Valérie Gagnaire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8706129/publications.pdf Version: 2024-02-01

VALÃODIE CACNAIDE

#	Article	IF	CITATIONS
1	Peptides Identified during Emmental Cheese Ripening:Â Origin and Proteolytic Systems Involved. Journal of Agricultural and Food Chemistry, 2001, 49, 4402-4413.	5.2	134
2	Role of somatic cells on dairy processes and products: a review. Dairy Science and Technology, 2014, 94, 517-538.	2.2	101
3	Effects of storage temperature on physico-chemical characteristics of semi-skimmed UHT milk. Food Hydrocolloids, 2008, 22, 130-143.	10.7	98
4	Application of chromatography and mass spectrometry to the characterization of food proteins and derived peptides. Journal of Chromatography A, 2000, 881, 1-21.	3.7	96
5	Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. International Journal of Food Microbiology, 2011, 146, 1-13.	4.7	89
6	Bacterial Colonies in Solid Media and Foods: A Review on Their Growth and Interactions with the Micro-Environment. Frontiers in Microbiology, 2015, 6, 1284.	3.5	89
7	Survey of bacterial proteins released in cheese: a proteomic approach. International Journal of Food Microbiology, 2004, 94, 185-201.	4.7	80
8	Invited review: Proteomics of milk and bacteria used in fermented dairy products: From qualitative to quantitative advances. Journal of Dairy Science, 2009, 92, 811-825.	3.4	68
9	Understanding the Mechanisms of Positive Microbial Interactions That Benefit Lactic Acid Bacteria Co-cultures. Frontiers in Microbiology, 2020, 11, 2088.	3.5	67
10	Simultaneous Presence of PrtH and PrtH2 Proteinases in <i>Lactobacillus helveticus</i> Strains Improves Breakdown of the Pure α _{s1} -Casein. Applied and Environmental Microbiology, 2011, 77, 179-186.	3.1	60
11	Autolysis and related proteolysis in Swiss cheese for two Lactobacillus helveticus strains. Journal of Dairy Research, 2000, 67, 261-271.	1.4	59
12	Application of proteomics to the characterisation of milk and dairy products. International Dairy Journal, 2005, 15, 845-855.	3.0	58
13	Phosphopeptides interacting with colloidal calcium phosphate isolated by tryptic hydrolysis of bovine casein micelles. Journal of Dairy Research, 1996, 63, 405-422.	1.4	55
14	prtH2 , Not prtH , Is the Ubiquitous Cell Wall Proteinase Gene in Lactobacillus helveticus. Applied and Environmental Microbiology, 2009, 75, 3238-3249.	3.1	53
15	Functional properties of peptides: From single peptide solutions to a mixture of peptides in food products. Food Hydrocolloids, 2016, 57, 187-199.	10.7	50
16	Quantitative proteomic analysis of bacterial enzymes released in cheese during ripening. International Journal of Food Microbiology, 2012, 155, 19-28.	4.7	47
17	Hydrolysis of Sequenced β-Casein Peptides Provides New Insight into Peptidase Activity from Thermophilic Lactic Acid Bacteria and Highlights Intrinsic Resistance of Phosphopeptides. Applied and Environmental Microbiology, 2000, 66, 5360-5367.	3.1	42
18	Lactobacillus helveticus as a tool to change proteolysis and functionality in Swiss-type cheeses. Journal of Dairy Science, 2013, 96, 1455-1470.	3.4	39

#	Article	IF	CITATIONS
19	Emmental Cheese Environment Enhances Propionibacterium freudenreichii Stress Tolerance. PLoS ONE, 2015, 10, e0135780.	2.5	37
20	Propionibacteria and facultatively heterofermentative lactobacilli weakly contribute to secondary proteolysis of Emmental cheese. Dairy Science and Technology, 2001, 81, 339-353.	0.9	37
21	Strain-to-strain differences within lactic and propionic acid bacteria species strongly impact the properties of cheese–A review. Dairy Science and Technology, 2015, 95, 895-918.	2.2	34
22	Free active peptidases are detected in Emmental juice extracted before ripening in the warm room. Journal of Dairy Research, 1998, 65, 119-128.	1.4	32
23	Mixing milk, egg and plant resources to obtain safe and tasty foods with environmental and health benefits. Trends in Food Science and Technology, 2021, 108, 119-132.	15.1	32
24	Comparative study of the protein fraction of goat milk from the Indigenous Greek breed and from international breeds. Food Chemistry, 2008, 106, 509-520.	8.2	30
25	Peptidases of dairy propionic acid bacteria. Dairy Science and Technology, 1999, 79, 43-57.	0.9	28
26	Comparison of electrospray and matrix-assisted laser desorption ionization on the same hybrid quadrupole time-of-flight tandem mass spectrometer. Journal of Chromatography A, 2009, 1216, 2424-2432.	3.7	27
27	Uncommonly Thorough Hydrolysis of Peptides during Ripening of Ragusano Cheese Revealed by Tandem Mass Spectrometry. Journal of Agricultural and Food Chemistry, 2011, 59, 12443-12452.	5.2	27
28	Flow Cytometry Approach to Quantify the Viability of Milk Somatic Cell Counts after Various Physico-Chemical Treatments. PLoS ONE, 2015, 10, e0146071.	2.5	21
29	The naturally competent strain Streptococcus thermophilus LMD-9 as a new tool to anchor heterologous proteins on the cell surface. Microbial Cell Factories, 2014, 13, 82.	4.0	19
30	Streptococcus thermophilus, an emerging and promising tool for heterologous expression: Advantages and future trends. Food Microbiology, 2016, 53, 2-9.	4.2	19
31	Spatial Distribution of Lactococcus lactis Colonies Modulates the Production of Major Metabolites during the Ripening of a Model Cheese. Applied and Environmental Microbiology, 2016, 82, 202-210.	3.1	17
32	Function-Driven Design of Lactic Acid Bacteria Co-cultures to Produce New Fermented Food Associating Milk and Lupin. Frontiers in Microbiology, 2020, 11, 584163.	3.5	16
33	Preferential sites of tryptic cleavage on the major bovine caseins within the micelle. Dairy Science and Technology, 1998, 78, 471-489.	0.9	16
34	The stressing life of Lactobacillus delbrueckii subsp. bulgaricus in soy milk. Food Microbiology, 2022, 106, 104042.	4.2	16
35	Role of electrostatic interactions in the curd of Emmental cheese. International Dairy Journal, 2002, 12, 601-608.	3.0	15
36	Positive Interactions between Lactic Acid Bacteria Promoted by Nitrogen-Based Nutritional Dependencies. Applied and Environmental Microbiology, 2021, 87, e0105521.	3.1	15

Valérie Gagnaire

#	ARTICLE	IF	CITATIONS
37	Characterization of the non-coagulating enzyme fraction of different milk-clotting preparations. LWT - Food Science and Technology, 2013, 50, 459-468.	5.2	14
38	Mixed dairy and plant-based yogurt alternatives: Improving their physical and sensorial properties through formulation and lactic acid bacteria cocultures. Current Research in Food Science, 2022, 5, 665-676.	5.8	13
39	Differential Adaptation of Propionibacterium freudenreichii CIRM-BIA129 to Cow's Milk Versus Soymilk Environments Modulates Its Stress Tolerance and Proteome. Frontiers in Microbiology, 2020, 11, 549027.	3.5	11
40	Combining plant and dairy proteins in food colloid design. Current Opinion in Colloid and Interface Science, 2021, 56, 101507.	7.4	9
41	Isolation and characterisation of a Lactobacillus helveticus ITG LH1 peptidase-rich sub-proteome. International Journal of Food Microbiology, 2005, 105, 119-129.	4.7	7
42	An in silico approach to highlight relationships between a techno-functional property of a dairy matrix and a peptide profile. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 475, 44-54.	4.7	7
43	Somatic cell recovery by microfiltration technologies: A novel strategy to study the actual impact of somatic cells on cheese matrix. International Dairy Journal, 2017, 65, 5-13.	3.0	7
44	Taking Advantage of Bacterial Adaptation in Order to Optimize Industrial Production of Dry Propionibacterium freudenreichii. Microorganisms, 2019, 7, 477.	3.6	7
45	Strain variability of the cell-free proteolytic activity of dairy propionibacteria towards β-casein peptides. Dairy Science and Technology, 1998, 78, 227-240.	0.9	7
46	How can the peptides produced from Emmental cheese give some insights on the structural features of the paracasein matrix?. International Dairy Journal, 2001, 11, 449-454.	3.0	6
47	INRA's research in industrial biotechnology: For food, chemicals, materials and fuels. Innovative Food Science and Emerging Technologies, 2018, 46, 140-152.	5.6	2
48	Positive Interactions Between Lactic Acid Bacteria Could Be Mediated by Peptides Containing Branched-Chain Amino Acids. Frontiers in Microbiology, 2021, 12, 793136.	3.5	1
49	Little Impact of NaCl Reduction in Swiss-Type Cheese. Frontiers in Nutrition, 0, 9, .	3.7	1
			-

50 Proteomics of Fermented Milk Products. , 2017, , 361-382.

0