Punit Kohli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8704904/publications.pdf

Version: 2024-02-01

361413 315739 2,848 39 20 38 citations h-index g-index papers 39 39 39 3985 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The emerging field of nanotube biotechnology. Nature Reviews Drug Discovery, 2003, 2, 29-37.	46.4	733
2	Protein Biosensors Based on Biofunctionalized Conical Gold Nanotubes. Journal of the American Chemical Society, 2005, 127, 5000-5001.	13.7	491
3	DNA-Functionalized Nanotube Membranes with Single-Base Mismatch Selectivity. Science, 2004, 305, 984-986.	12.6	309
4	Adaptive Mo2N/MoS2/Ag Tribological Nanocomposite Coatings for Aerospace Applications. Tribology Letters, 2008, 29, 95-103.	2.6	148
5	Layer-by-Layer Nanotube Template Synthesis. Journal of the American Chemical Society, 2004, 126, 5674-5675.	13.7	144
6	Nanotube Membrane Based Biosensors. Electroanalysis, 2004, 16, 9-18.	2.9	109
7	Freestanding 3D Mesostructures, Functional Devices, and Shapeâ€Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. Advanced Materials, 2019, 31, e1805615.	21.0	105
8	Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material. LWT - Food Science and Technology, 2014, 57, 470-476.	5.2	98
9	Antimicrobial efficacy of liposomes containing d -limonene and its effect on the storage life of blueberries. Postharvest Biology and Technology, 2017, 128, 130-137.	6.0	92
10	Smart Nanotubes for Biotechnology. Current Pharmaceutical Biotechnology, 2005, 6, 35-47.	1.6	63
11	Investigating Photoinduced Charge Transfer in Carbon Nanotubeâ^'Peryleneâ^'Quantum Dot Hybrid Nanocomposites. ACS Nano, 2010, 4, 6883-6893.	14.6	55
12	Template Synthesis of Gold Nanotubes in an Anodic Alumina Membrane. Journal of Nanoscience and Nanotechnology, 2004, 4, 605-610.	0.9	54
13	Electric field-induced direct delivery of proteins by a nanofountain probe. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16438-16443.	7.1	50
14	Synthesis and characterization of quantum dot–polymer composites. Journal of Materials Chemistry, 2009, 19, 3198.	6.7	49
15	Modulating Fluorescence Resonance Energy Transfer in Conjugated Liposomes. Langmuir, 2006, 22, 8615-8617.	3.5	45
16	Polydiacetylene Nanovesicles as Carriers of Natural Phenylpropanoids for Creating Antimicrobial Food-Contact Surfaces. Journal of Agricultural and Food Chemistry, 2015, 63, 2557-2565.	5.2	39
17	Investigating Ligand–Receptor Interactions at Bilayer Surface Using Electronic Absorption Spectroscopy and Fluorescence Resonance Energy Transfer. Langmuir, 2012, 28, 12989-12998.	3.5	32
18	Fluorescence Resonance Energy Transfer in Polydiacetylene Liposomes. Journal of Physical Chemistry B, 2008, 112, 13263-13272.	2.6	30

#	Article	IF	CITATIONS
19	Synthesis and Characterization of Nonlinear Nanopores in Alumina Films. Chemistry of Materials, 2007, 19, 1954-1963.	6.7	26
20	Investigating Molecular Interactions in Biosensors Based on Fluorescence Resonance Energy Transfer. Journal of Physical Chemistry C, 2010, 114, 6255-6264.	3.1	20
21	Calligraphic solar cells: acknowledging paper and pencil. Journal of Materials Research, 2016, 31, 2578-2589.	2.6	19
22	Modulating molecular and nanoparticle transport in flexible polydimethylsiloxane membranes. Journal of Membrane Science, 2012, 401-402, 25-32.	8.2	17
23	Smart nanotubes for biomedical and biotechnological applications. Drug News and Perspectives, 2003, 16, 566.	1.5	17
24	Synthesis and Characterization of Polydiacetylene Films and Nanotubes. Langmuir, 2008, 24, 11947-11954.	3. 5	15
25	Vapor-enhanced covalently bound ultra-thin films on oxidized surfaces for enhanced resolution imaging. Journal of Materials Chemistry C, 2016, 4, 8634-8647.	5.5	12
26	Wax patterned microwells for stem cell fate study. RSC Advances, 2016, 6, 104919-104924.	3.6	12
27	Two dimensional anisotropic etching in tracked glass. Journal of Materials Chemistry, 2009, 19, 8142.	6.7	10
28	Photo-Pens: A Simple and Versatile Tool for Maskless Photolithography. Langmuir, 2010, 26, 17726-17732.	3.5	10
29	Polymeric lithography editor: Editing lithographic errors with nanoporous polymeric probes. Science Advances, 2017, 3, e1602071.	10.3	7
30	Real-time Monitoring of Ligand-receptor Interactions with Fluorescence Resonance Energy Transfer. Journal of Visualized Experiments, 2012, , e3805.	0.3	5
31	Immunogenicity of antigenâ€conjugated biodegradable polydiacetylene liposomes administered mucosally. Journal of Biomedical Materials Research - Part A, 2017, 105, 557-565.	4.0	5
32	Probing Liquid–Solid and Vapor–Liquid–Solid Interfaces of Hierarchical Surfaces Using High-Resolution Microscopy. Langmuir, 2018, 34, 3720-3730.	3.5	5
33	Chemically Engineered Synthetic Lipid Vesicles for Sensing and Visualization of Protein–Bilayer Interactions. Bioconjugate Chemistry, 2019, 30, 2136-2149.	3.6	5
34	Encapsulation of Plant Growth-Promoting Bacterial Crude Extract in Nanoliposome and Its Antifungal Property Against <i>Fusarium oxysporum</i> . ACS Agricultural Science and Technology, 2021, 1, 691-701.	2.3	5
35	Fabrication and characterization of non-linear parabolic microporous membranes. Journal of Membrane Science, 2015, 473, 28-35.	8.2	4
36	Large area ultra-thin graphene films for functional photovoltaic devices. Journal of Materials Research, 2018, 33, 2306-2317.	2.6	3

Риміт Конці

#	Article	IF	CITATION
37	Electrochemical Erasing Using a Polymer Lithography Editor for the Fabrication of Photoactive Devices. ACS Applied Electronic Materials, $2019, 1, 752-763$.	4.3	2
38	An Inquiry-Based Introduction to Atomic Force Microscopy Techniques through Optical Storage Disc Surface Imaging. Journal of Chemical Education, 0, , .	2.3	2
39	Device fabrication on curvilinear two-dimensional surfaces using polymer probes. Polymer, 2021, 218, 123521.	3.8	1