
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8702708/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taxonomy of the order Bunyavirales: update 2019. Archives of Virology, 2019, 164, 1949-1965.	2.1	285
2	2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2020, 165, 3023-3072.	2.1	184
3	Hantaviruses—Globally emerging pathogens. Journal of Clinical Virology, 2015, 64, 128-136.	3.1	153
4	Defective Viral Genomes Arising In Vivo Provide Critical Danger Signals for the Triggering of Lung Antiviral Immunity. PLoS Pathogens, 2013, 9, e1003703.	4.7	131
5	Taxonomy of the order Bunyavirales: second update 2018. Archives of Virology, 2019, 164, 927-941.	2.1	115
6	Seewis virus, a genetically distinct hantavirus in the Eurasian common shrew (Sorex araneus). Virology Journal, 2007, 4, 114.	3.4	104
7	Hantaviruses: Rediscovery and new beginnings. Virus Research, 2014, 187, 6-14.	2.2	100
8	Characterization of Imjin Virus, a Newly Isolated Hantavirus from the Ussuri White-Toothed Shrew () Tj ETQq0 0 () rgBT /Ov	erlock 10 Tf

9	Thottapalayam Virus, a Prototype Shrewborne Hantavirus. Emerging Infectious Diseases, 2007, 13, 980-985.	4.3	93
10	Newfound Hantavirus in Chinese Mole Shrew, Vietnam. Emerging Infectious Diseases, 2007, 13, 1784-1787.	4.3	86
11	Host switch during evolution of a genetically distinct hantavirus in the American shrew mole (Neurotrichus gibbsii). Virology, 2009, 388, 8-14.	2.4	73
12	Soochong virus: An antigenically and genetically distinct hantavirus isolated fromApodemus peninsulae in Korea. Journal of Medical Virology, 2006, 78, 290-297.	5.0	67
13	2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology, 2021, 166, 3513-3566.	2.1	62
14	Divergent ancestral lineages of newfound hantaviruses harbored by phylogenetically related crocidurine shrew species in Korea. Virology, 2012, 424, 99-105.	2.4	54
15	Highly immunostimulatory RNA derived from a Sendai virus defective viral genome. Vaccine, 2013, 31, 5713-5721.	3.8	54
16	Muju virus, a novel hantavirus harboured by the arvicolid rodent Myodes regulus in Korea. Journal of General Virology, 2007, 88, 3121-3129.	2.9	52
17	Identification of a Natural Viral RNA Motif That Optimizes Sensing of Viral RNA by RIG-I. MBio, 2015, 6, e01265-15.	4.1	48
18	Molecular epidemiology of hepatitis A virus in Korea1. Journal of Gastroenterology and Hepatology (Australia), 2001, 16, 519-524.	2.8	43

#	Article	IF	CITATIONS
19	Identification of Tula hantavirus in Pitymys subterraneus captured in the Cacak region of Serbia-Yugoslavia. International Journal of Infectious Diseases, 2002, 6, 31-36.	3.3	37
20	Characterization of Tula Virus from Common Voles (Microtus Arvalis) in Poland: Evidence for Geographic-Specific Phylogenetic Clustering. Virus Genes, 2004, 29, 239-247.	1.6	33
21	Multiplex PCRâ^Based Next-Generation Sequencing and Global Diversity of Seoul Virus in Humans and Rats. Emerging Infectious Diseases, 2018, 24, 249-257.	4.3	33
22	Genetic Diversity and Reassortment of Hantaan Virus Tripartite RNA Genomes in Nature, the Republic of Korea. PLoS Neglected Tropical Diseases, 2016, 10, e0004650.	3.0	31
23	Phylogeographic analysis of hemorrhagic fever with renal syndrome patients using multiplex PCR-based next generation sequencing. Scientific Reports, 2016, 6, 26017.	3.3	31
24	Serosurveillance of Scrub Typhus in Small Mammals Collected from Military Training Sites near the DMZ, Northern Gyeonggi-do, Korea, and Analysis of the Relative Abundance of Chiggers from Mammals Examined. Korean Journal of Parasitology, 2010, 48, 237.	1.3	30
25	Protective Effectiveness of Inactivated Hantavirus Vaccine Against Hemorrhagic Fever With Renal Syndrome. Journal of Infectious Diseases, 2018, 217, 1417-1420.	4.0	28
26	Genetic diversity of Apodemus agrarius-borne hantaan virus in Korea. Virus Genes, 2000, 21, 227-232.	1.6	27
27	Phylogenetic Analysis of the Small Hydrophobic (SH) Gene of Mumps Virus in Korea: Identification of a New Genotype. Microbiology and Immunology, 2000, 44, 173-177.	1.4	27
28	Hemorrhagic Fever with Renal Syndrome in 4 US Soldiers, South Korea, 2005. Emerging Infectious Diseases, 2009, 15, 1833-1836.	4.3	27
29	Adaptive mutations of neuraminidase stalk truncation and deglycosylation confer enhanced pathogenicity of influenza A viruses. Scientific Reports, 2017, 7, 10928.	3.3	27
30	Discovery and Genetic Characterization of Novel Paramyxoviruses Related to the Genus Henipavirus in Crocidura Species in the Republic of Korea. Viruses, 2021, 13, 2020.	3.3	27
31	The recent ancestry of Middle East respiratory syndrome coronavirus in Korea has been shaped by recombination. Scientific Reports, 2016, 6, 18825.	3.3	26
32	Molecular Phylogeny of Hantaviruses Harbored by Insectivorous Bats in Côte d'Ivoire and Vietnam. Viruses, 2014, 6, 1897-1910.	3.3	25
33	A Novel Adenovirus in Chinstrap Penguins (Pygoscelis antarctica) in Antarctica. Viruses, 2014, 6, 2052-2061.	3.3	25
34	Comparison of targeted next-generation sequencing for whole-genome sequencing of Hantaan orthohantavirus in Apodemus agrarius lung tissues. Scientific Reports, 2019, 9, 16631.	3.3	23
35	Active Targeted Surveillance to Identify Sites of Emergence of Hantavirus. Clinical Infectious Diseases, 2020, 70, 464-473.	5.8	22
36	Dynamic Circulation and Genetic Exchange of a Shrew-borne Hantavirus, Imjin virus, in the Republic of Korea. Scientific Reports, 2017, 7, 44369.	3.3	21

#	Article	IF	CITATIONS
37	MERS-CoV and SARS-CoV-2 replication can be inhibited by targeting the interaction between the viral spike protein and the nucleocapsid protein. Theranostics, 2021, 11, 3853-3867.	10.0	21
38	Serological Surveillance of Scrub Typhus, Murine Typhus, and Leptospirosis in Small Mammals Captured at Firing Points 10 and 60, Gyeonggi Province, Republic of Korea, 2001–2005. Vector-Borne and Zoonotic Diseases, 2010, 10, 125-133.	1.5	20
39	Genetic and Molecular Epidemiological Characterization of a Novel Adenovirus in Antarctic Penguins Collected between 2008 and 2013. PLoS ONE, 2016, 11, e0157032.	2.5	20
40	Seroepidemiological Survey of Rodents Collected at a U.S. Military Installation, Yongsan Garrison, Seoul, Republic of Korea. Military Medicine, 2007, 172, 759-764.	0.8	19
41	Prevalence and molecular characterizations of Toxoplasma gondii and Babesia microti from small mammals captured in Gyeonggi and Gangwon Provinces, Republic of Korea. Veterinary Parasitology, 2014, 205, 512-517.	1.8	19
42	Deficiency of Melanoma Differentiation–associated Protein 5 Results in Exacerbated Chronic Postviral Lung Inflammation. American Journal of Respiratory and Critical Care Medicine, 2014, 189, 437-448.	5.6	18
43	Hantaan Virus Surveillance Targeting Small Mammals at Nightmare Range, a High Elevation Military Training Area, Gyeonggi Province, Republic of Korea. PLoS ONE, 2015, 10, e0118483.	2.5	18
44	Combination Effects of Peramivir and Favipiravir against Oseltamivir-Resistant 2009 Pandemic Influenza A(H1N1) Infection in Mice. PLoS ONE, 2014, 9, e101325.	2.5	17
45	Sequence-Independent, Single-Primer Amplification Next-Generation Sequencing of Hantaan Virus Cell Culture–Based Isolates. American Journal of Tropical Medicine and Hygiene, 2017, 96, 389-394.	1.4	16
46	Plagiorchis muris infection in Apodemus agrarius from northern Gyeonggi-do (Province) near the demilitarized zone. Korean Journal of Parasitology, 2007, 45, 153.	1.3	16
47	Hantaan virus surveillance targeting small mammals at Dagmar North Training Area, Gyeonggi Province, Republic of Korea, 2001-2005. Journal of Vector Ecology, 2011, 36, 373-381.	1.0	15
48	Genomic Epidemiology and Active Surveillance to Investigate Outbreaks of Hantaviruses. Frontiers in Cellular and Infection Microbiology, 2020, 10, 532388.	3.9	14
49	Apodemus agrarius as a new definitive host for Neodiplostomum seoulense. Korean Journal of Parasitology, 2007, 45, 157.	1.3	14
50	Intestinal Nematodes from Small Mammals Captured near the Demilitarized Zone, Gyeonggi Province, Republic of Korea. Korean Journal of Parasitology, 2015, 53, 135-139.	1.3	14
51	Ecological surveillance of small mammals at Dagmar North Training Area, Gyeonggi Province, Republic of Korea, 2001-2005. Journal of Vector Ecology, 2011, 36, 42-54.	1.0	13
52	Muju Virus, Harbored by Myodes regulus in Korea, Might Represent a Genetic Variant of Puumala Virus, the Prototype Arvicolid Rodent-Borne Hantavirus. Viruses, 2014, 6, 1701-1714.	3.3	13
53	Hemorrhagic Fever with Renal Syndrome. Infection and Chemotherapy, 2019, 51, 405.	2.3	13
54	Hantaan Virus Surveillance in Small Mammals at Firing Points 10 and 60, Yeoncheon, Gyeonggi Province, Republic of Korea. Vector-Borne and Zoonotic Diseases, 2012, 12, 674-682.	1.5	11

#	Article	IF	CITATIONS
55	Hantavirus Infection in an Active Duty U.S. Army Soldier Stationed in Seoul, Korea. Military Medicine, 2003, 168, 231-233.	0.8	10
56	Serological Surveillance of Scrub Typhus, Murine Typhus, and Leptospirosis in Small Mammals Captured at Twin Bridges Training Area, Gyeonggi Province, Republic of Korea, 2005–2007. Military Medicine, 2010, 175, 48-54.	0.8	10
57	Reassortment compatibility between PB1, PB2, and HA genes of the two influenza B virus lineages in mammalian cells. Scientific Reports, 2016, 6, 27480.	3.3	10
58	Detection of Hantaan virus RNA from antiâ€Hantaan virus IgG seronegative rodents in an area of high endemicity in Republic of Korea. Microbiology and Immunology, 2016, 60, 268-271.	1.4	10
59	Novel Paju Apodemus paramyxovirus 1 and 2, harbored by Apodemus agrarius in the Republic of Korea. Virology, 2021, 562, 40-49.	2.4	10
60	Phylogenetic relationships of the HA and NA genes between vaccine and seasonal influenza A(H3N2) strains in Korea. PLoS ONE, 2017, 12, e0172059.	2.5	10
61	Genotypic shift of the hepatitis A virus and its clinical impact on acute hepatitis A in Korea: a nationwide multicenter study. Scandinavian Journal of Infectious Diseases, 2013, 45, 811-818.	1.5	9
62	A novel genotype of Hantaan orthohantavirus harbored by Apodemus agrarius chejuensis as a potential etiologic agent of hemorrhagic fever with renal syndrome in Republic of Korea. PLoS Neglected Tropical Diseases, 2021, 15, e0009400.	3.0	9
63	Phylogeographic diversity and hybrid zone of Hantaan orthohantavirus collected in Gangwon Province, Republic of Korea. PLoS Neglected Tropical Diseases, 2020, 14, e0008714.	3.0	9
64	Hantavirus surveillance and genetic diversity targeting small mammals at Camp Humphreys, a US military installation and new expansion site, Republic of Korea. PLoS ONE, 2017, 12, e0176514.	2.5	9
65	Genotyping and Molecular Diagnosis of Hepatitis A Virus in Human Clinical Samples Using Multiplex PCR-Based Next-Generation Sequencing. Microorganisms, 2022, 10, 100.	3.6	9
66	The PDZ-binding motif of the avian NS1 protein affects transmission of the 2009 influenza A(H1N1) virus. Biochemical and Biophysical Research Communications, 2014, 449, 19-25.	2.1	8
67	Multiplex PCR-Based Nanopore Sequencing and Epidemiological Surveillance of Hantaan orthohantavirus in Apodemus agrarius, Republic of Korea. Viruses, 2021, 13, 847.	3.3	8
68	Urinary genome detection and tracking of Hantaan virus from hemorrhagic fever with renal syndrome patients using multiplex PCR-based next-generation sequencing. PLoS Neglected Tropical Diseases, 2021, 15, e0009707.	3.0	8
69	Borna disease virus and deficit schizophrenia. Acta Neuropsychiatrica, 2003, 15, 262-265.	2.1	7
70	Broad-Spectrum Antiviral Activity of 3D8, a Nucleic Acid-Hydrolyzing Single-Chain Variable Fragment (scFv), Targeting SARS-CoV-2 and Multiple Coronaviruses In Vitro. Viruses, 2021, 13, 650.	3.3	7
71	Lethal disease in infant and juvenile Syrian hamsters experimentally infected with Imjin virus, a newfound crocidurine shrew-borne hantavirus. Infection, Genetics and Evolution, 2015, 36, 231-239.	2.3	6
72	Molecular Epidemiology and Genetic Diversity of Orthohantaviruses in Small Mammals in Western Poland. American Journal of Tropical Medicine and Hygiene, 2020, 103, 193-199.	1.4	6

#	Article	IF	CITATIONS
73	Urban Rodent Surveillance, Climatic Association, and Genomic Characterization of Seoul Virus Collected at U.S. Army Garrison, Seoul, Republic of Korea, 2006–2010. American Journal of Tropical Medicine and Hygiene, 2018, 99, 470-476.	1.4	5
74	Geographic distribution and modeling of ticks in the Republic of Korea and the application of tick models towards understanding the distribution of associated pathogenic agents. Ticks and Tick-borne Diseases, 2021, 12, 101686.	2.7	4
75	Borna Disease Virus Antibody and RNA from Peripheral Blood Mononuclear Cells of Race Horses and Jockeys in Korea. Psychiatry Investigation, 2011, 8, 58.	1.6	4
76	Association between haemorrhagic fever with renal syndrome and cancers. International Journal of Infectious Diseases, 2021, 113, 127-135.	3.3	4
77	Hantavirus infection in an active duty U.S. Army soldier stationed in Seoul, Korea. Military Medicine, 2003, 168, 231-3.	0.8	4
78	A dominant antigenic region of the hantaan virus nucleocapsid protein is located within a amino-terminal short stretch of hydrophilic residues. Virus Genes, 2001, 23, 183-186.	1.6	2
79	No borna disease virus-specific RNA detected in blood of race horses and jockeys. Acta Neuropsychiatrica, 2006, 18, 177-180.	2.1	2
80	Human infection with Seoul orthohantavirus in Korea, 2019. PLoS Neglected Tropical Diseases, 2021, 15, e0009168.	3.0	2
81	A Therapeutically Active Minibody Exhibits an Antiviral Activity in Oseltamivir-Resistant Influenza-Infected Mice via Direct Hydrolysis of Viral RNAs. Viruses, 2022, 14, 1105.	3.3	2
82	Genetic diversity and phylogeography of Jeju Orthohantavirus (Hantaviridae) in the Republic of Korea. Virology, 2020, 543, 13-19.	2.4	1
83	A Clinical Case of Scrub Typhus in the United States Forces Korea Patient with Eschar and Genetic Identification of Orientia tsutsugamushi Using Multiplex PCR-Based Next-Generation Sequencing. Pathogens, 2021, 10, 424.	2.8	1
84	Surveillance and Molecular Identification of Borrelia Species in Ticks Collected at U.S. Army Garrison Humphreys, Republic of Korea, 2018–2019. Journal of Medical Entomology, 2021, , .	1.8	1
85	Clinical and Immunological Predictors of Hemorrhagic Fever with Renal Syndrome Outcome during the Early Phase. Viruses, 2022, 14, 595.	3.3	1