
Marco Maria D'Andrea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8706745/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	The spread of CTX-M-type extended-spectrum β-lactamases. Clinical Microbiology and Infection, 2008, 14, 33-41.	6.0	411
2	CTX-M-type β-lactamases: A successful story of antibiotic resistance. International Journal of Medical Microbiology, 2013, 303, 305-317.	3.6	362
3	<i>In Vivo</i> Emergence of Colistin Resistance in Klebsiella pneumoniae Producing KPC-Type Carbapenemases Mediated by Insertional Inactivation of the PhoQ/PhoP <i>mgrB</i> Regulator. Antimicrobial Agents and Chemotherapy, 2013, 57, 5521-5526.	3.2	316
4	MgrB Inactivation Is a Common Mechanism of Colistin Resistance in KPC-Producing Klebsiella pneumoniae of Clinical Origin. Antimicrobial Agents and Chemotherapy, 2014, 58, 5696-5703.	3.2	297
5	Multiple CTX-M-Type Extended-Spectrum β-Lactamases in Nosocomial Isolates of Enterobacteriaceae from a Hospital in Northern Italy. Journal of Clinical Microbiology, 2003, 41, 4264-4269.	3.9	201
6	Characterization of poxtA, a novel phenicol–oxazolidinone–tetracycline resistance gene from an MRSA of clinical origin. Journal of Antimicrobial Chemotherapy, 2018, 73, 1763-1769.	3.0	191
7	<i>In Vivo</i> Evolution to Colistin Resistance by PmrB Sensor Kinase Mutation in KPC-Producing Klebsiella pneumoniae Is Associated with Low-Dosage Colistin Treatment. Antimicrobial Agents and Chemotherapy, 2014, 58, 4399-4403.	3.2	113
8	Characterization of pABVA01, a Plasmid Encoding the OXA-24 Carbapenemase from Italian Isolates of <i>Acinetobacter baumannii</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 3528-3533.	3.2	105
9	Emergence in Italy of Klebsiella pneumoniae Sequence Type 258 Producing KPC-3 Carbapenemase. Journal of Clinical Microbiology, 2009, 47, 3793-3794.	3.9	104
10	Effects of selective digestive decontamination (SDD) on the gut resistome. Journal of Antimicrobial Chemotherapy, 2014, 69, 2215-2223.	3.0	90
11	Molecular epidemiology of KPC-producing <i>Klebsiella pneumoniae</i> from invasive infections in Italy: increasing diversity with predominance of the ST512 clade II sublineage. Journal of Antimicrobial Chemotherapy, 2016, 71, 3386-3391.	3.0	78
12	Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: activity of ceftolozane/tazobactam and comparators, and molecular epidemiology of carbapenemase producers. Journal of Antimicrobial Chemotherapy, 2018, 73, 664-671.	3.0	71
13	CMY-16, a Novel Acquired AmpC-Type β-Lactamase of the CMY/LAT Lineage in Multifocal Monophyletic Isolates of Proteus mirabilis from Northern Italy. Antimicrobial Agents and Chemotherapy, 2006, 50, 618-624.	3.2	68
14	Epidemiological characterization and distribution of carbapenem-resistant Acinetobacter baumannii clinical isolates in Italy. Clinical Microbiology and Infection, 2012, 18, 160-166.	6.0	68
15	Persistent Carriage and Infection by Multidrug-Resistant Escherichia coli ST405 Producing NDM-1 Carbapenemase: Report on the First Italian Cases. Journal of Clinical Microbiology, 2011, 49, 2755-2758.	3.9	55
16	Evolution and Spread of a Multidrug-Resistant Proteus mirabilis Clone with Chromosomal AmpC-Type Cephalosporinases in Europe. Antimicrobial Agents and Chemotherapy, 2011, 55, 2735-2742.	3.2	52
17	Spread of multidrug-resistant Proteus mirabilis isolates producing an AmpC-type β-lactamase: epidemiology and clinical management. International Journal of Antimicrobial Agents, 2009, 33, 328-333.	2.5	51
18	Mining microbial metatranscriptomes for expression of antibiotic resistance genes under natural conditions. Scientific Reports, 2015, 5, 11981.	3.3	50

#	Article	IF	CITATIONS
19	φBO1E, a newly discovered lytic bacteriophage targeting carbapenemase-producing Klebsiella pneumoniae of the pandemic Clonal Group 258 clade II lineage. Scientific Reports, 2017, 7, 2614.	3.3	48
20	Characterization of a Multiresistance Plasmid Carrying the optrA and cfr Resistance Genes From an Enterococcus faecium Clinical Isolate. Frontiers in Microbiology, 2018, 9, 2189.	3.5	45
21	The changing epidemiology of carbapenemase-producing <i>Klebsiella pneumoniae</i> in Italy: toward polyclonal evolution with emergence of high-risk lineages. Journal of Antimicrobial Chemotherapy, 2021, 76, 355-361.	3.0	43
22	Draft Genome Sequence of the First Hypermucoviscous Klebsiella quasipneumoniae subsp. <i>quasipneumoniae</i> Isolate from a Bloodstream Infection. Genome Announcements, 2015, 3, .	0.8	40
23	Cross-Infection of Solid Organ Transplant Recipients by a Multidrug-Resistant Klebsiella pneumoniae Isolate Producing the OXA-48 Carbapenemase, Likely Derived from a Multiorgan Donor. Journal of Clinical Microbiology, 2014, 52, 2702-2705.	3.9	38
24	Colistin Resistance Caused by Inactivation of the MgrB Regulator Is Not Associated with Decreased Virulence of Sequence Type 258 KPC Carbapenemase-Producing Klebsiella pneumoniae. Antimicrobial Agents and Chemotherapy, 2016, 60, 2509-2512.	3.2	32
25	Genomic Epidemiology of Carbapenem- and Colistin-Resistant Klebsiella pneumoniae Isolates From Serbia: Predominance of ST101 Strains Carrying a Novel OXA-48 Plasmid. Frontiers in Microbiology, 2020, 11, 294.	3.5	32
26	Characterization of vB_Kpn_F48, a Newly Discovered Lytic Bacteriophage for Klebsiella pneumoniae of Sequence Type 101. Viruses, 2018, 10, 482.	3.3	31
27	Large Oligoclonal Outbreak Due to Klebsiella pneumoniae ST14 and ST26 Producing the FOX-7 AmpC β-Lactamase in a Neonatal Intensive Care Unit. Journal of Clinical Microbiology, 2013, 51, 4067-4072.	3.9	30
28	DNA Microarray for Detection of Macrolide Resistance Genes. Antimicrobial Agents and Chemotherapy, 2006, 50, 2038-2041.	3.2	29
29	Infections caused by carbapenem-resistant <i>Klebsiella pneumoniae</i> with hypermucoviscous phenotype: A case report and literature review. Virulence, 2017, 8, 1900-1908.	4.4	29
30	Abundance of Colistin-Resistant, OXA-23- and ArmA-Producing Acinetobacter baumannii Belonging to International Clone 2 in Greece. Frontiers in Microbiology, 2020, 11, 668.	3.5	29
31	Diversity of Capsular Polysaccharide Gene Clusters in Kpc-Producing Klebsiella pneumoniae Clinical Isolates of Sequence Type 258 Involved in the Italian Epidemic. PLoS ONE, 2014, 9, e96827.	2.5	27
32	OXA-372, a novel carbapenem-hydrolysing class D β-lactamase from a <i>Citrobacter freundii</i> isolated from a hospital wastewater plant. Journal of Antimicrobial Chemotherapy, 2015, 70, 2749-2756.	3.0	27
33	Linezolid-resistant <i>cfr</i> -positive MRSA, Italy. Journal of Antimicrobial Chemotherapy, 2016, 71, 2349-2351.	3.0	27
34	pHTβ-promoted mobilization of non-conjugative resistance plasmids from Enterococcus faecium to Enterococcus faecalis. Journal of Antimicrobial Chemotherapy, 2017, 72, 2447-2453.	3.0	27
35	Characterization of Tn6349, a novel mosaic transposon carrying poxtA, cfr and other resistance determinants, inserted in the chromosome of an ST5-MRSA-II strain of clinical origin. Journal of Antimicrobial Chemotherapy, 2019, 74, 2870-2875.	3.0	25
36	The Seagrass Holobiont: What We Know and What We Still Need to Disclose for Its Possible Use as an Ecological Indicator. Water (Switzerland), 2021, 13, 406.	2.7	24

#	Article	IF	CITATIONS
37	The Urgent Need for Novel Antimicrobial Agents and Strategies to Fight Antibiotic Resistance. Antibiotics, 2019, 8, 254.	3.7	23
38	Characterization of a Novel Putative Xer-Dependent Integrative Mobile Element Carrying the <i>bla</i> _{NMC-A} Carbapenemase Gene, Inserted into the Chromosome of Members of the Enterobacter cloacae Complex. Antimicrobial Agents and Chemotherapy, 2015, 59, 6620-6624.	3.2	21
39	The lytic bacteriophage vB_EfaH_EF1TV, a new member of the Herelleviridae family, disrupts biofilm produced by Enterococcus faecalis clinical strains. Journal of Global Antimicrobial Resistance, 2020, 21, 68-75.	2.2	21
40	Evaluation of the KPC K-SeT® immunochromatographic assay for the rapid detection of KPC carbapenemase producers from positive blood cultures. Journal of Antimicrobial Chemotherapy, 2018, 73, 539-540.	3.0	18
41	Structure of the capsular polysaccharide of the KPC-2-producing Klebsiella pneumoniae strain KK207-2 and assignment of the glycosyltransferases functions. International Journal of Biological Macromolecules, 2019, 130, 536-544.	7.5	17
42	Assessment of the Phoenixâ,,¢ automated system and EUCAST breakpoints for antimicrobial susceptibility testing against isolates expressing clinically relevant resistance mechanisms. Clinical Microbiology and Infection, 2012, 18, E452-E458.	6.0	15
43	Sphingomonas turrisvirgatae sp. nov., an agar-degrading species isolated from freshwater. International Journal of Systematic and Evolutionary Microbiology, 2018, 68, 2794-2799.	1.7	12
44	Differential Th17 response induced by the two clades of the pandemic ST258 Klebsiella pneumoniae clonal lineages producing KPC-type carbapenemase. PLoS ONE, 2017, 12, e0178847.	2.5	12
45	Combined Host- and Pathogen-Directed Therapy for the Control of Mycobacterium abscessus Infection. Microbiology Spectrum, 2022, 10, e0254621.	3.0	12
46	Liposomes Loaded With Phosphatidylinositol 5-Phosphate Improve the Antimicrobial Response to Pseudomonas aeruginosa in Impaired Macrophages From Cystic Fibrosis Patients and Limit Airway Inflammatory Response. Frontiers in Immunology, 2020, 11, 532225.	4.8	11
47	Differences in Inflammatory Response Induced by Two Representatives of Clades of the Pandemic ST258 Klebsiella pneumoniae Clonal Lineage Producing KPC-Type Carbapenemases. PLoS ONE, 2017, 12, e0170125.	2.5	11
48	Complete Genome Sequence of the First KPC-Type Carbapenemase-Positive Proteus mirabilis Strain from a Bloodstream Infection. Genome Announcements, 2016, 4, .	0.8	10
49	Phage Resistance Is Associated with Decreased Virulence in KPC-Producing Klebsiella pneumoniae of the Clonal Group 258 Clade II Lineage. Microorganisms, 2021, 9, 762.	3.6	10
50	Newborn bacteraemia caused by anAeromonas caviaeproducing the VIM-1 and SHV-12 β-lactamases, encoded by a transferable plasmid: Table 1 Journal of Antimicrobial Chemotherapy, 2016, 71, 272-274.	3.0	9
51	First case of bacteremic liver abscess caused by an ST260-related (ST1861), hypervirulent Klebsiella pneumoniae. Journal of Infection, 2016, 73, 88-91.	3.3	8
52	Plasmid-mediated or chromosomally mediated colistin resistance in Klebsiella pneumoniae ?. Lancet Infectious Diseases, The, 2017, 17, 26-27.	9.1	7
53	Determination of the capsular polysaccharide structure of the Klebsiella pneumoniae ST512 representative strain KPB-1 and assignments of the glycosyltransferases functions. International Journal of Biological Macromolecules, 2020, 155, 315-323.	7.5	7
54	Management of meningitis caused by multi drug-resistant Acinetobacter baumannii: clinical, microbiological and pharmacokinetic results in a patient treated with colistin methanesulfonate. Mediterranean Journal of Hematology and Infectious Diseases, 2015, 7, e201555.	1.3	6

Marco Maria D'Andrea

#	Article	IF	CITATIONS
55	DNABII targeting antibodies as vaccines against biofilm diseases. EBioMedicine, 2020, 58, 102921.	6.1	4
56	Fighting MDR-Klebsiella pneumoniae Infections by a Combined Host- and Pathogen-Directed Therapeutic Approach. Frontiers in Immunology, 2022, 13, 835417.	4.8	4
57	Evidence of Another Anthropic Impact on Iguana delicatissima from the Lesser Antilles: The Presence of Antibiotic Resistant Enterobacteria. Antibiotics, 2021, 10, 885.	3.7	3
58	Draft Genome Sequence of Proteus mirabilis NO-051/03, Representative of a Multidrug-Resistant Clone Spreading in Europe and Expressing the CMY-16 AmpC-Type β-Lactamase. Genome Announcements, 2016, 4, .	0.8	2
59	Characterization of vB_StuS_MMDA13, a Newly Discovered Bacteriophage Infecting the Agar-Degrading Species Sphingomonas turrisvirgatae. Viruses, 2020, 12, 894.	3.3	2
60	Nasopharingeal bacterial and fungal colonization in HIV-positive versus HIV-negative adults. New Microbiologica, 2019, 42, 37-42.	0.1	2
61	Application of Bacteriophages for Human Health: An Old Approach against Contemporary "Bad Bugs― Microorganisms, 2022, 10, 485.	3.6	2
62	O430 Detection of CTX-M-14 βlactamase lactamase in Escherichia coli from a long-term care and rehabilitation facility in northern Italy. International Journal of Antimicrobial Agents, 2007, 29, S90.	2.5	0
63	Isolation of Klebsiella pneumoniae strains with altered susceptibility to carbapenems not carbapenemase mediated. Microbiologia Medica, 2009, 24, .	0.1	0
64	Draft Genome Sequence of the Agarase-Producing Sphingomonas sp. MCT13. Frontiers in Environmental Science, 2017, 5, .	3.3	0