance in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2022, 135, 421-438.          | 3.6               | 5                 |
| 3  | Exome Sequencing from Bulked Segregant Analysis Identifies a Gene for All-Stage Resistance to Stripe<br>Rust on Chromosome 1AL in Chinese Wheat Landrace â€~Xiaohemai'. Plant Disease, 2022, 106, 1209-1215.                   | 1.4               | 4                 |
| 4  | Mapping a stable adult-plant stripe rust resistance QTL on chromosome 6AL in Chinese wheat landrace<br>Yibinzhuermai. Crop Journal, 2022, , .                                                                                  | 5.2               | 5                 |
| 5  | Editing of the starch synthase IIa gene led to transcriptomic and metabolomic changes and high amylose starch in barley. Carbohydrate Polymers, 2022, 285, 119238.                                                             | 10.2              | 17                |
| 6  | The PGS1 basic helixâ€loopâ€helix protein regulates <i>Fl3</i> to impact seed growth and grain yield in cereals. Plant Biotechnology Journal, 2022, 20, 1311-1326.                                                             | 8.3               | 23                |
| 7  | Genome-Wide Association Study of Kernel Black Point Resistance in Chinese Wheat Landraces. Plant<br>Disease, 2022, 106, 1428-1433.                                                                                             | 1.4               | 2                 |
| 8  | Polyploidization affects the allelic variation of jasmonate-regulated protein Ta-JA1 belonging to the monocot chimeric jacalin (MCJ) family in wild emmer wheat. Gene, 2022, 825, 146399.                                      | 2.2               | 0                 |
| 9  | A major and stable QTL for wheat spikelet number per spike validated in different genetic backgrounds.<br>Journal of Integrative Agriculture, 2022, 21, 1551-1562.                                                             | 3.5               | 15                |
| 10 | Analysis of starch structure and functional properties of tetraploid wheat ( <scp><i>Triticum) Tj ETQq0 0 0 rgBT /0<br/>Agriculture, 2022, 102, 5974-5983.</i></scp>                                                           | Overlock 1<br>3.5 | 10 Tf 50 387<br>4 |
| 11 | Identification and validation of a major QTL for kernel length in bread wheat based on two F3<br>biparental populations. BMC Genomics, 2022, 23, 386.                                                                          | 2.8               | 4                 |
| 12 | Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nature Genetics, 2022, 54, 1248-1258.                                                                                                        | 21.4              | 45                |
| 13 | The Qc5 Allele Increases Wheat Bread-Making Quality by Regulating SPA and SPR. International Journal of Molecular Sciences, 2022, 23, 7581.                                                                                    | 4.1               | 2                 |
| 14 | Quick mapping and characterization of a co-located kernel length and thousand-kernel weight-related<br>QTL in wheat. Theoretical and Applied Genetics, 2022, 135, 2849-2860.                                                   | 3.6               | 16                |
| 15 | QTL mapping and validation of bread wheat flag leaf morphology across multiple environments in different genetic backgrounds. Theoretical and Applied Genetics, 2021, 134, 261-278.                                            | 3.6               | 24                |
| 16 | Molecular Mapping of a Novel Quantitative Trait Locus Conferring Adult Plant Resistance to Stripe<br>Rust in Chinese Wheat Landrace Guangtoumai. Plant Disease, 2021, 105, 1919-1925.                                          | 1.4               | 6                 |
| 17 | Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a<br>Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC<br>Genomics, 2021, 22, 34. | 2.8               | 18                |
| 18 | Genome-wide transcriptome profiling indicates the putative mechanism underlying enhanced grain size in a wheat mutant. 3 Biotech, 2021, 11, 54.                                                                                | 2.2               | 3                 |

| #  | Article                                                                                                                                                                                                                                      | IF               | CITATIONS         |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------|
| 19 | A Stable Quantitative Trait Locus on Chromosome 5BL Combined with <i>Yr18</i> Conferring<br>High-Level Adult Plant Resistance to Stripe Rust in Chinese Wheat Landrace Anyuehong.<br>Phytopathology, 2021, 111, 1594-1601.                   | 2.2              | 11                |
| 20 | <i>Myb10â€Ð</i> confers <i>PHSâ€3D</i> resistance to preâ€harvest sprouting by regulating <i>NCED</i> in ABA biosynthesis pathway of wheat. New Phytologist, 2021, 230, 1940-1952.                                                           | 7.3              | 53                |
| 21 | Genome-wide identification of bZIP transcription factor genes related to starch synthesis in barley<br>( <i>Hordeum vulgare</i> L.). Genome, 2021, 64, 1067-1080.                                                                            | 2.0              | 8                 |
| 22 | Genetic Mapping and Validation of Loci for Kernel-Related Traits in Wheat (Triticum aestivum L.).<br>Frontiers in Plant Science, 2021, 12, 667493.                                                                                           | 3.6              | 17                |
| 23 | Post-translational cleavage of HMW-CS Dy10 allele improves the cookie-making quality in common wheat (Triticum aestivum). Molecular Breeding, 2021, 41, 1.                                                                                   | 2.1              | 5                 |
| 24 | Major Facilitator Superfamily Transporter Gene FgMFS1 Is Essential for Fusarium graminearum to Deal<br>with Salicylic Acid Stress and for Its Pathogenicity towards Wheat. International Journal of<br>Molecular Sciences, 2021, 22, 8497.   | 4.1              | 6                 |
| 25 | The 55K SNP-Based Exploration of QTLs for Spikelet Number Per Spike in a Tetraploid Wheat (Triticum) Tj ETQq1 12, 732837.                                                                                                                    | 1 0.7843]<br>3.6 | 14 rgBT /Ove<br>6 |
| 26 | Selenium and anthocyanins share the same transcription factors R2R3MYB and bHLH in wheat. Food Chemistry, 2021, 356, 129699.                                                                                                                 | 8.2              | 11                |
| 27 | Genetic identification and characterization of chromosomal regions for kernel length and width increase from tetraploid wheat. BMC Genomics, 2021, 22, 706.                                                                                  | 2.8              | 6                 |
| 28 | A single base change at exon of Wxâ€A1 caused gene inactivation and starch properties modified in a<br>wheat EMS mutant line. Journal of the Science of Food and Agriculture, 2021, , .                                                      | 3.5              | 3                 |
| 29 | Genetic dissection of wheat uppermost-internode diameter and its association with agronomic traits<br>in five recombinant inbred line populations at various field environments. Journal of Integrative<br>Agriculture, 2021, 20, 2849-2861. | 3.5              | 3                 |
| 30 | Re-examination of the APETALA2/Ethylene-Responsive Factor Gene Family in Barley (Hordeum vulgare L.)<br>Indicates a Role in the Regulation of Starch Synthesis. Frontiers in Plant Science, 2021, 12, 791584.                                | 3.6              | 4                 |
| 31 | Molecular Mapping and Analysis of an Excellent Quantitative Trait Loci Conferring Adult-Plant<br>Resistance to Stripe Rust in Chinese Wheat Landrace Gaoxianguangtoumai. Frontiers in Plant Science,<br>2021, 12, 756557.                    | 3.6              | 2                 |
| 32 | Genome-Wide Association Analysis of Stable Stripe Rust Resistance Loci in a Chinese Wheat Landrace<br>Panel Using the 660K SNP Array. Frontiers in Plant Science, 2021, 12, 783830.                                                          | 3.6              | 9                 |
| 33 | Spike Density Quantitative Trait Loci Detection and Analysis in Tetraploid and Hexaploid Wheat Recombinant Inbred Line Populations. Frontiers in Plant Science, 2021, 12, 796397.                                                            | 3.6              | 9                 |
| 34 | Quantitative trait loci for seeding root traits and the relationships between root and agronomic traits in common wheat. Genome, 2020, 63, 27-36.                                                                                            | 2.0              | 15                |
| 35 | Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theoretical and Applied Genetics, 2020, 133, 297-315.                                                       | 3.6              | 53                |
| 36 | Production of waxy tetraploid wheat (Triticum turgidum durum L.) by EMS mutagenesis. Genetic<br>Resources and Crop Evolution, 2020, 67, 433-443.                                                                                             | 1.6              | 9                 |

| #  | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mutation of the d-hordein gene by RNA-guided Cas9 targeted editing reducing the grain size and changing grain compositions in barley. Food Chemistry, 2020, 311, 125892.                                             | 8.2 | 32        |
| 38 | Several stably expressed QTL for spike density of common wheat ( <i>Triticum aestivum</i> ) in multiple environments. Plant Breeding, 2020, 139, 284-294.                                                            | 1.9 | 18        |
| 39 | The production of wheat – <i>Aegilops sharonensis</i> 1S <sup>sh</sup> chromosome substitution<br>lines harboring alien novel high-molecular-weight glutenin subunits. Genome, 2020, 63, 155-167.                    | 2.0 | 3         |
| 40 | Population structure and genetic basis of the stripe rust resistance of 140 Chinese wheat landraces revealed by a genome-wide association study. Plant Science, 2020, 301, 110688.                                   | 3.6 | 15        |
| 41 | A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in<br>bread wheat. Plant Molecular Biology, 2020, 104, 173-185.                                                      | 3.9 | 36        |
| 42 | A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat. Theoretical and Applied Genetics, 2020, 133, 3381-3393.                            | 3.6 | 29        |
| 43 | Transfer of the ph1b gene of â€~Chinese Spring' into a common wheat cultivar with excellent traits.<br>Cereal Research Communications, 2020, 48, 283-291.                                                            | 1.6 | 3         |
| 44 | Genome-Wide Association Study Reveals the Genetic Architecture of Stripe Rust Resistance at the<br>Adult Plant Stage in Chinese Endemic Wheat. Frontiers in Plant Science, 2020, 11, 625.                            | 3.6 | 8         |
| 45 | EMS induced SNP changes led to mutation of Wx protein in common wheat. Cereal Research Communications, 2020, 48, 233-238.                                                                                            | 1.6 | 2         |
| 46 | Identification and characterization of mRNAs and IncRNAs of a barley shrunken endosperm mutant<br>using RNA-seq. Genetica, 2020, 148, 55-68.                                                                         | 1.1 | 5         |
| 47 | Transcriptome analysis of near-isogenic lines for glume hairiness of wheat. Gene, 2020, 739, 144517.                                                                                                                 | 2.2 | 7         |
| 48 | Effects of the 1BL/1RS translocation on 24 traits in a recombinant inbred line population. Cereal Research Communications, 2020, 48, 225-232.                                                                        | 1.6 | 11        |
| 49 | Mapping and characterization of major QTL for spike traits in common wheat. Physiology and<br>Molecular Biology of Plants, 2020, 26, 1295-1307.                                                                      | 3.1 | 15        |
| 50 | Genome-wide association study reveals new loci for yield-related traits in Sichuan wheat germplasm<br>under stripe rust stress. BMC Genomics, 2019, 20, 640.                                                         | 2.8 | 19        |
| 51 | Dissection of loci conferring resistance to stripe rust in Chinese wheat landraces from the middle<br>and lower reaches of the Yangtze River via genome-wide association study. Plant Science, 2019, 287,<br>110204. | 3.6 | 22        |
| 52 | Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theoretical and Applied Genetics, 2019, 132, 3155-3167.                                              | 3.6 | 70        |
| 53 | Identification of quantitative trait loci for kernel traits in a wheat cultivar Chuannong16. BMC<br>Genetics, 2019, 20, 77.                                                                                          | 2.7 | 42        |
| 54 | Fusarium graminearum FgCWM1 Encodes a Cell Wall Mannoprotein Conferring Sensitivity to Salicylic<br>Acid and Virulence to Wheat. Toxins, 2019, 11, 628.                                                              | 3.4 | 5         |

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Enriching LMW-CS alleles and strengthening gluten properties of common wheat through wide hybridization with wild emmer. 3 Biotech, 2019, 9, 355. | 2.2 | 3         |

## 56 Functional Analysis of FgNahG Clarifies the Contribution of Salicylic Acid to Wheat (Triticum) Tj ETQq000 rgBT /Overlock 10 Tf 50 702

| 57 | Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theoretical and Applied Genetics, 2019, 132, 1363-1373.                          | 3.6 | 49 |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----|
| 58 | Transcriptional reference map of hormone responses in wheat spikes. BMC Genomics, 2019, 20, 390.                                                                                                                | 2.8 | 22 |
| 59 | Reâ€acquisition of the brittle rachis trait via a transposon insertion in domestication gene Q during wheat deâ€domestication. New Phytologist, 2019, 224, 961-973.                                             | 7.3 | 37 |
| 60 | Genome-Wide Association Study for Adult-Plant Resistance to Stripe Rust in Chinese Wheat Landraces<br>(Triticum aestivum L.) From the Yellow and Huai River Valleys. Frontiers in Plant Science, 2019, 10, 596. | 3.6 | 41 |
| 61 | A single-base change at a splice site in Wx-A1 caused incorrect RNA splicing and gene inactivation in a wheat EMS mutant line. Theoretical and Applied Genetics, 2019, 132, 2097-2109.                          | 3.6 | 17 |
| 62 | Genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in<br>Sichuan wheat. BMC Plant Biology, 2019, 19, 147.                                                         | 3.6 | 39 |
| 63 | Characterization of molecular diversity and genome-wide association study of stripe rust resistance at the adult plant stage in Northern Chinese wheat landraces. BMC Genetics, 2019, 20, 38.                   | 2.7 | 56 |
| 64 | Stable expression and heredity of alien Glu-1Ssh in wheat-Aegilops sharonensis hybrid progenies.<br>Genetic Resources and Crop Evolution, 2019, 66, 619-632.                                                    | 1.6 | 4  |
| 65 | Expression of the high molecular weight glutenin 1Ay gene from Triticum urartu in barley. Transgenic<br>Research, 2019, 28, 225-235.                                                                            | 2.4 | 6  |
| 66 | Alternative splicing results in a lack of starch synthase lla-D in Chinese wheat landrace. Genome, 2018, 61, 201-208.                                                                                           | 2.0 | 5  |
| 67 | An Overexpressed <i>Q</i> Allele Leads to Increased Spike Density and Improved Processing Quality in Common Wheat ( <i>Triticum aestivum</i> ). G3: Genes, Genomes, Genetics, 2018, 8, 771-778.                 | 1.8 | 27 |
| 68 | Analysis of contributors to grain yield in wheat at the individual quantitative trait locus level. Plant<br>Breeding, 2018, 137, 35-49.                                                                         | 1.9 | 29 |
| 69 | Uncovering the dispersion history, adaptive evolution and selection of wheat in China. Plant<br>Biotechnology Journal, 2018, 16, 280-291.                                                                       | 8.3 | 62 |
| 70 | Variation and diversity of the breakpoint sequences on 4AL for the 4AL/5AL translocation in <i>Triticum</i> . Genome, 2018, 61, 635-641.                                                                        | 2.0 | 4  |
| 71 | Molecular characterization of the TaWTG1 in bread wheat (Triticum aestivum L.). Gene, 2018, 678, 23-32.                                                                                                         | 2.2 | 5  |
| 72 | Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Scientific Reports, 2018, 8, 11928.                                   | 3.3 | 38 |

| #  | Article                                                                                                                                                                                                                                                            | IF                 | CITATIONS      |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------|
| 73 | A 55ÂK SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 2018, 131, 2439-2450.                                                                                        | 3.6                | 95             |
| 74 | Fusarium graminearum ATP-Binding Cassette Transporter Gene FgABCC9 Is Required for Its<br>Transportation of Salicylic Acid, Fungicide Resistance, Mycelial Growth and Pathogenicity towards<br>Wheat. International Journal of Molecular Sciences, 2018, 19, 2351. | 4.1                | 20             |
| 75 | Molecular mapping of a stripe rust resistance gene in Chinese wheat landrace "Hejiangyizai―using SSR,<br>RGAP, TRAP, and SRAP markers. Crop Protection, 2017, 94, 178-184.                                                                                         | 2.1                | 7              |
| 76 | Structure and expression of the TaGW7 in bread wheat (Triticum aestivum L.). Plant Growth Regulation, 2017, 82, 281-291.                                                                                                                                           | 3.4                | 9              |
| 77 | Linoleic acid isomerase gene FgLAI12 affects sensitivity to salicylic acid, mycelial growth and virulence of Fusarium graminearum. Scientific Reports, 2017, 7, 46129.                                                                                             | 3.3                | 14             |
| 78 | Transposon insertion resulted in the silencing of Wx-B1n in Chinese wheat landraces. Theoretical and Applied Genetics, 2017, 130, 1321-1330.                                                                                                                       | 3.6                | 14             |
| 79 | Identification of quantitative trait loci for seedling root traits from Tibetan semi-wild wheat<br>( <i>Triticum aestivum</i> subsp. <i>tibetanum</i> ). Genome, 2017, 60, 1068-1075.                                                                              | 2.0                | 22             |
| 80 | ldentification and characterization of genes on a single subgenome in the hexaploid wheat<br>( <i>Triticum aestivum</i> L.) genotype â€~Chinese Spring〙. Genome, 2017, 60, 208-215.                                                                                | 2.0                | 4              |
| 81 | Cloning and characterization of Agp1, the gene encoding the small subunit of ADP-glucose pyrophosphorylase from wheat and its relatives. Biologia (Poland), 2017, 72, 1446-1453.                                                                                   | 1.5                | 2              |
| 82 | Genome-Wide Association Study for Pre-harvest Sprouting Resistance in a Large Germplasm Collection of Chinese Wheat Landraces. Frontiers in Plant Science, 2017, 08, 401.                                                                                          | 3.6                | 98             |
| 83 | Genome-wide association study of pre-harvest sprouting resistance in Chinese wheat founder parents.<br>Genetics and Molecular Biology, 2017, 40, 620-629.                                                                                                          | 1.3                | 19             |
| 84 | Genome-wide identification and analysis of the MADS-box gene family in bread wheat (Triticum) Tj ETQq0 0 0 rg                                                                                                                                                      | gBT /Qverlo<br>2.5 | ock 10 Tf 50 3 |
| 85 | Inheritance analysis and mapping of quantitative trait loci (QTL) controlling individual anthocyanin compounds in purple barley (Hordeum vulgare L.) grains. PLoS ONE, 2017, 12, e0183704.                                                                         | 2.5                | 17             |
| 86 | Identification of Quantitative Trait Loci Controlling Agronomic Traits Indicates Breeding Potential of<br>Tibetan Semiwild Wheat ( <i>Triticum aestivum</i> ssp. <i>tibetanum</i> ). Crop Science, 2016, 56,<br>2410-2420.                                         | 1.8                | 32             |
| 87 | Structure and expression of phosphoglucan phosphatase genes of Like Sex Four1 and Like Sex Four2 in barley. Genetica, 2016, 144, 313-323.                                                                                                                          | 1.1                | 3              |
| 88 | Inheritance and Molecular Mapping of an All-Stage Stripe Rust Resistance Gene Derived from the<br>Chinese Common Wheat Landrace "Yilongtuomai― Journal of Heredity, 2016, 107, 463-470.                                                                            | 2.4                | 16             |
| 89 | Structure and expression analysis of genes encoding ADP-glucose pyrophosphorylase large subunit in wheat and its relatives. Genome, 2016, 59, 501-507.                                                                                                             | 2.0                | 8              |
| 90 | A super twin T-DNA vector that allows independent gene expression during Agrobacterium -mediated<br>transformation. Plasmid, 2016, 87-88, 58-64.                                                                                                                   | 1.4                | 2              |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Genetic analysis of glume hairiness (Hg) gene in bread wheat (Triticum aestivum L.). Genetic Resources and Crop Evolution, 2016, 63, 763-769.                                                                               | 1.6 | 10        |
| 92  | Chitin synthase gene FgCHS8 affects virulence and fungal cell wall sensitivity to environmental stress in Fusarium graminearum. Fungal Biology, 2016, 120, 764-774.                                                         | 2.5 | 29        |
| 93  | Genetic analyses of Glu-1S sh in wheat/Aegilops sharonensis hybrid progenies and development of alien HMW-GSs gene-specific markers. Molecular Breeding, 2015, 35, 1.                                                       | 2.1 | 5         |
| 94  | Quantitative trait locus mapping for seed dormancy in different post-ripening stages in a Tibetan semi-wild wheat (Triticum aestivum ssp. tibetanum Shao). Euphytica, 2015, 203, 557-567.                                   | 1.2 | 6         |
| 95  | Characterization of starch branching enzyme I (SBE I) gene in two <i>Triticum<br/>monococcum</i> accessions with different starch content. Starch/Staerke, 2015, 67, 663-672.                                               | 2.1 | 4         |
| 96  | Characterization of genes encoding Starch Branching Enzyme I from Triticum monococcum and its diploid wheat relatives. Biologia (Poland), 2015, 70, 1193-1200.                                                              | 1.5 | 0         |
| 97  | Identification of genes bordering breakpoints of the pericentric inversions on 2B, 4B, and 5A in bread wheat (Triticum aestivum L.). Genome, 2015, 58, 385-390.                                                             | 2.0 | 8         |
| 98  | Genome-Wide Quantitative Trait Locus Mapping Identifies Multiple Major Loci for Brittle Rachis and<br>Threshability in Tibetan Semi-Wild Wheat (Triticum aestivum ssp. tibetanum Shao). PLoS ONE, 2014, 9,<br>e114066.      | 2.5 | 29        |
| 99  | Conserved structure and varied expression reveal key roles of phosphoglucan phosphatase gene starch excess 4 in barley. Planta, 2014, 240, 1179-1190.                                                                       | 3.2 | 14        |
| 100 | Characterization of shrunken endosperm mutants in barley. Gene, 2014, 539, 15-20.                                                                                                                                           | 2.2 | 12        |
| 101 | Characterization of high-molecular-weight glutenin subunits from Eremopyrum bonaepartis and identification of a novel variant with unusual high molecular weight and altered cysteine residues. Planta, 2014, 239, 865-875. | 3.2 | 12        |
| 102 | Amphidiploids between tetraploid wheat and Aegilops sharonensis Eig exhibit variations in<br>high-molecular-weight glutenin subunits. Genetic Resources and Crop Evolution, 2014, 61, 299-305.                              | 1.6 | 7         |
| 103 | Characterization and expression analysis of waxy alleles in barley accessions. Genetica, 2013, 141, 227-238.                                                                                                                | 1.1 | 19        |
| 104 | Structure and expression of barley starch phosphorylase genes. Planta, 2013, 238, 1081-1093.                                                                                                                                | 3.2 | 23        |
| 105 | Novel variants of HMW glutenin subunits from Aegilops section Sitopsis species in relation to evolution and wheat breeding. BMC Plant Biology, 2012, 12, 73.                                                                | 3.6 | 28        |
| 106 | Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress. Genetica, 2011, 139, 1283-1292.                                                                                   | 1.1 | 12        |
| 107 | Genome-wide identification and evaluation of novel internal control genes for Q-PCR based transcript normalization in wheat. Plant Molecular Biology, 2010, 74, 307-311.                                                    | 3.9 | 106       |
| 108 | Characterization and comparative analysis of HMW glutenin 1Ay alleles with differential expressions.<br>BMC Plant Biology, 2009, 9, 16.                                                                                     | 3.6 | 53        |

| #   | Article                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Analysis of the starch properties in tetraploid wheat–Aegilops sharonensis amphidiploid. Cereal<br>Research Communications, 0, , 1.                     | 1.6 | 1         |
| 110 | Temporal transcriptomes unravel the effects of heat stress on seed germination during wheat grain filling. Journal of Agronomy and Crop Science, 0, , . | 3.5 | 0         |