Sarel J Fleishman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8702196/publications.pdf

Version: 2024-02-01

81900 56724 7,936 92 39 83 citations g-index h-index papers 110 110 110 9385 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Computationally designed dual-color MRI reporters for noninvasive imaging of transgene expression. Nature Biotechnology, 2022, 40, 1143-1149.	17.5	18
2	Stabilization of the SARS-CoV-2 receptor binding domain by protein core redesign and deep mutational scanning. Protein Engineering, Design and Selection, 2022, 35, .	2.1	8
3	Computer-aided engineering of staphylokinase toward enhanced affinity and selectivity for plasmin. Computational and Structural Biotechnology Journal, 2022, 20, 1366-1377.	4.1	4
4	Stable and Functionally Diverse Versatile Peroxidases Designed Directly from Sequences. Journal of the American Chemical Society, 2022, 144, 3564-3571.	13.7	30
5	Structure and receptor recognition by the Lassa virus spike complex. Nature, 2022, 603, 174-179.	27.8	37
6	Highly Specific Monoclonal Antibody Targeting the Botulinum Neurotoxin Type E Exposed SNAP-25 Neoepitope. Antibodies, 2022, 11, 21.	2.5	4
7	What Have We Learned from Design of Function in Large Proteins?. Biodesign Research, 2022, 2022, .	1.9	6
8	De novo-designed transmembrane domains tune engineered receptor functions. ELife, 2022, 11, .	6.0	19
9	Computationally designed hyperactive Cas9 enzymes. Nature Communications, 2022, 13, .	12.8	8
10	The <scp><i>AbDesign</i></scp> computational pipeline for modular backbone assembly and design of binders and enzymes. Protein Science, 2021, 30, 151-159.	7.6	15
11	Computationally designed pyocyanin demethylase acts synergistically with tobramycin to kill recalcitrant <i>Pseudomonas aeruginosa</i> biofilms. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	31
12	Extending the New Generation of Structure Predictors to Account for Dynamics and Allostery. Journal of Molecular Biology, 2021, 433, 167007.	4.2	20
13	Community-Wide Experimental Evaluation of the PROSS Stability-Design Method. Journal of Molecular Biology, 2021, 433, 166964.	4.2	42
14	Computational Enzyme Engineering Pipelines for Optimized Production of Renewable Chemicals. Frontiers in Bioengineering and Biotechnology, 2021, 9, 673005.	4.1	14
15	Local Mutations Can Serve as a Game Changer for Global Protein Solvent Interaction. Jacs Au, 2021, 1, 1076-1085.	7.9	14
16	Biomolecular Recognition of the Glycan Neoantigen CA19-9 by Distinct Antibodies. Journal of Molecular Biology, 2021, 433, 167099.	4.2	5
17	Directâ€MS analysis of antibodyâ€antigen complexes. Proteomics, 2021, 21, e2000300.	2.2	8
18	The neutralization potency of anti-SARS-CoV-2 therapeutic human monoclonal antibodies is retained against viral variants. Cell Reports, 2021, 36, 109679.	6.4	12

#	Article	IF	CITATIONS
19	PROSS 2: a new server for the design of stable and highly expressed protein variants. Bioinformatics, 2021, 37, 123-125.	4.1	35
20	A Rationally and Computationally Designed Fluorescent Biosensor for <scp>d</scp> -Serine. ACS Sensors, 2021, 6, 4193-4205.	7.8	8
21	Design of a basiginâ€mimicking inhibitor targeting the malaria invasion protein RH5. Proteins: Structure, Function and Bioinformatics, 2020, 88, 187-195.	2.6	6
22	Practically useful protein-design methods combining phylogenetic and atomistic calculations. Current Opinion in Structural Biology, 2020, 63, 58-64.	5.7	36
23	One-step sequence and structure-guided optimization of HIV-1 envelope gp140. Current Research in Structural Biology, 2020, 2, 45-55.	2.2	12
24	A lipophilicity-based energy function for membrane-protein modelling and design. PLoS Computational Biology, 2019, 15, e1007318.	3.2	32
25	Optimizing antibody affinity and stability by the automated design of the variable light-heavy chain interfaces. PLoS Computational Biology, 2019, 15, e1007207.	3.2	77
26	<i>AbPredict 2</i> : a server for accurate and unstrained structure prediction of antibody variable domains. Bioinformatics, 2019, 35, 1591-1593.	4.1	18
27	Principles of Protein Stability and Their Application in Computational Design. Annual Review of Biochemistry, 2018, 87, 105-129.	11.1	187
28	Design and in vitro realization of carbon-conserving photorespiration. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11455-E11464.	7.1	97
29	Ultrahigh specificity in a network of computationally designed protein-interaction pairs. Nature Communications, 2018, 9, 5286.	12.8	49
30	Automated Design of Efficient and Functionally Diverse Enzyme Repertoires. Molecular Cell, 2018, 72, 178-186.e5.	9.7	165
31	Highly active enzymes by automated combinatorial backbone assembly and sequence design. Nature Communications, 2018, 9, 2780.	12.8	45
32	A combined computational-experimental approach to define the structural origin of antibody recognition of sialyl-Tn, a tumor-associated carbohydrate antigen. Scientific Reports, 2018, 8, 10786.	3.3	15
33	Estimating Interprotein Pairwise Interaction Energies in Cell Lysates from a Single Native Mass Spectrum. Analytical Chemistry, 2018, 90, 10090-10094.	6.5	17
34	Manipulating the Folding Landscape of a Multidomain Protein. Journal of Physical Chemistry B, 2018, 122, 11030-11038.	2.6	24
35	One-step design of a stable variant of the malaria invasion protein RH5 for use as a vaccine immunogen. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 998-1002.	7.1	75
36	Incorporating an allosteric regulatory site in an antibody through backbone design. Protein Science, 2017, 26, 807-813.	7.6	13

#	Article	IF	CITATIONS
37	Overcoming an optimization plateau in the directed evolution of highly efficient nerve agent bioscavengers. Protein Engineering, Design and Selection, 2017, 30, 333-345.	2.1	57
38	Collective repacking reveals that the structures of protein cores are uniquely specified by steric repulsive interactions. Protein Engineering, Design and Selection, 2017, 30, 387-394.	2.1	8
39	Local energetic frustration affects the dependence of green fluorescent protein folding on the chaperonin GroEL. Journal of Biological Chemistry, 2017, 292, 20583-20591.	3.4	26
40	Principles for computational design of binding antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10900-10905.	7.1	106
41	Improved antibody-based ricin neutralization by affinity maturation is correlated with slower off-rate values. Protein Engineering, Design and Selection, 2017, 30, 611-617.	2.1	15
42	Highâ€accuracy modeling of antibody structures by a search for minimumâ€energy recombination of backbone fragments. Proteins: Structure, Function and Bioinformatics, 2017, 85, 30-38.	2.6	23
43	Inspired by nature. Science, 2016, 352, 657-658.	12.6	10
44	Computationally Designed Armadillo Repeat Proteins for Modular Peptide Recognition. Journal of Molecular Biology, 2016, 428, 4467-4489.	4.2	19
45	Interplay between hydrophobicity and the positive-inside rule in determining membrane-protein topology. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10340-10345.	7.1	38
46	Automated Structure- and Sequence-Based Design of Proteins for High Bacterial Expression and Stability. Molecular Cell, 2016, 63, 337-346.	9.7	363
47	Why reinvent the wheel? Building new proteins based on readyâ€made parts. Protein Science, 2016, 25, 1179-1187.	7.6	33
48	Overcoming a species-specificity barrier in development of an inhibitory antibody targeting a modulator of tumor stroma. Protein Engineering, Design and Selection, 2016, 29, 135-147.	2.1	12
49	Mutational scanning reveals the determinants of protein insertion and association energetics in the plasma membrane. ELife, $2016, 5, \ldots$	6.0	66
50	<i>AbDesign</i> : An algorithm for combinatorial backbone design guided by natural conformations and sequences. Proteins: Structure, Function and Bioinformatics, 2015, 83, 1385-1406.	2.6	86
51	Dominant Mutations in the Autoimmune Regulator AIRE Are Associated with Common Organ-Specific Autoimmune Diseases. Immunity, 2015, 42, 1185-1196.	14.3	246
52	Combined Crystal Structure of a Type I Cohesin. Journal of Biological Chemistry, 2015, 290, 16215-16225.	3.4	10
53	Editorial overview: Protein design and evolution—new protein architectures, evolutionary fine-tuning and analysis. Current Opinion in Structural Biology, 2015, 33, v-vi.	5.7	0
54	A "Fuzzy―Logic Language for Encoding Multiple Physical Traits in Biomolecules. Journal of Molecular Biology, 2014, 426, 4125-4138.	4.2	25

#	Article	IF	Citations
55	Computational design of a pH-sensitive IgG binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 675-680.	7.1	74
56	Computational design of protein–protein interactions. Current Opinion in Structural Biology, 2013, 23, 903-910.	5.7	53
57	Computational Design of a Protein-Based Enzyme Inhibitor. Journal of Molecular Biology, 2013, 425, 3563-3575.	4.2	85
58	Emerging themes in the computational design of novel enzymes and protein–protein interfaces. FEBS Letters, 2013, 587, 1147-1154.	2.8	46
59	Computational protein design suggests that human PCNAâ€partner interactions are not optimized for affinity. Proteins: Structure, Function and Bioinformatics, 2013, 81, 341-348.	2.6	9
60	Computational Design of Novel Protein Binders and Experimental Affinity Maturation. Methods in Enzymology, 2013, 523, 1-19.	1.0	38
61	Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1980-1987.	2.6	87
62	Structure of the Ultra-High-Affinity Colicin E2 DNase–Im2 Complex. Journal of Molecular Biology, 2012, 417, 79-94.	4.2	54
63	Role of the Biomolecular Energy Gap in Protein Design, Structure, and Evolution. Cell, 2012, 149, 262-273.	28.9	94
64	Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nature Biotechnology, 2012, 30, 543-548.	17.5	342
65	Rosetta3. Methods in Enzymology, 2011, 487, 545-574.	1.0	1,620
66	Hotspot-Centric De Novo Design of Protein Binders. Journal of Molecular Biology, 2011, 413, 1047-1062.	4.2	41
67	Community-Wide Assessment of Protein-Interface Modeling Suggests Improvements to Design Methodology. Journal of Molecular Biology, 2011, 414, 289-302.	4.2	131
68	RosettaScripts: A Scripting Language Interface to the Rosetta Macromolecular Modeling Suite. PLoS ONE, 2011, 6, e20161.	2.5	506
69	Computational Design of Proteins Targeting the Conserved Stem Region of Influenza Hemagglutinin. Science, 2011, 332, 816-821.	12.6	527
70	Restricted sidechain plasticity in the structures of native proteins and complexes. Protein Science, 2011, 20, 753-757.	7.6	50
71	Rosetta in CAPRI rounds 13–19. Proteins: Structure, Function and Bioinformatics, 2010, 78, 3212-3218.	2.6	20
72	High-resolution mapping of protein sequence-function relationships. Nature Methods, 2010, 7, 741-746.	19.0	482

#	Article	IF	Citations
73	The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10080-10085.	7.1	112
74	A New Twist in TCR Diversity Revealed by a Forbidden $\hat{l}\pm\hat{l}^2$ TCR. Journal of Molecular Biology, 2008, 375, 1306-1319.	4.2	21
75	Prediction and simulation of motion in pairs of transmembrane Â-helices. Bioinformatics, 2007, 23, e212-e218.	4.1	18
76	Co-evolving residues in membrane proteins. Bioinformatics, 2007, 23, 3312-3319.	4.1	65
77	RosettaDock in CAPRI rounds 6–12. Proteins: Structure, Function and Bioinformatics, 2007, 69, 758-763.	2.6	26
78	Intrinsically disordered C-terminal segments of voltage-activated potassium channels: a possible fishing rod-like mechanism for channel binding to scaffold proteins. Bioinformatics, 2006, 22, 1546-1550.	4.1	35
79	The Structural Context of Disease-causing Mutations in Gap Junctions. Journal of Biological Chemistry, 2006, 281, 28958-28963.	3.4	14
80	Quasi-symmetry in the Cryo-EM Structure of EmrE Provides the Key to Modeling its Transmembrane Domain. Journal of Molecular Biology, 2006, 364, 54-67.	4.2	114
81	Progress in structure prediction of α-helical membrane proteins. Current Opinion in Structural Biology, 2006, 16, 496-504.	5.7	61
82	Transmembrane protein structures without X-rays. Trends in Biochemical Sciences, 2006, 31, 106-113.	7.5	84
83	Has the code for protein translocation been broken?. Trends in Biochemical Sciences, 2006, 31, 192-196.	7.5	18
84	Assigning transmembrane segments to helices in intermediate-resolution structures. Bioinformatics, 2004, 20, i122-i129.	4.1	13
85	A Putative Mechanism for Downregulation of the Catalytic Activity of the EGF Receptor via Direct Contact between Its Kinase and C-Terminal Domains. Structure, 2004, 12, 2265-2275.	3.3	66
86	Free Diffusion of Steroid Hormones Across Biomembranes: A Simplex Search with Implicit Solvent Model Calculations. Biophysical Journal, 2004, 87, 768-779.	0.5	93
87	An Automatic Method for Predicting Transmembrane Protein Structures Using Cryo-EM and Evolutionary Data. Biophysical Journal, 2004, 87, 3448-3459.	0.5	51
88	A Cα Model for the Transmembrane α Helices of Gap Junction Intercellular Channels. Molecular Cell, 2004, 15, 879-888.	9.7	107
89	An Evolutionarily Conserved Network of Amino Acids Mediates Gating in Voltage-dependent Potassium Channels. Journal of Molecular Biology, 2004, 340, 307-318.	4.2	59
90	pANT: A Method for the Pairwise Assessment of Nonfunctionalization Times of Processed Pseudogenes. Molecular Biology and Evolution, 2003, 20, 1876-1880.	8.9	9

#	Article	IF	CITATIONS
91	A putative molecular-activation switch in the transmembrane domain of erbB2. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15937-15940.	7.1	247
92	A Novel Scoring Function for Predicting the Conformations of Tightly Packed Pairs of Transmembrane α-Helices. Journal of Molecular Biology, 2002, 321, 363-378.	4.2	74