Fernando Martinez-Garcia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8703953/publications.pdf

Version: 2024-02-01

91 papers

3,146 citations

33 h-index 52 g-index

93 all docs 93
docs citations

93 times ranked 2158 citing authors

#	Article	IF	CITATIONS
1	A new stabilizing agent for the tetramethyl benzidine (TMB) reaction product in the histochemical detection of horseradish peroxidase (HRP). Journal of Neuroscience Methods, 1985, 13, 131-138.	2.5	303
2	Differential efferent projections of the anterior, posteroventral, and posterodorsal subdivisions of the medial amygdala in mice. Frontiers in Neuroanatomy, 2012, 6, 33.	1.7	123
3	The pallial amygdala of amniote vertebrates: evolution of the concept, evolution of the structure. Brain Research Bulletin, 2002, 57, 463-469.	3.0	121
4	Refining the dual olfactory hypothesis: Pheromone reward and odour experience. Behavioural Brain Research, 2009, 200, 277-286.	2.2	114
5	Attractive properties of sexual pheromones in mice. Physiology and Behavior, 2002, 77, 167-176.	2.1	108
6	Evidence for the plant-specific intercellular transport of the Arabidopsis copper chaperone CCH. Plant Journal, 2001, 25, 521-528.	5.7	96
7	Of Pheromones and Kairomones: What Receptors Mediate Innate Emotional Responses?. Anatomical Record, 2013, 296, 1346-1363.	1.4	90
8	Attraction to sexual pheromones and associated odorants in female mice involves activation of the reward system and basolateral amygdala. European Journal of Neuroscience, 2005, 21, 2186-2198.	2.6	86
9	Identification of the reptilian basolateral amygdala: an anatomical investigation of the afferents to the posterior dorsal ventricular ridge of the lizard <i>Podarcis hispanica</i> Journal of Neuroscience, 1998, 10, 3517-3534.	2.6	74
10	Afferent and efferent connections of the olfactory bulbs in the lizardPodarcis hispanica. Journal of Comparative Neurology, 1991, 305, 337-347.	1.6	71
11	Afferent projections to the different medial amygdala subdivisions: a retrograde tracing study in the mouse. Brain Structure and Function, 2016, 221, 1033-1065.	2.3	67
12	A Lacertilian Dorsal Retinorecipient Thalamus: A Re-Investigation in the Old-World Lizard & lt;i>Podarcis hispanica (Part 1 of 2). Brain, Behavior and Evolution, 1997, 50, 313-323.	1.7	64
13	Intraspecific Communication Through Chemical Signals in Female Mice: Reinforcing Properties of Involatile Male Sexual Pheromones. Chemical Senses, 2006, 32, 139-148.	2.0	58
14	Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli. BMC Neuroscience, 2007, 8, 103.	1.9	58
15	From sexual attraction to maternal aggression: When pheromones change their behavioural significance. Hormones and Behavior, 2015, 68, 65-76.	2.1	56
16	The vomeronasal cortex – afferent and efferent projections of the posteromedial cortical nucleus of the amygdala in mice. European Journal of Neuroscience, 2014, 39, 141-158.	2.6	49
17	Two interconnected functional systems in the amygdala of amniote vertebrates. Brain Research Bulletin, 2008, 75, 206-213.	3.0	48
18	Projections from the medial cortex in the brain of lizards: Correlation of anterograde and retrograde transport of horseradish peroxidase with timm staining. Journal of Comparative Neurology, 1988, 276, 469-480.	1.6	47

#	Article	IF	Citations
19	Distribution of corticotropin-releasing factor-immunoreactive neurons in the central nervous system of the domestic chicken and Japanese quail. Journal of Comparative Neurology, 2004, 469, 559-580.	1.6	47
20	Connections of the lateral cortex in the lizard Podarcis hispanica. Neuroscience Letters, 1986, 63, 39-44.	2.1	46
21	Amygdalo-hypothalamic projections in the lizardPodarcis hispanica: A combined anterograde and retrograde tracing study. Journal of Comparative Neurology, 1997, 384, 537-555.	1.6	46
22	Selective dopaminergic lesions of the ventral tegmental area impair preference for sucrose but not for male sexual pheromones in female mice. European Journal of Neuroscience, 2006, 24, 885-893.	2.6	46
23	Role of the vomeronasal system in intersexual attraction in female mice. Neuroscience, 2008, 153, 383-395.	2.3	45
24	Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice. Brain Structure and Function, 2016, 221, 3445-3473.	2.3	45
25	Septal complex of the telencephalon of lizards: III. Efferent connections and general discussion. Journal of Comparative Neurology, 1998, 401, 525-548.	1.6	43
26	Tuning the brain for motherhood: prolactin-like central signalling in virgin, pregnant, and lactating female mice. Brain Structure and Function, 2017, 222, 895-921.	2.3	43
27	Distribution of CGRP-like immunoreactivity in the chick and quail brain., 2000, 421, 515-532.		41
28	Fiber Connections of the Amygdaloid Formation of the Lizard <i>Podarcis hispanica</i> . Brain, Behavior and Evolution, 1993, 41, 156-162.	1.7	39
29	Attraction to male pheromones and sexual behaviour show different regulatory mechanisms in female mice. Physiology and Behavior, 2004, 81, 427-434.	2.1	39
30	Vomeronasal inputs to the rodent ventral striatum. Brain Research Bulletin, 2008, 75, 467-473.	3.0	38
31	Amygdaloid projections to the ventral striatum in mice: direct and indirect chemosensory inputs to the brain reward system. Frontiers in Neuroanatomy, 2011, 5, 54.	1.7	38
32	Septal complex of the telencephalon of the lizardPodarcis hispanica. II. afferent connections. Journal of Comparative Neurology, 1997, 383, 489-511.	1.6	37
33	Chemosensory Function of the Amygdala. Vitamins and Hormones, 2010, 83, 165-196.	1.7	37
34	Evolution of the Amygdala in Vertebrates. , 2007, , 255-334.		36
35	Sexual pheromones and the evolution of the reward system of the brain: The chemosensory function of the amygdala. Brain Research Bulletin, 2008, 75, 460-466.	3.0	35
36	Cladistic Analysis of Olfactory and Vomeronasal Systems. Frontiers in Neuroanatomy, 2011, 5, 3.	1.7	35

#	Article	IF	CITATIONS
37	Wired for motherhood: induction of maternal care but not maternal aggression in virgin female CD1 mice. Frontiers in Behavioral Neuroscience, 2015, 9, 197.	2.0	35
38	Focal lesions within the ventral striato-pallidum abolish attraction for male chemosignals in female mice. Behavioural Brain Research, 2014, 259, 292-296.	2.2	32
39	Extending the socio-sexual brain: arginine-vasopressin immunoreactive circuits in the telencephalon of mice. Brain Structure and Function, 2014, 219, 1055-1081.	2.3	31
40	Amygdalostriatal projections in reptiles: A tractâ€tracing study in the lizard <i>Podarcis hispanica</i> Journal of Comparative Neurology, 2004, 479, 287-308.	1.6	30
41	Piriform Cortex and Amygdala. , 2012, , 140-172.		30
42	Striato-amygdaloid transition area lesions reduce the duration of tonic immobility in the lizard Podarcis hispanica. Brain Research Bulletin, 2002, 57, 537-541.	3.0	28
43	The septal complex of the telencephalon of the lizardPodarcis hispanica. I. chemoarchitectonical organization. Journal of Comparative Neurology, 1995, 359, 117-130.	1.6	27
44	Callosal neurones give rise to zinc-rich boutons in the rat visual cortex. NeuroReport, 1995, 6, 497-500.	1.2	26
45	Afferent and Efferent Connections of the Cortex-Amygdala Transition Zone in Mice. Frontiers in Neuroanatomy, 2016, 10, 125.	1.7	26
46	Pyramidal and nonpyramidal callosal cells in the striate cortex of the adult rat. Journal of Comparative Neurology, 1994, 350, 439-451.	1.6	25
47	Effects of dopaminergic drugs on innate pheromone-mediated reward in female mice: A new case of dopamine-independent "liking.". Behavioral Neuroscience, 2007, 121, 920-932.	1.2	25
48	Synchronized Activity in The Main and Accessory Olfactory Bulbs and Vomeronasal Amygdala Elicited by Chemical Signals in Freely Behaving Mice. Scientific Reports, 2017, 7, 9924.	3.3	25
49	Interhemispheric connections through the pallial commissures in the brain ofPodarcis hispanicaandGallotia stehlinii(Reptilia, Lacertidae). Journal of Morphology, 1990, 205, 17-31.	1.2	22
50	Understanding the basic circuitry of the cerebral hemispheres: the case of lizards and its implications in the evolution of the telencephalon. Brain Research Bulletin, 2002, 57, 471-473.	3.0	21
51	Amygdala. , 2015, , 441-490.		21
52	The maternal hormone in the male brain: Sexually dimorphic distribution of prolactin signalling in the mouse brain. PLoS ONE, 2018, 13, e0208960.	2.5	21
53	Lesions of the dopaminergic innervation of the nucleus accumbens medial shell delay the generation of preference for sucrose, but not of sexual pheromones. Behavioural Brain Research, 2012, 226, 538-547.	2.2	20
54	Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse. Journal of Comparative Neurology, 2017, 525, 2929-2954.	1.6	19

#	Article	IF	Citations
55	Proposal of 5-methoxy- N -methyl- N -isopropyltryptamine consumption biomarkers through identification of in vivo metabolites from mice. Journal of Chromatography A, 2017, 1508, 95-105.	3.7	18
56	Distribution of calcitonin geneâ€related peptideâ€like immunoreactivity in the brain of the lizard <i>Podarcis hispanica </i> . Journal of Comparative Neurology, 2002, 447, 99-113.	1.6	16
57	Sex versus sweet: Opposite effects of opioid drugs on the reward of sucrose and sexual pheromones Behavioral Neuroscience, 2008, 122, 416-425.	1.2	16
58	Sex pheromones are not always attractive: changes induced by learning and illness in mice. Animal Behaviour, 2014, 97, 265-272.	1.9	16
59	Hippocampal dopamine receptors modulate cFos expression in the rat nucleus accumbens evoked by chemical stimulation of the ventral hippocampus. Neuropharmacology, 2005, 49, 1067-1076.	4.1	15
60	Ascending projections from the optic tectum in the lizard Podarcis hispanica. Visual Neuroscience, 1998, 15, 459-475.	1.0	14
61	Calcium-binding proteins in the dorsal ventricular ridge of the lizardPsammodromus algirus. Journal of Comparative Neurology, 1999, 405, 32-44.	1.6	14
62	What is the amygdala? A comparative approach. Trends in Neurosciences, 1999, 22, 207.	8.6	14
63	Seasonal sexually dimorphic distribution of neuropeptide Y-like immunoreactive neurons in the forebrain of the lizard Podarcis hispanica. Journal of Chemical Neuroanatomy, 1994, 7, 217-225.	2.1	13
64	Evolution of vertebrate survival circuits. Current Opinion in Behavioral Sciences, 2018, 24, 113-123.	3.9	13
65	Afferents to the red nucleus in the lizardPodarcis hispanica: Putative pathways for visuomotor integration. Journal of Comparative Neurology, 1999, 411, 35-55.	1.6	12
66	Avoidance and contextual learning induced by a kairomone, a pheromone and a common odorant in female CD1 mice. Frontiers in Neuroscience, 2015, 9, 336.	2.8	12
67	Maternal Motivation: Exploring the Roles of Prolactin and Pup Stimuli. Neuroendocrinology, 2021, 111, 805-830.	2.5	12
68	Neural Substrate to Associate Odorants and Pheromones: Convergence of Projections from the Main and Accessory Olfactory Bulbs in Mice., 2013,, 3-16.		11
69	Pregnancy Changes the Response of the Vomeronasal and Olfactory Systems to Pups in Mice. Frontiers in Cellular Neuroscience, 2020, 14, 593309.	3.7	11
70	The GABAergic system of the dorsal cortex of lizards: A combined HRP-GABA immunohistochemistry study. Neuroscience Letters, 1990, 109, 13-17.	2.1	10
71	Convergence of Thalamic and Cholinergic Projections in the †Dentate Area†of Lizards. Brain, Behavior and Evolution, 1998, 51, 113-122.	1.7	10
72	Novel sampling strategy for alive animal volatolome extraction combined with GC-MS based untargeted metabolomics: Identifying mouse pup pheromones. Talanta, 2021, 235, 122786.	5.5	9

#	Article	IF	Citations
73	Thalamo-Cortical Projections in the LizardPodarcis hispanica. , 1990, , 93-102.		9
74	Lack of MeCP2 leads to region-specific increase of doublecortin in the olfactory system. Brain Structure and Function, 2019, 224, 1647-1658.	2.3	8
75	Role of nitric oxide in pheromone-mediated intraspecific communication in mice. Physiology and Behavior, 2009, 98, 608-613.	2.1	7
76	Catecholaminergic interplexiform cells in the retina of lizards. Vision Research, 1996, 36, 1349-1355.	1.4	6
77	Retinal ganglion cells projecting to the optic tectum and visual thalamus of lizards. Visual Neuroscience, 2002, 19, 575-581.	1.0	6
78	Male-specific features are reduced in Mecp2-null mice: analyses of vasopressinergic innervation, pheromone production and social behaviour. Brain Structure and Function, 2020, 225, 2219-2238.	2.3	6
79	Understanding the pharmacokinetics of synthetic cathinones: Evaluation of the blood–brain barrier permeability of 13 related compounds in rats. Addiction Biology, 2021, 26, e12979.	2.6	6
80	The origin of the amniote sensory and motor cortices. Behavioral and Brain Sciences, 2003, 26, 561-563.	0.7	4
81	Adaptive Function and Brain Evolution. Frontiers in Neuroanatomy, 2012, 6, 17.	1.7	4
82	Glutamate and Opioid Antagonists Modulate Dopamine Levels Evoked by Innately Attractive Male Chemosignals in the Nucleus Accumbens of Female Rats. Frontiers in Neuroanatomy, 2017, 11, 8.	1.7	4
83	In-depth comparison of the metabolic and pharmacokinetic behaviour of the structurally related synthetic cannabinoids AMB-FUBINACA and AMB-CHMICA in rats. Communications Biology, 2022, 5, 161.	4.4	4
84	Motherhoodâ€induced gene expression in the mouse medial amygdala: Changes induced by pregnancy and lactation but not by pup stimuli. FASEB Journal, 2021, 35, e21806.	0.5	3
85	Species-specific Differences in the Corticohypothalamic Connections of Lizards. European Journal of Morphology, 1999, 37, 85-88.	0.8	3
86	Brain met-enkephalin immunostaining after subacute and subchronic exposure to benzene. Bulletin of Environmental Contamination and Toxicology, 1994, 52, 163-170.	2.7	2
87	Have Sexual Pheromones Their Own Reward System in the Brain of Female Mice?., 2008,, 261-270.		2
88	Becoming a mother shifts the activity of the social and motivation brain networks in mice. IScience, 2022, 25, 104525.	4.1	2
89	A Lacertilian Dorsal Retinorecipient Thalamus: A Re-Investigation in the Old-World Lizard <i>Podarcis hispanica</i> (Part 2 of 2). Brain, Behavior and Evolution, 1997, 50, 324-334.	1.7	O
90	2074v Alpha1-Beta1 and Alpha6-Beta1-Integrin. , 2008, , 1-1.		0