Nirmal K Viswanathan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8707608/publications.pdf

Version: 2024-02-01

93 papers 2,263 citations

304743 22 h-index 223800 46 g-index

94 all docs 94 docs citations 94 times ranked 1652 citing authors

#	Article	IF	CITATIONS
1	Wave dislocation line threaded polarization interferometer. Optics Letters, 2022, 47, 770.	3.3	2
2	Berry phase with tunable topological charge in Sagnac interferometer. Journal of Optics (United) Tj ETQq0 0 0 rgl	BT/Qverloo	ck ₀ 10 Tf 50 7
3	Exploring topological optical features due to twisted elliptical birefringent slab. , 2022, , .		2
4	Spin–orbit coupling mediated transverse spin mode rotation in a uniaxial crystal. Optics Letters, 2022, 47, 3768.	3.3	3
5	Generic optical singularities in Brewster-reflected postparaxial beam fields. Physical Review A, 2021, 103, .	2.5	4
6	Optical bandgaps, level crossings and Berry phase in a rotating Sagnac Interferometer., 2021,,.		1
7	Back Cover: Probing Proximityâ€∓ailored High Spin–Orbit Coupling in 2D Materials (Adv. Quantum) Tj ETQq1 1	0,784314	rgBT /Overlo
8	Study of fractional optical vortex beam in the near-field. Optics Communications, 2020, 475, 126268.	2.1	5
9	Probing Proximityâ€Tailored High Spin–Orbit Coupling in 2D Materials. Advanced Quantum Technologies, 2020, 3, 2000042.	3.9	7
10	Correction to spatial mode transformation in a modified interferometer. , 2020, , .		2
11	Generalized matrix transformation formalism for reflection and transmission of complex optical waves at a plane dielectric interface. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 1971.	1.5	5
12	Observation of Polarization Singularities in a Brewster-Reflected Paraxial Beam. , 2020, , .		1
13	Observation of diffractive-correction and spin-orbit interaction induced effects around the Brewster angle. Journal of Optics (United Kingdom), 2019, 21, 084002.	2.2	9
14	Ultra-sensitive single-beam atom-optical magnetometer using weak measurement method. AIP Advances, 2019, 9, 065113.	1.3	1
15	Generation and decomposition of scalar and vector modes carrying orbital angular momentum: a review. Optical Engineering, 2019, 59, 1.	1.0	29
16	Spin-Hall effect of light at a tilted polarizer. Optics Letters, 2019, 44, 4781.	3.3	41
17	Direct and reciprocal spin-orbit interaction effects in a graded-index medium. OSA Continuum, 2019, 2, 1576.	1.8	6
18	Field-controllable Spin-Hall Effect of Light in Optical Crystals: A Conoscopic Mueller Matrix Analysis. Scientific Reports, 2018, 8, 2002.	3.3	5

#	Article	IF	CITATIONS
19	Spin-orbit beams for optical chirality measurement. Applied Physics Letters, 2018, 112, .	3.3	40
20	Amplified measurement of weak optical activity using a spin-phase-gradient beam. Optics Letters, 2018, 43, 4337.	3.3	4
21	Evolution of phase singularities from fork-shaped phase grating in the near-field. Journal of Optics (United Kingdom), 2018, 20, 075604.	2.2	5
22	Chiral dynamics of exceptional points in weakly absorbing biaxial crystal. Optics Letters, 2018, 43, 3538.	3.3	2
23	Enhancement of weak spin-Hall shift using higher-order helical-wavefront beams. OSA Continuum, 2018, 1, 872.	1.8	2
24	Geometrical interpretation of quantum weak measurement. , 2017, , .		2
25	Parallel transport of fiber mode structure: orbit-orbit interaction. Proceedings of SPIE, 2017, , .	0.8	O
26	Measuring correlations in non-separable vector beams using projective measurements. Optics Communications, 2017, 399, 45-51.	2.1	2
27	Simultaneous weak measurement of angular and spatial Goos–HÃĦchen and Imbert-Fedorov shifts. Journal of Optics (United Kingdom), 2017, 19, 105611.	2.2	9
28	Geometric phase topology in weak measurement. Journal of Optics (United Kingdom), 2017, 19, 125401.	2.2	2
29	Ultrashort vortex from a Gaussian pulse $\hat{a}\in$ An achromatic-interferometric approach. Scientific Reports, 2017, 7, 2395.	3.3	25
30	Geometric phase due to orbit–orbit interaction: rotating LP11modes in a two-mode fiber. Journal of Optics (United Kingdom), 2017, 19, 105607.	2.2	2
31	Spin-Hall effect and circular birefringence of a uniaxial crystal plate. Optica, 2016, 3, 1039.	9.3	110
32	Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement. Optics and Lasers in Engineering, 2016, 82, 135-140.	3.8	13
33	A study of geometric phase topology using Fourier transform method. Journal of Optics (United) Tj ETQq1 1 0.784	4314 rgBT 2:2	/gverlock 1
34	Direct patterning of vortex generators on a fiber tip using a focused ion beam. Optics Letters, 2016, 41, 2133.	3.3	28
35	Generation of singular optical beams from fundamental Gaussian beam using Sagnac interferometer. Journal of Optics (United Kingdom), 2016, 18, 095601.	2.2	17
36	Isogyres – Manifestation of Spin-orbit interaction in uniaxial crystal: A closed-fringe Fourier analysis of conoscopic interference. Scientific Reports, 2016, 6, 33141.	3.3	14

#	Article	IF	CITATIONS
37	Generation of optical vortex dipole from superposition of two transversely scaled Gaussian beams. Applied Optics, 2016, 55, B91.	1.8	12
38	Effect of residual phase gradients in optical null interference. Optics Letters, 2016, 41, 92.	3.3	4
39	Visible–Near-Infrared Range Whispering Gallery Resonance from Photonic ι⁄4-Sphere Cavities Self-Assembled from a Blend of Polystyrene and Poly[4,7-bis(3-octylthiophene-2-yl)benzothiadiazole- <i>co</i> -2,6-bis(pyrazolyl)pyridine] Coordinated to Tb(acac) ₃ . ACS Applied Materials & Description of the Photon of th	8.0	23
40	Overhead projector transparency sheets as inexpensive wave plates: A Mueller matrix analysis., 2015,,.		1
41	Residual phase gradients in optical null interference sensing rotating optical field in a nulling Sagnac interferometer., 2015,,.		0
42	Detection of phase transitions from the study of whispering gallery mode resonance in liquid crystal droplets. Applied Physics Letters, 2015, 106, .	3.3	24
43	Is Monstar topologically the same as lemon?. Proceedings of SPIE, 2015, , .	0.8	4
44	Spatially varying polarization singular pattern: degree of coherence., 2015,,.		0
45	Polarimetric measurement method to calculate optical beam shifts. Optics Letters, 2014, 39, 4388.	3.3	22
46	Generation of isolated asymmetric umbilics in light's polarization. Physical Review A, 2014, 89, .	2.5	53
47	Topological structures in vector-vortex beam fields. Journal of the Optical Society of America B: Optical Physics, 2014, 31, A40.	2.1	32
48	Topological aspects of polarization structured beams. , 2014, , .		O
49	Formation and morphological transformation of polarization singularities: hunting the monstar. Journal of Optics (United Kingdom), 2013, 15, 044027.	2.2	24
50	The Pancharatnam–Berry phase in polarization singular beams. Journal of Optics (United Kingdom), 2013, 15, 044026.	2.2	11
51	Measurement of Goos-H& #x00E4; nchen shift using polarimetry., 2013,,.		1
52	Topological optics., 2013,,.		0
53	Topological structures in the Poynting vector field: an experimental realization. Optics Letters, 2013, 38, 3886.	3.3	29
54	Polarimetric measurement of optically perturbed surface plasmonic field. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 806.	2.1	1

#	Article	IF	Citations
55	On-axis time-resolved spatial characterization of shock-induced refractive fringes in liquid water. Journal of the Optical Society of America B: Optical Physics, 2013, 30, 2206.	2.1	6
56	Polarization singularities and fiber modal decomposition. , 2013, , .		8
57	Poynting Vector of Complex Optical Fields. , 2013, , .		O
58	Manifestation of the Gouy phase in vector-vortex beams. Optics Letters, 2012, 37, 2667.	3.3	46
59	Plasmon-mediated vectorial topological dipole: formation and annihilation. Optics Letters, 2012, 37, 4233.	3.3	11
60	Dynamic evolution of transverse energy flow in focused asymmetric optical vector-vortex beams. Optics Communications, 2012, 285, 4866-4873.	2.1	9
61	Wavelength Dependence of the Polarization Singularities in a Two-Mode Optical Fiber. International Journal of Optics, 2012, 2012, 1-7.	1.4	2
62	Plasmon-mediated Vectorial Topological Dipole. , 2012, , .		0
63	Evolution of Polarization Singularities in Few-mode Fiber. , 2012, , .		O
64	Experimental investigation of link between growth and decay of fiber Bragg gratings. Applied Optics, 2011, 50, 4042.	2.1	1
65	Polarization singularities in the two-mode optical fiber output. Applied Optics, 2011, 50, E131.	2.1	23
66	All-optical thermo-plasmonic device. Applied Optics, 2011, 50, 5966.	2.1	10
67	Rotational Doppler-effect due to selective excitation of vector-vortex field in optical fiber. Optics Express, 2011, 19, 448.	3.4	2
68	Generation of spirally polarized propagation-invariant beam using fiber microaxicon. Optics Letters, 2011, 36, 3906.	3.3	17
69	Spectral correlation of refocused collinear filaments using femtosecond pulses. , 2011, , .		O
70	Switchable vector vortex beam generation using an optical fiber. Optics Communications, 2010, 283, 861-864.	2.1	40
71	Rotational frequency shift in cylindrical vector beam due to skew rays in few-mode optical fibers. , 2010, , .		O
72	Generation of tunable chain of three-dimensional optical bottle beams via focused multi-ring hollow Gaussian beam. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2010, 27, 2394.	1.5	19

#	Article	IF	Citations
73	Generic dark hollow beams using negative cones chemically etched in fiber tips. , 2010, , .		1
74	Generation of optical vector beams using a two-mode fiber. Optics Letters, 2009, 34, 1189.	3.3	74
7 5	Effect of input spectrum on the spectral switch characteristics in a white-light Michelson interferometer. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2009, 26, 2592.	1.5	3
76	Nanodisplacement measurement using spectral shifts in a white-light interferometer. Applied Optics, 2008, 47, 6334.	2.1	17
77	Predicting thermal stability of fibre Bragg gratings – isothermal annealing within isochronal annealing. Electronics Letters, 2007, 43, 1341.	1.0	5
78	Spectral anomalies due to temporal correlation in a white-light interferometer. Optics Letters, 2007, 32, 2279.	3.3	18
79	Spectrally resolved phase-shifting interferometry for accurate group-velocity dispersion measurements. Optics Letters, 2006, 31, 3098.	3.3	3
80	Spectral and temporal evolutions of ultrashort pulses diffracted through a slit near phase singularities. Applied Physics Letters, 2006, 89, 041119.	3.3	14
81	Accelerated-Aging Studies of Chirped Bragg Gratings Written in Deuterium-Loaded Germano-Silicate Fibers. Journal of Lightwave Technology, 2004, 22, 1990-2000.	4.6	7
82	Photoerasure of ultraviolet-induced birefringence and polarization-mode dispersion of chirped fiber Bragg gratings. Optics Letters, 2004, 29, 2470.	3.3	3
83	INVESTIGATION OF BIREFRINGENCE AND SURFACE RELIEF GRATING FORMATION IN AZOPOLYMER FILMS. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1445-1462.	2.2	11
84	Holographic fabrication of polarization selective diffractive optical elements on azopolymer film. Polymers for Advanced Technologies, 2000, 11, 570-574.	3.2	19
85	Azo Polymer Multilayer Films by Electrostatic Self-Assembly and Layer-by-Layer Post Azo Functionalization. Macromolecules, 2000, 33, 6534-6540.	4.8	90
86	Photofabrication of Surface Relief Grating on Films of Azobenzene Polymer with Different Dye Functionalization. Macromolecules, 2000, 33, 4220-4225.	4.8	158
87	Polarization Dependent Holographic Write, Read and Erasure of Surface Relief Gratings on Azopolymer Films. , 2000, , 421-436.		7
88	Photoinduced fabrication of complex surface relief structures on azobenzene functionalized polymers. Bulletin of Materials Science, 1999, 22, 443-445.	1.7	2
89	Photo-fabrication of electroactive polymers for photonics. Synthetic Metals, 1999, 102, 893-896.	3.9	9
90	Systematic study on photofabrication of surface relief grating on high-tg azobenzene polymers. Synthetic Metals, 1999, 102, 1435-1436.	3.9	27

#	Article	IF	CITATIONS
91	A Detailed Investigation of the Polarization-Dependent Surface-Relief-Grating Formation Process on Azo Polymer Films. Japanese Journal of Applied Physics, 1999, 38, 5928-5937.	1.5	149
92	Surface relief structures on azo polymer films. Journal of Materials Chemistry, 1999, 9, 1941-1955.	6.7	712
93	Surface-Initiated Mechanism for the Formation of Relief Gratings on Azo-Polymer Films. Journal of Physical Chemistry B, 1998, 102, 6064-6070.	2.6	90