Marielle Adrian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8702849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phytoalexins from the Vitaceae: Biosynthesis, Phytoalexin Gene Expression in Transgenic Plants, Antifungal Activity, and Metabolism. Journal of Agricultural and Food Chemistry, 2002, 50, 2731-2741.	5.2	539
2	Laminarin Elicits Defense Responses in Grapevine and Induces Protection Against Botrytis cinerea and Plasmopara viticola. Molecular Plant-Microbe Interactions, 2003, 16, 1118-1128.	2.6	423
3	Carbohydrates in plant immunity and plant protection: roles and potential application as foliar sprays. Frontiers in Plant Science, 2014, 5, 592.	3.6	266
4	Biological Activity of Resveratrol, a Stilbenic Compound from Grapevines, Against Botrytis cinerea, the Causal Agent for Gray Mold. Journal of Chemical Ecology, 1997, 23, 1689-1702.	1.8	229
5	The grapevine flagellin receptor Vv <scp>FLS</scp> 2 differentially recognizes flagellinâ€derived epitopes from the endophytic growthâ€promoting bacterium <i>Burkholderia phytofirmans</i> and plant pathogenic bacteria. New Phytologist, 2014, 201, 1371-1384.	7.3	147
6	Effects of resveratrol on the ultrastructure of Botrytis cinerea conidia and biological significance in plant/pathogen interactions. F¬toterapìâ, 2012, 83, 1345-1350.	2.2	110
7	Surfactin and fengycin contribute to the protection of a <i>Bacillus subtilis</i> strain against grape downy mildew by both direct effect and defence stimulation. Molecular Plant Pathology, 2019, 20, 1037-1050.	4.2	90
8	RhizoTubes as a new tool for high throughput imaging of plant root development and architecture: test, comparison with pot grown plants and validation. Plant Methods, 2016, 12, 31.	4.3	76
9	Are Grapevine Stomata Involved in the Elicitor-Induced Protection Against Downy Mildew?. Molecular Plant-Microbe Interactions, 2009, 22, 977-986.	2.6	68
10	Antimicrobial Activity of Resveratrol Analogues. Molecules, 2014, 19, 7679-7688.	3.8	65
11	Influence of leaf age on induced resistance in grapevine against Plasmopara viticola. Physiological and Molecular Plant Pathology, 2012, 79, 89-96.	2.5	60
12	Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. Molecular Genetics and Genomics, 2011, 285, 273-285.	2.1	53
13	Changes in Carbohydrate Metabolism in <i>Plasmopara viticola</i> -Infected Grapevine Leaves. Molecular Plant-Microbe Interactions, 2011, 24, 1061-1073.	2.6	47
14	The grapevine (<i>Vitis vinifera</i>) LysM receptor kinases Vv <scp>LYK</scp> 1â€1 and Vv <scp>LYK</scp> 1â€2 mediate chitooligosaccharideâ€ŧriggered immunity. Plant Biotechnology Journal, 2019, 17, 812-825.	8.3	44
15	Alterations in Grapevine Leaf Metabolism Occur Prior to Esca Apoplexy Appearance. Molecular Plant-Microbe Interactions, 2017, 30, 946-959.	2.6	31
16	A Plant Extract Acts Both as a Resistance Inducer and an Oomycide Against Grapevine Downy Mildew. Frontiers in Plant Science, 2018, 9, 1085.	3.6	29
17	An ethoxylated surfactant enhances the penetration of the sulfated laminarin through leaf cuticle and stomata, leading to increased induced resistance against grapevine downy mildew. Physiologia Plantarum, 2016, 156, 338-350.	5.2	26
18	Metabolic Fingerprint of PS3-Induced Resistance of Grapevine Leaves against Plasmopara viticola Revealed Differences in Elicitor-Triggered Defenses. Frontiers in Plant Science, 2017, 08, 101.	3.6	23

MARIELLE ADRIAN

#	Article	IF	CITATIONS
19	Dual Mode of Action of Grape Cane Extracts against <i>Botrytis cinerea</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 5512-5520.	5.2	23
20	Image analysis methods for assessment of H2O2 production and Plasmopara viticola development in grapevine leaves: Application to the evaluation of resistance to downy mildew. Journal of Microbiological Methods, 2013, 95, 235-244.	1.6	22
21	Proteomics towards the understanding of elicitor induced resistance of grapevine against downy mildew. Journal of Proteomics, 2017, 156, 113-125.	2.4	22
22	Combined enzymatic and metabolic analysis of grapevine cell responses to elicitors. Plant Physiology and Biochemistry, 2018, 123, 141-148.	5.8	20
23	Clone-Dependent Expression of Esca Disease Revealed by Leaf Metabolite Analysis. Frontiers in Plant Science, 2018, 9, 1960.	3.6	15
24	VOCs Are Relevant Biomarkers of Elicitor-Induced Defences in Grapevine. Molecules, 2021, 26, 4258.	3.8	12
25	Hydrophobized laminarans as new biocompatible anti-oomycete compounds for grapevine protection. Carbohydrate Polymers, 2019, 225, 115224.	10.2	8
26	Cultivar- and Wood Area-Dependent Metabolomic Fingerprints of Grapevine Infected by Botryosphaeria Dieback. Phytopathology, 2020, 110, 1821-1837.	2.2	8
27	Assessment of a New Copper-Based Formulation to Control Esca Disease in Field and Study of Its Impact on the Vine Microbiome, Vine Physiology and Enological Parameters of the Juice. Journal of Fungi (Basel, Switzerland), 2022, 8, 151.	3.5	7
28	Escaâ€affected grapevine leaf metabolome is clone―and vintageâ€dependent. Physiologia Plantarum, 2021, 171, 424-434.	5.2	6
29	Assessment of the impact of PS3-induced resistance to downy mildew on grapevine physiology. Plant Physiology and Biochemistry, 2018, 133, 134-141.	5.8	4
30	In vitro inhibition of shikimate hydroxycinnamoyltransferase by acibenzolar acid, the first metabolite of the plant defence inducer acibenzolar-S-methyl. Plant Physiology and Biochemistry, 2021, 163, 119-127.	5.8	2