List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8703717/publications.pdf Version: 2024-02-01

RENOIT FAMAEN

#	Article	IF	CITATIONS
1	Probing the radial acceleration relation and the strong equivalence principle with the Coma cluster ultra-diffuse galaxies. Astronomy and Astrophysics, 2022, 658, A26.	5.1	11
2	Perturbed distribution functions with accurate action estimates for the Galactic disc. Astronomy and Astrophysics, 2022, 658, A50.	5.1	2
3	The Cen A galaxy group: Dynamical mass and missing baryons. Astronomy and Astrophysics, 2022, 662, A57.	5.1	9
4	Origin of the spectacular tidal shells of galaxy NGC 474. Astronomy and Astrophysics, 2022, 660, A28.	5.1	9
5	The Global Dynamical Atlas of the Milky Way Mergers: Constraints from Gaia EDR3–based Orbits of Globular Clusters, Stellar Streams, and Satellite Galaxies. Astrophysical Journal, 2022, 926, 107.	4.5	73
6	3D hydrodynamic simulations for the formation of the Local Group satellite planes. Monthly Notices of the Royal Astronomical Society, 2022, 513, 129-158.	4.4	17
7	The Complexity of the Cetus Stream Unveiled from the Fusion of STREAMFINDER and StarGO. Astrophysical Journal, 2022, 930, 103.	4.5	13
8	The Pristine survey – XVII. The C-19 stream is dynamically hot and more extended than previously thought. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1664-1671.	4.4	4
9	On the Effect of the Large Magellanic Cloud on the Orbital Poles of Milky Way Satellite Galaxies. Astrophysical Journal, 2022, 932, 70.	4.5	9
10	Revisiting a Disky Origin for the Faint Branch of the Sagittarius Stellar Stream. Astrophysical Journal Letters, 2022, 932, L14.	8.3	6
11	Constraining the Milky Way Halo Kinematics via Its Linear Response to the Large Magellanic Cloud. Astrophysical Journal, 2022, 933, 113.	4.5	7
12	The outer disc in shambles: Blind detection of Monoceros and the ACS with <i>Gaia</i> 's astrometric sample. Astronomy and Astrophysics, 2021, 646, A99.	5.1	14
13	Barred spiral galaxies in modified gravity theories. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2833-2860.	4.4	22
14	On the absence of backsplash analogues to NGC 3109 in the $\hat{\flat}CDM$ framework. Monthly Notices of the Royal Astronomical Society, 2021, 503, 6170-6186.	4.4	5
15	The ACTIONFINDER: An Unsupervised Deep Learning Algorithm for Calculating Actions and the Acceleration Field from a Set of Orbit Segments. Astrophysical Journal, 2021, 915, 5.	4.5	9
16	Charting the Galactic Acceleration Field. I. A Search for Stellar Streams with Gaia DR2 and EDR3 with Follow-up from ESPaDOnS and UVES. Astrophysical Journal, 2021, 914, 123.	4.5	80
17	The Phantom of RAMSES user guide for galaxy simulations using Milgromian and Newtonian gravity. Canadian Journal of Physics, 2021, 99, 607-613.	1.1	14
18	Uncovering fossils of the distant Milky Way with UNIONS: NGCÂ5466 and its stellar stream. Monthly Notices of the Royal Astronomical Society, 2021, 507, 1923-1936.	4.4	9

#	Article	IF	CITATIONS
19	Evolution of globular-cluster systems of ultra-diffuse galaxies due to dynamical friction in MOND gravity. Astronomy and Astrophysics, 2021, 653, A170.	5.1	4
20	Fast galaxy bars continue to challenge standard cosmology. Monthly Notices of the Royal Astronomical Society, 2021, 508, 926-939.	4.4	36
21	Are Disks of Satellites Comprised of Tidal Dwarf Galaxies?. Galaxies, 2021, 9, 100.	3.0	6
22	The Phantom Dark Matter Halos of the Local Volume in the Context of Modified Newtonian Dynamics. Astrophysical Journal, 2021, 923, 68.	4.5	14
23	Masses of the components of SB2 binaries observed with Gaia – V. Accurate SB2 orbits for 10 binaries and masses of the components of 5 binaries. Monthly Notices of the Royal Astronomical Society, 2020, 496, 1355-1368.	4.4	8
24	Baryon-Interacting Dark Matter: heating dark matter and the emergence of galaxy scaling relations. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 025-025.	5.4	9
25	Fluctuations in galactic bar parameters due to bar–spiral interaction. Monthly Notices of the Royal Astronomical Society, 2020, 497, 933-955.	4.4	45
26	The Formation of Exponential Disk Galaxies in MOND. Astrophysical Journal, 2020, 890, 173.	4.5	29
27	Detection of Strong Epicyclic Density Spikes in the GD-1 Stellar Stream: An Absence of Evidence for the Influence of Dark Matter Subhalos?. Astrophysical Journal, 2020, 891, 161.	4.5	31
28	Globular clusters in the Sagittarius stream. Astronomy and Astrophysics, 2020, 636, A107.	5.1	40
29	Massive disc galaxies too dominated by dark matter in cosmological hydrodynamical simulations. Astronomy and Astrophysics, 2020, 640, A70.	5.1	20
30	The impact of the halo spin-concentration relation on disc scaling laws. Astronomy and Astrophysics, 2020, 644, A76.	5.1	6
31	Kinematics and dynamics of <i>Gaia</i> red clump stars. Astronomy and Astrophysics, 2020, 643, A75.	5.1	26
32	Bar resonances and low angular momentum moving groups in the Galaxy revealed by their stellar ages. Astronomy and Astrophysics, 2020, 643, L3.	5.1	16
33	The Sixth Data Release of the Radial Velocity Experiment (Rave). II. Stellar Atmospheric Parameters, Chemical Abundances, and Distances. Astronomical Journal, 2020, 160, 83.	4.7	96
34	The Sixth Data Release of the Radial Velocity Experiment (RAVE). I. Survey Description, Spectra, and Radial Velocities. Astronomical Journal, 2020, 160, 82.	4.7	85
35	The Hidden Past of M92: Detection and Characterization of a Newly Formed 17° Long Stellar Stream Using the Canada–France Imaging Survey. Astrophysical Journal, 2020, 902, 89.	4.5	20
36	The Global Stability of M33 in MOND. Astrophysical Journal, 2020, 905, 135.	4.5	23

#	Article	IF	CITATIONS
37	A Panoramic Landscape of the Sagittarius Stream in Gaia DR2 Revealed with the STREAMFINDER Spyglass. Astrophysical Journal Letters, 2020, 891, L19.	8.3	37
38	Implications of a Time-varying Galactic Potential for Determinations of the Dynamical Surface Density. Astrophysical Journal Letters, 2019, 879, L15.	8.3	22
39	Young stars raining through the galactic halo: the nature and orbit of price-whelanÂ1. Monthly Notices of the Royal Astronomical Society, 2019, 490, 2588-2598.	4.4	6
40	Do Halos that Form Early, Have High Concentration, Are Part of a Pair, or Contain a Central Galaxy Potential Host More Pronounced Planes of Satellite Galaxies?. Astrophysical Journal, 2019, 875, 105.	4.5	18
41	Predicted MOND velocity dispersions for a catalog of ultra-diffuse galaxies in group environments. Astronomy and Astrophysics, 2019, 623, A36.	5.1	20
42	Dark matter–baryon scaling relations from Einasto halo fits to SPARC galaxy rotation curves. Astronomy and Astrophysics, 2019, 623, A123.	5.1	21
43	A-type stars in the Canada–France Imaging Survey – II. Tracing the height of the disc at large distances with Blue Stragglers. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3119-3126.	4.4	18
44	Constraining the Milky Way non-axisymmetries with Gaia. Proceedings of the International Astronomical Union, 2019, 14, 61-64.	0.0	0
45	Galaxy disc scaling relations: A tight linear galaxy–halo connection challenges abundance matching. Astronomy and Astrophysics, 2019, 629, A59.	5.1	34
46	Discussing the first velocity dispersion profile of an ultra-diffuse galaxy in MOND. Astronomy and Astrophysics, 2019, 627, L1.	5.1	12
47	Tracing Hercules in Galactic azimuth with <i>Gaia</i> DR2. Astronomy and Astrophysics, 2019, 632, A107.	5.1	23
48	Signatures of the resonances of a large Galactic bar in local velocity space. Astronomy and Astrophysics, 2019, 626, A41.	5.1	64
49	Phase-space Correlation in Stellar Streams of the Milky Way Halo: The Clash of Kshir and GD-1*. Astrophysical Journal Letters, 2019, 886, L7.	8.3	20
50	Exploring the Outskirts of Globular Clusters: The Peculiar Kinematics of NGC 3201. Astrophysical Journal Letters, 2019, 887, L12.	8.3	29
51	Dwarfs or Giants? Stellar Metallicities and Distances from ugrizG Multiband Photometry. Astrophysical Journal, 2019, 886, 10.	4.5	10
52	ls the Milky Way still breathing? RAVE–Gaia streaming motions. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2679-2696.	4.4	47
53	Emergence of the mass discrepancy-acceleration relation from dark matter-baryon interactions. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 038-038.	5.4	26
54	Masses of the components of SB2 binaries observed with Gaia – IV. Accurate SB2 orbits for 14 binaries and masses of three binaries*. Monthly Notices of the Royal Astronomical Society, 2018, 474, 731-745.	4.4	15

#	Article	IF	CITATIONS
55	Stellar streams as gravitational experiments. Astronomy and Astrophysics, 2018, 609, A44.	5.1	36
56	A-type stars in the Canada–France Imaging Survey I. The stellar halo of the Milky Way traced to large radius by blue horizontal branch stars. Monthly Notices of the Royal Astronomical Society, 2018, 481, 5223-5235.	4.4	24
57	Phenomenological consequences of superfluid dark matter with baryon-phonon coupling. Journal of Cosmology and Astroparticle Physics, 2018, 2018, 021-021.	5.4	53
58	MOND simulation suggests an origin for some peculiarities in the Local Group. Astronomy and Astrophysics, 2018, 614, A59.	5.1	53
59	MOND and the dynamics of NGC 1052â^'DF2. Monthly Notices of the Royal Astronomical Society, 2018, 480, 473-476.	4.4	46
60	Correlations between age, kinematics, and chemistry as seen by the RAVE survey. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5612-5624.	4.4	13
61	The escape speed curve of the Galaxy obtained from <i>Gaia</i> DR2 implies a heavy Milky Way. Astronomy and Astrophysics, 2018, 616, L9.	5.1	94
62	Coma Berenices: The First Evidence for Incomplete Vertical Phase-mixing in Local Velocity Space with RAVE—Confirmed with Gaia DR2. Research Notes of the AAS, 2018, 2, 32.	0.7	16
63	THE RADIAL VELOCITY EXPERIMENT (RAVE): FIFTH DATA RELEASE. Astronomical Journal, 2017, 153, 75.	4.7	380
64	Tracing the <i>Hercules</i> stream with <i>Gaia</i> and LAMOST: new evidence for a fast bar in the Milky Way. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 466, L113-L117.	3.3	61
65	Staying away from the bar: the local dynamical signature of slow and fast bars in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2017, 465, 1443-1453.	4.4	33
66	Chemical Mapping of the Milky Way with The Canada–France Imaging Survey: A Non-parametric Metallicity–Distance Decomposition of the Galaxy. Astrophysical Journal, 2017, 848, 129.	4.5	19
67	PLATO <i>as it is</i> : A legacy mission for Galactic archaeology. Astronomische Nachrichten, 2017, 338, 644-661.	1.2	61
68	Emergent gravity in galaxies and in the Solar System. Physical Review D, 2017, 95, .	4.7	12
69	Asymmetric metallicity patterns in the stellar velocity space with RAVE. Astronomy and Astrophysics, 2017, 601, A59.	5.1	11
70	Stellar streams as gravitational experiments. Astronomy and Astrophysics, 2017, 603, A65.	5.1	30
71	Distribution functions for resonantly trapped orbits in the Galactic disc. Monthly Notices of the Royal Astronomical Society, 2017, 471, 4314-4322.	4.4	23
72	The Canada–France Imaging Survey: First Results from the u-Band Component. Astrophysical Journal, 2017, 848, 128.	4.5	62

#	Article	IF	CITATIONS
73	Considerations on how to investigate planes of satellite galaxies. Astronomische Nachrichten, 2017, 338, 854-861.	1.2	16
74	Distribution functions for Galactic disc stellar populations in the presence of non-axisymmetric perturbations. Proceedings of the International Astronomical Union, 2017, 13, 195-198.	0.0	0
75	Distribution functions for resonantly trapped orbits in our Galaxy. Proceedings of the International Astronomical Union, 2017, 13, 341-342.	0.0	1
76	Galaxy clusters in the context of superfluid dark matter. Astronomy and Astrophysics, 2017, 607, A108.	5.1	35
77	Masses of the components of SB2s observed with <i>Gaia</i> – II. Masses derived from PIONIER interferometric observations for <i>Gaia</i> validation. Monthly Notices of the Royal Astronomical Society, 2016, 455, 3303-3311.	4.4	12
78	The Milky Way disk non-axisymmetries and galactoseismology. Astronomische Nachrichten, 2016, 337, 949-952.	1.2	0
79	Star formation triggered by galaxy interactions in modified gravity. Monthly Notices of the Royal Astronomical Society, 2016, 463, 3637-3652.	4.4	38
80	The effects of bar–spiral coupling on stellar kinematics in the Galaxy. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3835-3846.	4.4	73
81	Understanding the internal dynamics of elliptical galaxies without non-baryonic dark matter. Monthly Notices of the Royal Astronomical Society, 2016, 463, 1865-1880.	4.4	21
82	Exploring the reality of density substructures in the Palomar 5 stellar stream. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2711-2719.	4.4	24
83	Masses of the components of SB2 binaries observed with <i>Gaia</i> – III. Accurate SB2 orbits for 10 binaries and masses of HIPÂ87895. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3272-3281.	4.4	11
84	Modelling the Galactic disc: perturbed distribution functions in the presence of spiral arms. Monthly Notices of the Royal Astronomical Society, 2016, 457, 2569-2582.	4.4	70
85	The transverse velocity of the Andromeda system, derived from the M31 satellite population. Monthly Notices of the Royal Astronomical Society, 2016, 456, 4432-4440.	4.4	31
86	Combined Solar system and rotation curve constraints on MOND. Monthly Notices of the Royal Astronomical Society, 2016, 455, 449-461.	4.4	72
87	Mass models of disc galaxies from the DiskMass Survey in modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Society, 2015, 451, 3551-3580.	4.4	19
88	The intrinsic ellipticity of dwarf spheroidal galaxies: constraints from the Andromeda system. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1409-1419.	4.4	17
89	ON THE PERSISTENCE OF TWO SMALL-SCALE PROBLEMS IN \hat{P} CDM. Astrophysical Journal, 2015, 815, 19.	4.5	76
90	THE IMPRINTS OF THE GALACTIC BAR ON THE THICK DISK WITH RAVE. Astrophysical Journal Letters, 2015, 800, L32.	8.3	17

#	Article	IF	CITATIONS
91	Phantom of RAMSES (POR): A new Milgromian dynamics <i>N</i> -body code. Canadian Journal of Physics, 2015, 93, 232-241.	1.1	64
92	The vertical effects of disc non-axisymmetries from perturbation theory: the case of the Galactic bar. Monthly Notices of the Royal Astronomical Society, 2015, 452, 747-754.	4.4	44
93	EPPUR SI MUOVE: POSITIONAL AND KINEMATIC CORRELATIONS OF SATELLITE PAIRS IN THE LOW <i>Z</i>	4.5	35
94	Spiral- and bar-driven peculiar velocities in Milky Way-sized galaxy simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1867-1878.	4.4	38
95	Weighing the local dark matter with RAVE red clump stars. Astronomy and Astrophysics, 2014, 571, A92.	5.1	92
96	N-body simulations of the Carina dSph in MOND. Monthly Notices of the Royal Astronomical Society, 2014, 440, 746-761.	4.4	19
97	A census of the expected properties of classical Milky Way dwarfs in Milgromian dynamics. Monthly Notices of the Royal Astronomical Society, 2014, 441, 2497-2507.	4.4	24
98	Modified Baryonic Dynamics: two-component cosmological simulations with light sterile neutrinos. Journal of Cosmology and Astroparticle Physics, 2014, 2014, 079-079.	5.4	7
99	A NEW STELLAR CHEMO-KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK. Astrophysical Journal Letters, 2014, 781, L20.	8.3	70
100	Radial and vertical flows induced by galactic spiral arms: likely contributors to our â€~wobbly Galaxy'. Monthly Notices of the Royal Astronomical Society, 2014, 440, 2564-2575.	4.4	108
101	Masses of the components of SB2 binaries observed with Gaia – I. Selection of the sample and mass ratios of 20 new SB2s discovered with Sophieâ~ Monthly Notices of the Royal Astronomical Society, 2014, 445, 2371-2377.	4.4	11
102	Co-orbiting satellite galaxy structures are still in conflict with the distribution of primordial dwarf galaxies. Monthly Notices of the Royal Astronomical Society, 2014, 442, 2362-2380.	4.4	135
103	Galactic kinematics and dynamics from Radial Velocity Experiment stars. Monthly Notices of the Royal Astronomical Society, 2014, 439, 1231-1244.	4.4	77
104	Velocity anti-correlation of diametrically opposed galaxy satellites in the low-redshift Universe. Nature, 2014, 511, 563-566.	27.8	84
105	Constraints on the Galactic bar from the Hercules stream as traced with RAVE across the Galaxy. Astronomy and Astrophysics, 2014, 563, A60.	5.1	97
106	Polar ring galaxies as tests of gravity. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2846-2853.	4.4	32
107	Cosmological simulations in MOND: the cluster scale halo mass function with light sterile neutrinos. Monthly Notices of the Royal Astronomical Society, 2013, 436, 202-211.	4.4	35
108	The wobbly Galaxy: kinematics north and south with RAVE red-clump giants. Monthly Notices of the Royal Astronomical Society, 2013, 436, 101-121.	4.4	226

#	Article	IF	CITATIONS
109	THE RADIAL VELOCITY EXPERIMENT (RAVE): FOURTH DATA RELEASE. Astronomical Journal, 2013, 146, 134.	4.7	278
110	Challenges for $\hat{\flat}\text{CDM}$ and MOND. Journal of Physics: Conference Series, 2013, 437, 012001.	0.4	19
111	Local Group timing in Milgromian dynamics. Astronomy and Astrophysics, 2013, 557, L3.	5.1	61
112	Unifying all mass discrepancies with one effective gravity law?. Physical Review D, 2012, 86, .	4.7	26
113	Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Living Reviews in Relativity, 2012, 15, 10.	26.7	645
114	Kinematic groups beyond the solar neighbourhood with RAVE. Monthly Notices of the Royal Astronomical Society: Letters, 2012, 426, L1-L5.	3.3	57
115	The properties of the local spiral arms from RAVE data: two-dimensional density wave approach. Monthly Notices of the Royal Astronomical Society, 2012, 425, 2335-2342.	4.4	99
116	A QUMOND galactic N-body code - I. Poisson solver and rotation curve fitting. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2598-2609.	4.4	37
117	Filamentary accretion cannot explain the orbital poles of the Milky Way satellites. Monthly Notices of the Royal Astronomical Society, 2012, 424, 80-92.	4.4	64
118	Evolution of galactic discs: multiple patterns, radial migration, and disc outskirts. Astronomy and Astrophysics, 2012, 548, A126.	5.1	149
119	Detection of a radial velocity gradient in the extended local disc with RAVE. Monthly Notices of the Royal Astronomical Society, 2011, 412, 2026-2032.	4.4	91
120	THE RADIAL VELOCITY EXPERIMENT (RAVE): THIRD DATA RELEASE. Astronomical Journal, 2011, 141, 187.	4.7	149
121	Radial migration in galactic disks caused by resonance overlap of multiple patterns: Self-consistent simulations. Astronomy and Astrophysics, 2011, 527, A147.	5.1	145
122	THINGS about MOND. Astronomy and Astrophysics, 2011, 527, A76.	5.1	99
123	Remarks on the properties of elliptical galaxies in modified Newtonian dynamics. Astronomy and Astrophysics, 2011, 531, A100.	5.1	21
124	Current data on the globular cluster Palomar 14 are consistent withÂMOND. Astronomy and Astrophysics, 2010, 509, A97.	5.1	22
125	A NEW MECHANISM FOR RADIAL MIGRATION IN GALACTIC DISKS: SPIRAL-BAR RESONANCE OVERLAP. Astrophysical Journal, 2010, 722, 112-121.	4.5	279
126	Equilibrium configurations of 11 eV sterile neutrinos in MONDian galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2010, 402, 395-408.	4.4	40

BENOIT FAMAEY

#	Article	IF	CITATIONS
127	Mass models from high-resolution H i data of the dwarf galaxy NGC 1560. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2493-2503.	4.4	25
128	Lopsidedness of cluster galaxies in modified gravity. Journal of Cosmology and Astroparticle Physics, 2010, 2010, 010-010.	5.4	17
129	Comparing different realizations of modified Newtonian dynamics: Virial theorem and elliptical shells. Physical Review D, 2010, 81, .	4.7	33
130	Local-Group tests of dark-matter concordance cosmology. Astronomy and Astrophysics, 2010, 523, A32.	5.1	182
131	Galactic kinematics with modified Newtonian dynamics. Astronomy and Astrophysics, 2009, 500, 801-805.	5.1	44
132	Universality of galactic surface densities within one dark halo scale-length. Nature, 2009, 461, 627-628.	27.8	127
133	Reconciling MOND and dark matter?. Journal of Cosmology and Astroparticle Physics, 2009, 2009, 021-021.	5.4	38
134	Milky Way potentials in cold dark matter and MOdified Newtonian Dynamics. Is the Large Magellanic Cloud on a bound orbit?. Monthly Notices of the Royal Astronomical Society, 2008, 386, 2199-2208.	4.4	78
135	An analytic model for non-spherical lenses in covariant MOdified Newtonian Dynamics. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1303-1312.	4.4	25
136	X-ray group and cluster mass profiles in MOND: unexplained mass on the group scale. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1470-1480.	4.4	82
137	Is Gravitational Lensing by Intercluster Filaments Always Negligible?. Astrophysical Journal, 2008, 682, 711-720.	4.5	13
138	On the age heterogeneity of the Pleiades, Hyades, and Sirius moving groups. Astronomy and Astrophysics, 2008, 483, 453-459.	5.1	77
139	THE WEDDING OF MODIFIED DYNAMICS AND NON-EXOTIC DARK MATTER IN GALAXY CLUSTERS. , 2008, , .		2
140	Insight into the baryon-gravity relation in galaxies. Physical Review D, 2007, 75, .	4.7	94
141	The Hyades stream: an evaporated cluster or an intrusion from the inner disk?. Astronomy and Astrophysics, 2007, 461, 957-962.	5.1	70
142	On the Proof of Dark Matter, the Law of Gravity, and the Mass of Neutrinos. Astrophysical Journal, 2007, 654, L13-L16.	4.5	130
143	Loss of Mass and Stability of Galaxies in Modified Newtonian Dynamics. Astrophysical Journal, 2007, 665, L101-L104.	4.5	47
144	Tidal dwarf galaxies as a test of fundamental physics. Astronomy and Astrophysics, 2007, 472, L25-L28.	5.1	107

#	Article	IF	CITATIONS
145	Escaping from modified Newtonian dynamics. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 377, L79-L82.	3.3	74
146	The velocity distribution of Sloan Digital Sky Survey satellites in Modified Newtonian Dynamics. Monthly Notices of the Royal Astronomical Society: Letters, 2007, 383, L1-L4.	3.3	21
147	Velocity dispersion around ellipticals in MOND. Astronomy and Astrophysics, 2007, 476, L1-L4.	5.1	76
148	Refining the MOND Interpolating Function and TeVeS Lagrangian. Astrophysical Journal, 2006, 638, L9-L12.	4.5	101
149	Can MOND take a bullet? Analytical comparisons of three versions of MOND beyond spherical symmetry. Monthly Notices of the Royal Astronomical Society, 2006, 371, 138-146.	4.4	88
150	Modified Newtonian dynamics in the Milky Way. Monthly Notices of the Royal Astronomical Society, 2005, 363, 603-608.	4.4	270
151	Local kinematics of K and MÂgiants from CORAVEL/Hipparcos/Tycho-2 data. Astronomy and Astrophysics, 2005, 430, 165-186.	5.1	352
152	Three-component Stackel potentials satisfying recent estimates of Milky Way parameters. Monthly Notices of the Royal Astronomical Society, 2003, 340, 752-762.	4.4	23
153	The proper motion of Andromeda from Gaia EDR3: confirming a nearly radial orbit. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	17