Vladimir P Badovinac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8703355/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Differentiation and Persistence of Memory CD8+ T Cells Depend on T Cell Factor 1. Immunity, 2010, 33, 229-240.	14.3	555
2	Programmed contraction of CD8+ T cells after infection. Nature Immunology, 2002, 3, 619-626.	14.5	511
3	Shaping and reshaping CD8+ T-cell memory. Nature Reviews Immunology, 2008, 8, 107-119.	22.7	493
4	Regulation of Antigen-Specific CD8 ⁺ T Cell Homeostasis by Perforin and Interferon-γ. Science, 2000, 290, 1354-1357.	12.6	430
5	Initial T Cell Receptor Transgenic Cell Precursor Frequency Dictates Critical Aspects of the CD8+ T Cell Response to Infection. Immunity, 2007, 26, 827-841.	14.3	363
6	Accelerated CD8+ T-cell memory and prime-boost response after dendritic-cell vaccination. Nature Medicine, 2005, 11, 748-756.	30.7	362
7	Defining Memory CD8 T Cell. Frontiers in Immunology, 2018, 9, 2692.	4.8	313
8	CD8+ T cell contraction is controlled by early inflammation. Nature Immunology, 2004, 5, 809-817.	14.5	290
9	Memory CD8 T cell responses exceeding a large but definable threshold provide long-term immunity to malaria. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14017-14022.	7.1	236
10	Inflaming the CD8+ T Cell Response. Immunity, 2006, 25, 19-29.	14.3	224
11	Repetitive Antigen Stimulation Induces Stepwise Transcriptome Diversification but Preserves a Core Signature of Memory CD8+ T Cell Differentiation. Immunity, 2010, 33, 128-140.	14.3	224
12	Extreme CD8 T Cell Requirements for Anti-Malarial Liver-Stage Immunity following Immunization with Radiation Attenuated Sporozoites. PLoS Pathogens, 2010, 6, e1000998.	4.7	175
13	Tracking the Total CD8 T Cell Response to Infection Reveals Substantial Discordance in Magnitude and Kinetics between Inbred and Outbred Hosts. Journal of Immunology, 2009, 183, 7672-7681.	0.8	169
14	Constitutive Activation of Wnt Signaling Favors Generation of Memory CD8 T Cells. Journal of Immunology, 2010, 184, 1191-1199.	0.8	157
15	Sepsis-Induced T Cell Immunoparalysis: The Ins and Outs of Impaired T Cell Immunity. Journal of Immunology, 2018, 200, 1543-1553.	0.8	143
16	Programming, demarcating, and manipulating CD8 + Tâ€cell memory. Immunological Reviews, 2006, 211, 67-80.	6.0	142
17	Impact of sepsis on CD4 T cell immunity. Journal of Leukocyte Biology, 2014, 96, 767-777.	3.3	128
18	The transcription factor Runx3 guards cytotoxic CD8+ effector T cells against deviation towards follicular helper T cell lineage. Nature Immunology, 2017, 18, 931-939.	14.5	113

#	Article	IF	CITATIONS
19	Viral Infection Results in Massive CD8+ T Cell Expansion and Mortality in Vaccinated Perforin-Deficient Mice. Immunity, 2003, 18, 463-474.	14.3	104
20	Regulation of CD8+ T Cells Undergoing Primary and Secondary Responses to Infection in the Same Host. Journal of Immunology, 2003, 170, 4933-4942.	0.8	102
21	Influence of effector molecules on the CD8+ T cell response to infection. Current Opinion in Immunology, 2002, 14, 360-365.	5.5	100
22	Manipulating the Rate of Memory CD8+ T Cell Generation after Acute Infection. Journal of Immunology, 2007, 179, 53-63.	0.8	98
23	Intracellular staining for TNF and IFN-γ detects different frequencies of antigen-specific CD8+ T cells. Journal of Immunological Methods, 2000, 238, 107-117.	1.4	92
24	A Default Pathway of Memory CD8 T Cell Differentiation after Dendritic Cell Immunization Is Deflected by Encounter with Inflammatory Cytokines during Antigen-Driven Proliferation. Journal of Immunology, 2009, 183, 2337-2348.	0.8	89
25	CD4 T Cell Responses and the Sepsis-Induced Immunoparalysis State. Frontiers in Immunology, 2020, 11, 1364.	4.8	83
26	Interleukin-1 receptor antagonist suppresses experimental autoimmune encephalomyelitis (EAE) in rats by influencing the activation and proliferation of encephalitogenic cells. Journal of Neuroimmunology, 1998, 85, 87-95.	2.3	81
27	Adaptive Immunity and Enhanced CD8+ T Cell Response to <i>Listeria monocytogenes</i> in the Absence of Perforin and IFN-γ. Journal of Immunology, 2000, 164, 6444-6452.	0.8	81
28	CD8 + T Cells Utilize Highly Dynamic Enhancer Repertoires and Regulatory Circuitry in Response to Infections. Immunity, 2016, 45, 1341-1354.	14.3	79
29	Repeated Antigen Exposure Extends the Durability of Influenza-Specific Lung-Resident Memory CD8+ T Cells and Heterosubtypic Immunity. Cell Reports, 2018, 24, 3374-3382.e3.	6.4	76
30	Peripherally induced brain tissue–resident memory CD8+ T cells mediate protection against CNS infection. Nature Immunology, 2020, 21, 938-949.	14.5	75
31	Microbial Exposure Enhances Immunity to Pathogens Recognized by TLR2 but Increases Susceptibility to Cytokine Storm through TLR4 Sensitization. Cell Reports, 2019, 28, 1729-1743.e5.	6.4	74
32	Sustained and Incomplete Recovery of Naive CD8+ T Cell Precursors after Sepsis Contributes to Impaired CD8+ T Cell Responses to Infection. Journal of Immunology, 2013, 190, 1991-2000.	0.8	73
33	NLRC4 suppresses melanoma tumor progression independently of inflammasome activation. Journal of Clinical Investigation, 2016, 126, 3917-3928.	8.2	65
34	CD8 T cell memory development: CD4 T cell help is appreciated. Immunologic Research, 2007, 39, 94-104.	2.9	59
35	New Insights into the Immune System Using Dirty Mice. Journal of Immunology, 2020, 205, 3-11.	0.8	59
36	Polymicrobial Sepsis Alters Antigen-Dependent and -Independent Memory CD8 T Cell Functions. Journal of Immunology, 2014, 192, 3618-3625.	0.8	58

#	Article	IF	CITATIONS
37	TRAIL Deficiency Delays, but Does Not Prevent, Erosion in the Quality of "Helpless―Memory CD8 T Cells. Journal of Immunology, 2006, 177, 999-1006.	0.8	56
38	Immune Unresponsiveness to Secondary Heterologous Bacterial Infection after Sepsis Induction Is TRAIL Dependent. Journal of Immunology, 2011, 187, 2148-2154.	0.8	56
39	Alterations in Antigen-Specific Naive CD4 T Cell Precursors after Sepsis Impairs Their Responsiveness to Pathogen Challenge. Journal of Immunology, 2015, 194, 1609-1620.	0.8	55
40	Clinical and Experimental Sepsis Impairs CD8 T-Cell-Mediated Immunity. Critical Reviews in Immunology, 2016, 36, 57-74.	0.5	55
41	Differential Requirements for Tcf1 Long Isoforms in CD8+ and CD4+ T Cell Responses to Acute Viral Infection. Journal of Immunology, 2017, 199, 911-919.	0.8	53
42	Ezh2 programs TFH differentiation by integrating phosphorylation-dependent activation of Bcl6 and polycomb-dependent repression of p19Arf. Nature Communications, 2018, 9, 5452.	12.8	53
43	Population Dynamics of Naive and Memory CD8 T Cell Responses after Antigen Stimulations In Vivo. Journal of Immunology, 2012, 188, 1255-1265.	0.8	52
44	Immunosuppression after Sepsis: Systemic Inflammation and Sepsis Induce a Loss of NaÃ ⁻ ve T-Cells but No Enduring Cell-Autonomous Defects in T-Cell Function. PLoS ONE, 2014, 9, e115094.	2.5	52
45	Exploiting cross-priming to generate protective CD8 T-cell immunity rapidly. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12198-12203.	7.1	51
46	Cutting Edge: Expression of Fcl ³ RIIB Tempers Memory CD8 T Cell Function In Vivo. Journal of Immunology, 2014, 192, 35-39.	0.8	51
47	Enteric immunity, the gut microbiome, and sepsis: Rethinking the germ theory of disease. Experimental Biology and Medicine, 2017, 242, 127-139.	2.4	51
48	Ectopic Tcf1 expression instills a stem-like program in exhausted CD8+ T cells to enhance viral and tumor immunity. Cellular and Molecular Immunology, 2021, 18, 1262-1277.	10.5	49
49	Polymicrobial Sepsis Increases Susceptibility to Chronic Viral Infection and Exacerbates CD8+ T Cell Exhaustion. Journal of Immunology, 2015, 195, 116-125.	0.8	48
50	Polymicrobial Sepsis Diminishes Dendritic Cell Numbers and Function Directly Contributing to Impaired Primary CD8 T Cell Responses In Vivo. Journal of Immunology, 2016, 197, 4301-4311.	0.8	48
51	Polymicrobial Sepsis Chronic Immunoparalysis Is Defined by Diminished Ag-Specific T Cell-Dependent B Cell Responses. Frontiers in Immunology, 2018, 9, 2532.	4.8	48
52	Probing CD8 T Cell Responses with Listeria monocytogenes Infection. Advances in Immunology, 2012, 113, 51-80.	2.2	47
53	Polymicrobial sepsis impairs bystander recruitment of effector cells to infected skin despite optimal sensing and alarming function of skin resident memory CD8 T cells. PLoS Pathogens, 2017, 13, e1006569.	4.7	47
54	CD8+ T-cell homeostasis after infection: setting the â€~curve'. Microbes and Infection, 2002, 4, 441-447.	1.9	46

#	Article	IF	CITATIONS
55	Polymicrobial sepsis influences NK-cell-mediated immunity by diminishing NK-cell-intrinsic receptor-mediated effector responses to viral ligands or infections. PLoS Pathogens, 2018, 14, e1007405.	4.7	46
56	Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection. PLoS Pathogens, 2015, 11, e1005219.	4.7	46
57	Cutting Edge: Antilisterial Activity of CD8+ T Cells Derived from TNF-Deficient and TNF/Perforin Double-Deficient Mice. Journal of Immunology, 2000, 165, 5-9.	0.8	45
58	T-Cell-Mediated Immunity and the Role of TRAIL in Sepsis-Induced Immunosuppression. Critical Reviews in Immunology, 2013, 33, 23-40.	0.5	43
59	Cutting Edge: OFF Cycling of TNF Production by Antigen-Specific CD8+ T Cells Is Antigen Independent. Journal of Immunology, 2000, 165, 5387-5391.	0.8	40
60	Antidiabetogenic Effect of Pentoxifylline is Associated with Systemic and Target Tissue Modulation of Cytokines and Nitric Oxide Production. Journal of Autoimmunity, 2001, 16, 47-58.	6.5	39
61	Cellâ€specific effects of pentoxifylline on nitric oxide production and inducible nitric oxide synthase mRNA expression. Immunology, 1997, 92, 402-406.	4.4	38
62	Listeria monocytogenes: a model pathogen to study antigen-specific memory CD8 T cell responses. Seminars in Immunopathology, 2015, 37, 301-310.	6.1	38
63	MHC class Ia–restricted memory T cells inhibit expansion of a nonprotective MHC class Ib (H2-M3)–restricted memory response. Nature Immunology, 2004, 5, 159-168.	14.5	36
64	Modulating numbers and phenotype of CD8 ⁺ T cells in secondary immune responses. European Journal of Immunology, 2010, 40, 1916-1926.	2.9	33
65	Division-linked generation of death-intermediates regulates the numerical stability of memory CD8 T cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6199-6204.	7.1	33
66	A Role for IFN-γ from Antigen-Specific CD8+ T Cells in Protective Immunity to <i>Listeria monocytogenes</i> . Journal of Immunology, 2007, 179, 2457-2466.	0.8	32
67	Listeriolysin O-DeficientListeria monocytogenesas a Vaccine Delivery Vehicle: Antigen-Specific CD8 T Cell Priming and Protective Immunity. Journal of Immunology, 2006, 177, 4012-4020.	0.8	31
68	Gut Microbial Membership Modulates CD4 T Cell Reconstitution and Function after Sepsis. Journal of Immunology, 2016, 197, 1692-1698.	0.8	31
69	Predicting CD62L expression during the CD8 ⁺ Tâ€cell response <i>in vivo</i> . Immunology and Cell Biology, 2010, 88, 157-164.	2.3	29
70	Diet-Induced Obesity Does Not Impact the Generation and Maintenance of Primary Memory CD8 T Cells. Journal of Immunology, 2014, 193, 5873-5882.	0.8	29
71	Bystander responses impact accurate detection of murine and human antigen-specific CD8+ T cells. Journal of Clinical Investigation, 2019, 129, 3894-3908.	8.2	29
72	Interleukin-1 alpha increases anti-tumor efficacy of cetuximab in head and neck squamous cell carcinoma. , 2019, 7, 79.		28

#	Article	IF	CITATIONS
73	Secondary CD8 ⁺ Tâ€cell responses are controlled by systemic inflammation. European Journal of Immunology, 2011, 41, 1321-1333.	2.9	27
74	Expeditious recruitment of circulating memory CD8 TÂcells to the liver facilitates control of malaria. Cell Reports, 2021, 37, 109956.	6.4	26
75	Tcf1 preprograms the mobilization of glycolysis in central memory CD8+ T cells during recall responses. Nature Immunology, 2022, 23, 386-398.	14.5	26
76	Revealing the Complexity in CD8 T Cell Responses to Infection in Inbred C57B/6 versus Outbred Swiss Mice. Frontiers in Immunology, 2017, 8, 1527.	4.8	25
77	Inducing Experimental Polymicrobial Sepsis by Cecal Ligation and Puncture. Current Protocols in Immunology, 2020, 131, e110.	3.6	25
78	Cutting Edge: Antitumor Immunity by Pathogen-Specific CD8 T Cells in the Absence of Cognate Antigen Recognition. Journal of Immunology, 2020, 204, 1431-1435.	0.8	25
79	Adaptive Immunity against Listeria monocytogenes in the Absence of Type I Tumor Necrosis Factor Receptor p55. Infection and Immunity, 2000, 68, 4470-4476.	2.2	24
80	In Vivo Generation of Pathogen-Specific Th1 Cells in the Absence of the IFN-Î ³ Receptor. Journal of Immunology, 2005, 175, 3117-3122.	0.8	24
81	Deficient Anti-Listerial Immunity in the Absence of Perforin Can Be Restored by Increasing Memory CD8+ T Cell Numbers. Journal of Immunology, 2003, 171, 4254-4262.	0.8	22
82	Sepsis-Induced State of Immunoparalysis Is Defined by Diminished CD8 T Cell–Mediated Antitumor Immunity. Journal of Immunology, 2019, 203, 725-735.	0.8	21
83	Cryptococcus neoformans Neutralizes Macrophage and Astrocyte Derived Nitric Oxide without Interfering with Inducible Nitric Oxide Synthase Induction or Catalytic Activity ? Possible Involvement of Nitric Oxide Consumption. Scandinavian Journal of Immunology, 2000, 51, 384-391.	2.7	20
84	Cutting Edge: Polymicrobial Sepsis Has the Capacity to Reinvigorate Tumor-Infiltrating CD8 T Cells and Prolong Host Survival. Journal of Immunology, 2019, 202, 2843-2848.	0.8	20
85	Differential Role of "Signal 3―Inflammatory Cytokines in Regulating CD8 T Cell Expansion and Differentiation in vivo. Frontiers in Immunology, 2011, 2, 4.	4.8	19
86	NK Cell–Derived IL-10 Supports Host Survival during Sepsis. Journal of Immunology, 2021, 206, 1171-1180.	0.8	19
87	Sepsis leads to lasting changes in phenotype and function of memory CD8 T cells. ELife, 2021, 10, .	6.0	19
88	Memory lanes. Nature Immunology, 2003, 4, 212-213.	14.5	18
89	The Longevity of Memory CD8 T Cell Responses after Repetitive Antigen Stimulations. Journal of Immunology, 2014, 192, 5652-5659.	0.8	18
90	Polymicrobial Sepsis Impairs Antigen-Specific Memory CD4 T Cell-Mediated Immunity. Frontiers in Immunology, 2020, 11, 1786.	4.8	18

#	Article	IF	CITATIONS
91	Time and Antigen-Stimulation History Influence Memory CD8 T Cell Bystander Responses. Frontiers in Immunology, 2017, 8, 634.	4.8	17
92	Cyclosporin A inhibits activation of inducible nitric oxide synthase in C6 glioma cell line. Brain Research, 1999, 816, 92-98.	2.2	16
93	Differentiation of Central Memory CD8 T Cells Is Independent of CD62L-Mediated Trafficking to Lymph Nodes. Journal of Immunology, 2009, 182, 6195-6206.	0.8	16
94	Diverse CD8ÂT Cell Responses to Viral Infection Revealed by the Collaborative Cross. Cell Reports, 2020, 31, 107508.	6.4	16
95	Sepsis impedes EAE disease development and diminishes autoantigen-specific naive CD4 T cells. ELife, 2020, 9, .	6.0	16
96	Rat NKRâ€P1+CD3+T cells: selective proliferation in interleukinâ€2, diverse Tâ€cellâ€receptorâ€Vβ repertoire polarized interferonâ€Î³ expression. Immunology, 1998, 95, 117-125.	and 4.4	14
97	Cyclosporin A Suppresses the Induction of Nitric Oxide Synthesis in Interferon-gamma-Treated L929 Fibroblasts. Scandinavian Journal of Immunology, 1999, 49, 126-130.	2.7	14
98	The Impact of Pre-Existing Memory on Differentiation of Newly Recruited Naive CD8 T Cells. Journal of Immunology, 2011, 187, 2923-2931.	0.8	14
99	Antigen-dependent and –independent contributions to primary memory CD8 T cell activation and protection following infection. Scientific Reports, 2016, 5, 18022.	3.3	14
100	Prolonged Reactive Oxygen Species Production following Septic Insult. ImmunoHorizons, 2021, 5, 477-488.	1.8	14
101	Protective function and durability of mouse lymph node-resident memory CD8+ T cells. ELife, 2021, 10, .	6.0	14
102	Sepsis, Cytokine Storms, and Immunopathology: The Divide between Neonates and Adults. ImmunoHorizons, 2021, 5, 512-522.	1.8	14
103	The Timing of Stimulation and IL-2 Signaling Regulate Secondary CD8 T Cell Responses. PLoS Pathogens, 2015, 11, e1005199.	4.7	14
104	Influence of time and number of antigen encounters on memory CD8 T cell development. Immunologic Research, 2014, 59, 35-44.	2.9	13
105	Enhancing Dendritic Cell–based Immunotherapy with IL-2/Monoclonal Antibody Complexes for Control of Established Tumors. Journal of Immunology, 2015, 195, 4537-4544.	0.8	12
106	Pentoxifylline Potentiates Nitric Oxide Production and Growth Suppression in Interferon-Î ³ -Treated L929 Fibroblasts. Cellular Immunology, 1998, 184, 105-111.	3.0	11
107	High initial frequency of TCR-transgenic CD8 T cells alters inflammation and pathogen clearance without affecting memory T cell function. Molecular Immunology, 2009, 47, 71-78.	2.2	11
108	Severity of Sepsis Determines the Degree of Impairment Observed in Circulatory and Tissue-Resident Memory CD8 T Cell Populations. Journal of Immunology, 2021, 207, 1871-1881.	0.8	10

#	ARTICLE	IF	CITATIONS
109	Antigen Exposure History Defines CD8 T Cell Dynamics and Protection during Localized Pulmonary Infections. Frontiers in Immunology, 2017, 8, 40.	4.8	9
110	Adaptable TCR Avidity Thresholds for Negative Selection. Journal of Immunology, 2008, 181, 6770-6778.	0.8	8
111	Generation and maintenance of Listeria-specific CD8+ T cell responses in perforin-deficient mice chronically infected with LCMV. Virology, 2008, 370, 310-322.	2.4	7
112	Detection and Analysis of Antigen-Specific CD8 ⁺ T Cells. Immunologic Research, 2001, 24, 325-332.	2.9	6
113	Epitope specificity of memory <scp>CD</scp> 8 ⁺ <scp>T</scp> cells dictates vaccinationâ€induced mortality in <scp>LCMV</scp> â€infected perforinâ€deficient mice. European Journal of Immunology, 2012, 42, 1488-1499.	2.9	6
114	A preliminary analysis of interleukin-1 ligands as potential predictive biomarkers of response to cetuximab. Biomarker Research, 2019, 7, 14.	6.8	6
115	Worry and FRET: ROS Production Leads to Fluorochrome Tandem Degradation and impairs Interpretation of Flow Cytometric Results. Immunity, 2020, 52, 419-421.	14.3	6
116	TCRÎ ² Chain That Forms Peptide-Independent Alloreactive TCR Transfers Reduced Reactivity with Irrelevant Peptide/MHC Complex. Journal of Immunology, 2007, 178, 6109-6114.	0.8	5
117	Sepsis and multiple sclerosis: Causative links and outcomes. Immunology Letters, 2021, 238, 40-46.	2.5	5
118	Sifting through CD8 + T Cell Memory. Immunity, 2016, 45, 1184-1186.	14.3	4
119	A Functionally Distinct CXCR3+/IFN-γ+/IL-10+ Subset Defines Disease-Suppressive Myelin-Specific CD8 T Cells. Journal of Immunology, 2021, 206, 1151-1160.	0.8	4
120	Novel Mouse Model of Murine Cytomegalovirus–Induced Adaptive NK Cells. ImmunoHorizons, 2022, 6, 8-15.	1.8	4
121	Autoimmunity Increases Susceptibility to and Mortality from Sepsis. ImmunoHorizons, 2021, 5, 844-854.	1.8	3