List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8702041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exploiting the Reversible Covalent Bonding of Boronic Acids: Recognition, Sensing, and Assembly. Accounts of Chemical Research, 2013, 46, 312-326.	15.6	559
2	Water-induced accelerated ion diffusion: voltammetric studies in 1-methyl-3-[2,6-(S)-dimethylocten-2-yl]imidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate and hexafluorophosphate ionic liquids. New Journal of Chemistry, 2000, 24, 1009-1015.	2.8	513
3	Electroanalysis at Diamond-Like and Doped-Diamond Electrodes. Electroanalysis, 2003, 15, 1349-1363.	2.9	331
4	Sonoelectrochemical processes: A review. Electroanalysis, 1997, 9, 509-522.	2.9	262
5	Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nature Nanotechnology, 2018, 13, 504-511.	31.5	242
6	Nanoparticles in electrochemical sensors for environmental monitoring. TrAC - Trends in Analytical Chemistry, 2011, 30, 1704-1715.	11.4	231
7	Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes. Chemical Communications, 2012, 48, 2027.	4.1	207
8	Electrochemical Analysis of Solids. A Review. Collection of Czechoslovak Chemical Communications, 2002, 67, 163-208.	1.0	200
9	Carbon-based quantum particles: an electroanalytical and biomedical perspective. Chemical Society Reviews, 2019, 48, 4281-4316.	38.1	187
10	Electrochemistry of immobilised redox droplets: Concepts and applications. Physical Chemistry Chemical Physics, 2003, 5, 4053.	2.8	179
11	Plasmon Resonance Scattering Spectroscopy at the Singleâ€Nanoparticle Level: Realâ€Time Monitoring of a Click Reaction. Angewandte Chemie - International Edition, 2013, 52, 6011-6014.	13.8	178
12	Redox processes in microdroplets studied by voltammetry, microscopy and ESR spectroscopy: oxidation ofN,N,N′,N′-tetrahexylphenylene diamine deposited on solid electrode surfaces and immersed in aqueous electrolyte solution. Journal of Electroanalytical Chemistry, 1997, 437, 209-218.	3.8	174
13	Electrochemical Study of Microcrystalline Solid Prussian Blue Particles Mechanically Attached to Graphite and Gold Electrodes: Electrochemically Induced Lattice Reconstruction. The Journal of Physical Chemistry, 1995, 99, 2096-2103.	2.9	164
14	New bis(triazinyl) pyridines for selective extraction of americium(iii). New Journal of Chemistry, 2006, 30, 1171.	2.8	162
15	New Insights into Water Splitting at Mesoporous α-Fe ₂ O ₃ Films: A Study by Modulated Transmittance and Impedance Spectroscopies. Journal of the American Chemical Society, 2012, 134, 1228-1234.	13.7	162
16	Towards paired and coupled electrode reactions for clean organic microreactor electrosyntheses. Journal of Applied Electrochemistry, 2006, 36, 617-634.	2.9	161
17	An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples. Analytica Chimica Acta, 2007, 584, 189-195.	5.4	161
18	Electrochemically induced surface modifications of boron-doped diamond electrodes: an X-ray photoelectron spectroscopy study. Diamond and Related Materials, 2000, 9, 390-396.	3.9	154

#	Article	IF	CITATIONS
19	Dual activation: coupling ultrasound to electrochemistry—an overview. Electrochimica Acta, 1997, 42, 2919-2927.	5.2	145
20	Allâ€Polystyrene 3Dâ€Printed Electrochemical Device with Embedded Carbon Nanofiberâ€Graphiteâ€Polystyrene Composite Conductor. Electroanalysis, 2016, 28, 1517-1523.	2.9	141
21	Ionic liquid modified electrodes. Unusual partitioning and diffusion effects of Fe(CN)64â^'/3â^' in droplet and thin layer deposits of 1-methyl-3-(2,6-(S)-dimethylocten-2-yl)-imidazolium tetrafluoroborate. Journal of Electroanalytical Chemistry, 2000, 493, 75-83.	3.8	126
22	Conformal transformation of [Co(bdc)(DMF)] (Co-MOF-71, bdc = 1,4-benzenedicarboxylate, DMF =) Tj ETQq0 Communications, 2013, 27, 9-13.	0 0 rgBT /0 4.7	verlock 10 Tf 121
23	Accumulation and Reactivity of the Redox Protein Cytochromecin Mesoporous Films of TiO2Phytate. Langmuir, 2003, 19, 4327-4331.	3.5	116
24	Voltammetry in the presence of ultrasound: the limit of acoustic streaming induced diffusion layer thinning and the effect of solvent viscosity. Journal of Electroanalytical Chemistry, 1996, 415, 55-63.	3.8	114
25	The electrochemical reduction of indigo dissolved in organic solvents and as a solid mechanically attached to a basal plane pyrolytic graphite electrode immersed in aqueous electrolyte solution. Journal of the Chemical Society Perkin Transactions II, 1997, , 1735-1742.	0.9	112
26	Electrochemical and X-ray diffraction study of the redox cycling of nanocrystals of 7,7,8,8-tetracyanoquinodimethane. Observation of a solid–solid phase transformation controlled by nucleation and growth. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3925-3933.	1.7	108
27	Voltammetry in the presence of ultrasound: Can ultrasound modify heterogeneous electron transfer kinetics?. Journal of Electroanalytical Chemistry, 1995, 395, 335-339.	3.8	106
28	Self-Supported and Clean One-Step Cathodic Coupling of Activated Olefins with Benzyl Bromide Derivatives in a Micro Flow Reactor. Angewandte Chemie - International Edition, 2006, 45, 4146-4149.	13.8	100
29	Electrocatalytic activity of BasoliteTM F300 metal-organic-framework structures. Electrochemistry Communications, 2010, 12, 632-635.	4.7	99
30	Generator-collector double electrode systems: A review. Analyst, The, 2012, 137, 1068.	3.5	98
31	Mechanistic aspects of the electron and ion transport processes across the electrode solid solvent (electrolyte) interface of microcrystalline decamethylferrocene attached mechanically to a graphite electrode. Journal of Electroanalytical Chemistry, 1994, 372, 125-135.	3.8	97
32	Self-supported paired electrosynthesis of 2,5-dimethoxy-2,5-dihydrofuran using a thin layer flow cell without intentionally added supporting electrolyte. Electrochemistry Communications, 2005, 7, 35-39.	4.7	97
33	Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. Journal of Advanced Ceramics, 2021, 10, 1042-1051.	17.4	96
34	Simultaneous Electrochemical Detection and Determination of Lead and Copper at Boron-Doped Diamond Film Electrodes. Electroanalysis, 2002, 14, 262-272.	2.9	93
35	Paired electrosynthesis: micro-flow cell processes with and without added electrolyte. Electrochemistry Communications, 2002, 4, 825-831.	4.7	93
36	Manganese Binding to the Prion Protein. Journal of Biological Chemistry, 2008, 283, 12831-12839.	3.4	90

#	Article	IF	CITATIONS
37	A novel cation-binding TiO2 nanotube substrate for electro- and bioelectro-catalysis. Electrochemistry Communications, 2005, 7, 1050-1058.	4.7	89
38	Electrochemical analysis of nucleic acids at boron-doped diamond electrodes. Analyst, The, 2002, 127, 329-332.	3.5	82
39	Metastable Ionic Diodes Derived from an Amineâ€Based Polymer of Intrinsic Microporosity. Angewandte Chemie - International Edition, 2014, 53, 10751-10754.	13.8	81
40	An ambient aqueous synthesis for highly dispersed and active Pd/C catalyst for formic acid electro-oxidation. Journal of Power Sources, 2010, 195, 7246-7249.	7.8	80
41	Sono-Cathodic Stripping Voltammetry of Lead at a Polished Boron-Doped Diamond Electrode: Application to the Determination of Lead in River Sediment. Electroanalysis, 1999, 11, 1083-1088.	2.9	79
42	Electrochemical sensing using boronic acids. Chemical Communications, 2015, 51, 14562-14573.	4.1	79
43	Direct cytochrome c electrochemistry at boron-doped diamond electrodes. Electrochemistry Communications, 2002, 4, 62-66.	4.7	77
44	Review—The Development of Wearable Polymer-Based Sensors: Perspectives. Journal of the Electrochemical Society, 2020, 167, 037566.	2.9	76
45	Triple-decker complexes. 9. Triple-decker complexes with bridging cyclopentadienyl ligands and novel cyclopentadienyl transfer reactions. Organometallics, 1993, 12, 4039-4045.	2.3	75
46	The thermoelectrochemistry of the aqueous iron(<scp>ii</scp>)/iron(<scp>iii</scp>) redox couple: significance of the anion and pH in thermogalvanic thermal-to-electrical energy conversion. Sustainable Energy and Fuels, 2018, 2, 2717-2726.	4.9	75
47	Directed assembly of multilayers—the case of Prussian Blue. Chemical Communications, 2001, , 1994-1995.	4.1	74
48	Electrostatic accumulation and determination of triclosan in ultrathin carbon nanoparticle composite film electrodes. Analytica Chimica Acta, 2007, 593, 117-122.	5.4	72
49	Voltammetry, electron microscopy, and x-ray electron probe microanalysis at the electrode-aqueous electrolyte interface of solid microcrystalline cis- and trans-Cr(CO)2(dpe)2 and trans-[Cr(CO)2(dpe)2]+ complexes (dpe = Ph2PCH2CH2PPh2) mechanically attached to carbon electrodes lournal of the American Chemical Society 1993, 115, 9556,9562	13.7	70
50	Electrochemistry at boron-doped diamond films grown on graphite substrates: redox-, adsorption and deposition processes. Journal of Electroanalytical Chemistry, 1998, 442, 207-216.	3.8	69
51	Electrochemically Driven Ion Insertion Processes across Liquid Liquid Boundaries:  Neutral versus Ionic Redox Liquids. Journal of Physical Chemistry B, 2001, 105, 1344-1350.	2.6	68
52	Arsenite Determination in Phosphate Media at Electroaggregated Gold Nanoparticle Deposits. Electroanalysis, 2008, 20, 1286-1292.	2.9	68
53	Microwave Activation of Electrochemical Processes:Â Enhanced Electrodehalogenation in Organic Solvent Media. Journal of the American Chemical Society, 2002, 124, 9784-9788.	13.7	67
54	Large-Amplitude Fourier Transformed High-Harmonic Alternating Current Cyclic Voltammetry:Â Kinetic Discrimination of Interfering Faradaic Processes at Glassy Carbon and at Boron-Doped Diamond Electrodes. Analytical Chemistry, 2004, 76, 3619-3629.	6.5	67

#	Article	IF	CITATIONS
55	Ultrathin Carbon Nanoparticle Composite Film Electrodes: Distinguishing Dopamine and Ascorbate. Electroanalysis, 2007, 19, 1032-1038.	2.9	67
56	Anion Detection by Electro-Insertion intoN,N,N′, N′-Tetrahexyl-Phenylenediamine (THPD) Microdroplets Studied by Voltammetry, EQCM, and SEM Techniques. Electroanalysis, 1998, 10, 821-826.	2.9	66
57	Voltammetry at carbon nanofiber electrodes. Electrochemistry Communications, 2001, 3, 177-180.	4.7	66
58	Hydrophilic carbon nanoparticle-laccase thin film electrode for mediatorless dioxygen reduction. Electrochimica Acta, 2009, 54, 4620-4625.	5.2	66
59	The Synucleins Are a Family of Redox-Active Copper Binding Proteins. Biochemistry, 2011, 50, 37-47.	2.5	66
60	Sonoelectrochemical and sonochemical effects of cavitation: correlation with interfacial cavitation induced by 20 kHz ultrasound. Ultrasonics Sonochemistry, 2000, 7, 7-14.	8.2	65
61	Electrocatalytic oxidation of nitric oxide at TiO2–Au nanocomposite film electrodes. Electrochemistry Communications, 2007, 9, 436-442.	4.7	64
62	Chemically surface-modified carbon nanoparticle carrier for phenolic pollutants: Extraction and electrochemical determination of benzophenone-3 and triclosan. Analytica Chimica Acta, 2008, 616, 28-35.	5.4	64
63	Microwave activation of electrochemical processes at microelectrodes. Chemical Communications, 1998, , 2595-2596.	4.1	63
64	Direct electrochemistry of nanoparticulate Fe2O3 in aqueous solution and adsorbed onto tin-doped indium oxide. Pure and Applied Chemistry, 2001, 73, 1885-1894.	1.9	63
65	Ferrocene-Decorated Nanocrystalline Cellulose with Charge Carrier Mobility. Langmuir, 2012, 28, 6514-6519.	3.5	63
66	Evidence for Nucleation-Growth, Redistribution, and Dissolution Mechanisms during the Course of Redox Cycling Experiments on the C60/NBu4C60Solid-State Redox System:Â Voltammetric, SEM, and in Situ AFM Studies. Journal of Physical Chemistry B, 1999, 103, 5637-5644.	2.6	62
67	Chemistry of polynuclear metal complexes with bridging carbene of carbyne ligands. Part 79. Synthesis and reactions of the alkylidynemetal complexes [M(CR)(CO)2(ÎC5H5)](R = C6H3Me2-2,6, M = Cr,) 1 [MoFe(µ-CC6H3Me2-2,6)(CO)5(ÎC5H5)]. Journal of the Chemical Society Dalton Transactions, 1988, ,	[j ETQq1] 1.1	1 0.784314 61
68	2453-2465. Enantioselective Organocatalytic Epoxidation Driven by Electrochemically Generated Percarbonate and Persulfate. Advanced Synthesis and Catalysis, 2008, 350, 1149-1154.	4.3	61
69	The Development of Boronic Acids as Sensors and Separation Tools. Chemical Record, 2012, 12, 464-478.	5.8	61
70	Voltammetry of Electroactive Oil Droplets. Part II: Comparison of Experimental and Simulation Data for Coupled Ion and Electron Insertion Processes and Evidence for Microscale Convection. Electroanalysis, 2000, 12, 1017-1025.	2.9	60
71	Microwave-Enhanced Anodic Stripping Detection of Lead in a River Sediment Sample. A Mercury-Free Procedure Employing a Boron-Doped Diamond Electrode. Electroanalysis, 2001, 13, 831-835.	2.9	60
72	Electroanalytical thin film electrodes based on a Nafion? ? multi-walled carbon nanotube composite. Electrochemistry Communications, 2004, 6, 917-922.	4.7	60

#	Article	IF	CITATIONS
73	Assembly of N-hexadecyl-pyridinium-4-boronic acid hexafluorophosphate monolayer films with catechol sensing selectivity. Journal of Materials Chemistry, 2010, 20, 8305.	6.7	60
74	Sono-electroanalysis: Application to the detection of lead in wine. Electrochimica Acta, 1998, 43, 3443-3449.	5.2	57
75	Probing Thermodynamic Aspects of Electrochemically Driven Ion-Transfer Processes Across Liquid Liquid Interfaces:  Pure versus Diluted Redox Liquids. Journal of Physical Chemistry B, 2002, 106, 8697-8704.	2.6	57
76	Comparison of three optimized digestion methods for rapid determination of chemical oxygen demand: Closed microwaves, open microwaves and ultrasound irradiation. Analytica Chimica Acta, 2006, 561, 210-217.	5.4	57
77	Metal–organic frameworks post-synthetically modified with ferrocenyl groups: framework effects on redox processes and surface conduction. Dalton Transactions, 2012, 41, 1475-1480.	3.3	57
78	Emulsion electrosynthesis in the presence of power ultrasound Biphasic Kolbe coupling processes at platinum and boron-doped diamond electrodes. Journal of Electroanalytical Chemistry, 2001, 507, 135-143.	3.8	56
79	Self-Supported Methoxylation and Acetoxylation Electrosynthesis Using a Simple Thin-Layer Flow Cell. Journal of the Electrochemical Society, 2006, 153, D143.	2.9	56
80	Thin-Film Modified Electrodes with Reconstituted Celluloseâ^'PDDAC Films for the Accumulation and Detection of Triclosan. Journal of Physical Chemistry C, 2008, 112, 2660-2666.	3.1	56
81	Electrolyte free electro-organic synthesis: The cathodic dimerisation of 4-nitrobenzylbromide in a micro-gap flow cell. Electrochemistry Communications, 2005, 7, 918-924.	4.7	55
82	Aerosolâ€Assisted CVD of Bismuth Vanadate Thin Films and Their Photoelectrochemical Properties. Chemical Vapor Deposition, 2015, 21, 41-45.	1.3	55
83	A redox-activated fluorescence switch based on a ferrocene–fluorophore–boronic ester conjugate. Chemical Communications, 2015, 51, 1293-1296.	4.1	55
84	Redox and electroinsertion processes associated with the voltammetry of microcrystalline forms of Dawson molybdate anion salts mechanically attached to graphite electrodes and immersed in aqueous electrolyte media. Journal of Electroanalytical Chemistry, 1995, 396, 407-418.	3.8	54
85	Electrochemical and sonoelectrochemical monitoring of indigo reduction by glucose. Dyes and Pigments, 2008, 76, 542-549.	3.7	54
86	Water desalination concept using an ionic rectifier based on a polymer of intrinsic microporosity (PIM). Journal of Materials Chemistry A, 2015, 3, 15849-15853.	10.3	54
87	The use of ultrasound in the enhancement of the deposition and detection of metals in anodic stripping voltammetry. Electroanalysis, 1997, 9, 19-22.	2.9	53
88	Enhanced chemical reversibility of redox processes in cyanine dye rotaxanes. Chemical Communications, 2001, , 1046-1047.	4.1	53
89	Thermodynamic and Voltammetric Characterization of the Metal Binding to the Prion Protein: Insights into pH Dependence and Redox Chemistry. Biochemistry, 2009, 48, 2610-2619.	2.5	53
90	Microwave activation of electrochemical processes: convection, thermal gradients and hot spot formation at the electrodea [^] £solution interface. New Journal of Chemistry, 2000, 24, 653-658.	2.8	52

FRANK MARKEN

#	Article	IF	CITATIONS
91	Nanoporous iron oxide membranes: layer-by-layer deposition and electrochemical characterisation of processes within nanopores. New Journal of Chemistry, 2002, 26, 625-629.	2.8	50
92	Pyro-electrolytic water splitting for hydrogen generation. Nano Energy, 2019, 58, 183-191.	16.0	50
93	The direct electrochemistry of ferritin compared with the direct electrochemistry of nanoparticulate hydrous ferric oxide. New Journal of Chemistry, 2002, 26, 259-263.	2.8	49
94	Phosphate and arsenate electro-insertion processes into a N,N,N′,N′-tetraoctylphenylenediamine redox liquid. Electrochemistry Communications, 2002, 4, 462-467.	4.7	49
95	Hemoglobin adsorption into TiO2 phytate multi-layer films: particle size and conductivity effects. Electrochemistry Communications, 2004, 6, 1249-1253.	4.7	49
96	Metal@MOF Materials in Electroanalysis: Silver-Enhanced Oxidation Reactivity Towards Nitrophenols Adsorbed into a Zinc Metal Organic Framework—Ag@MOF-5(Zn). Electrochimica Acta, 2016, 219, 482-491.	5.2	49
97	Biphasic sonoelectrosynthesis. A review. Pure and Applied Chemistry, 2001, 73, 1947-1955.	1.9	48
98	Voltammetric analysis of iron oxide pigments. Analyst, The, 2002, 127, 1100-1107.	3.5	47
99	Synthesis, structure, and redox states of homoleptic d-block metal complexes with bis-1,2,4-triazin-3-yl-pyridine and 1,2,4-triazin-3-yl-bipyridine extractants. Polyhedron, 2006, 25, 888-900.	2.2	47
100	Detection of new features associated with the oxidation of microcrystalline tetrathiafulvalene attached to gold electrodes by the simultaneous application of electrochemical and quartz crystal microbalance techniques. Electroanalysis, 1996, 8, 732-741.	2.9	46
101	Electrochemistry in the presence of ultrasound: the need for bipotentiostatic control in sonovoltammetric experiments. Ultrasonics Sonochemistry, 1996, 3, S131-S134.	8.2	46
102	Sonoelectrochemically modified electrodes: ultrasound assisted electrode cleaning, conditioning, and product trapping in 1-octanol/water emulsion systems. Electrochimica Acta, 1998, 43, 2157-2165.	5.2	46
103	Methylene Green Voltammetry in Aqueous Solution:  Studies Using Thermal, Microwave, Laser, or Ultrasonic Activation at Platinum Electrodes. Journal of Physical Chemistry B, 1999, 103, 9987-9995.	2.6	46
104	Thermal activation of electrochemical processes in a Rf-heated channel flow cell: experiment and finite element simulation. Journal of Electroanalytical Chemistry, 2000, 492, 150-155.	3.8	46
105	Recent Advances in Paired Electrosynthesis. Chemical Record, 2021, 21, 2585-2600.	5.8	46
106	Modeling Hot Wire Electrochemistry. Coupled Heat and Mass Transport at a Directly and Continuously Heated Wire. Journal of Physical Chemistry B, 2000, 104, 764-769.	2.6	45
107	Carbon nanoparticle–chitosan composite electrode with anion, cation, and neutral binding sites: Dihydroxybenzene selectivity. Sensors and Actuators B: Chemical, 2012, 162, 194-200.	7.8	45
108	New application for the BiVO4 photoanode: A photoelectroanalytical sensor for nitrite. Electrochemistry Communications, 2015, 61, 1-4.	4.7	45

#	Article	IF	CITATIONS
109	Polymer of intrinsic microporosity (PIM) films and membranes in electrochemical energy storage and conversion: A mini-review. Electrochemistry Communications, 2020, 118, 106798.	4.7	45
110	Sonoelectrochemical investigation of silver analysis at a highly boron-doped diamond electrode. Talanta, 2000, 53, 403-415.	5.5	43
111	Voltammetry in the presence of ultrasound: A novel sono-electrode geometry. Electrochimica Acta, 1996, 41, 1541-1547.	5.2	42
112	Electrochemical reactivity of TiO2 nanoparticles adsorbed onto boron-doped diamond surfaces. Electrochemistry Communications, 2004, 6, 1153-1158.	4.7	42
113	Modified carbon nanoparticle-chitosan film electrodes: Physisorption versus chemisorption. Electrochimica Acta, 2008, 53, 5732-5738.	5.2	42
114	Fluorescent Boron Bis(phenolate) with Association Response to Chloride and Dissociation Response to Fluoride. Inorganic Chemistry, 2008, 47, 6236-6244.	4.0	42
115	Polymers of intrinsic microporosity in electrocatalysis: Novel pore rigidity effects and lamella palladium growth. Electrochimica Acta, 2014, 128, 3-9.	5.2	42
116	A Cationic Diode Based on Asymmetric Nafion Film Deposits. ACS Applied Materials & Interfaces, 2017, 9, 11272-11278.	8.0	42
117	Mechanistic Study of the Voltammetry of Nonconducting Microcrystalline cis- and trans-Cr(CO)2(dpe)2 Complexes (dpe = Ph2PCH2CH2PPh2) Mechanically attached to a Graphite Electrode and Immersed in Different Aqueous Electrolyte Media: Identification by Infrared Spectroscopy of cis-[Cr(CO)2(dpe)2]+ Stabilized at the Electrode-Solid-Solution Interface.	2.3	41
118	Organometallics, 1994, 13, 5122 5131. Electrode processes at the surfaces of sonotrodes. Electrochimica Acta, 1996, 41, 315-320.	5.2	41
119	The 20 kHz sonochemical degradation of trace cyanide and dye stuffs in aqueous media. New Journal of Chemistry, 1999, 23, 845-849.	2.8	41
120	Fast Hole Surface Conduction Observed for Indoline Sensitizer Dyes Immobilized at Fluorine-Doped Tin Oxideâ^'TiO2 Surfaces. Journal of Physical Chemistry C, 2010, 114, 11822-11828.	3.1	41
121	Continuous low temperature synthesis of MAPbX ₃ perovskite nanocrystals in a flow reactor. Reaction Chemistry and Engineering, 2018, 3, 640-644.	3.7	41
122	Voltammetry in the Presence of Ultrasound:Â Sonovoltammetric Detection of Cytochromecunder Very Fast Mass Transport Conditions. The Journal of Physical Chemistry, 1996, 100, 17395-17399.	2.9	40
123	Microwave Activated Voltammetry: The Thermally Enhanced Anodic Stripping Detection of Cadmium. Electroanalysis, 2000, 12, 267-273.	2.9	40
124	Electrochemical Detection of As(III) via Iodine Electrogenerated at Platinum, Cold, Diamond or Carbon-Based Electrodes. Electroanalysis, 2004, 16, 897-903.	2.9	40
125	Pulse-Voltammetric Glucose Detection at Gold Junction Electrodes. Analytical Chemistry, 2010, 82, 7063-7067.	6.5	40
126	High-frequency sonoelectrochemical processes: mass transport, thermal and surface effects induced by cavitation in a 500 kHz reactor. Ultrasonics Sonochemistry, 1999, 6, 189-197.	8.2	39

#	Article	IF	CITATIONS
127	Intrinsically Porous Polymer Protects Catalytic Gold Particles for Enzymeless Glucose Oxidation. Electroanalysis, 2014, 26, 904-909.	2.9	39
128	Functionalized Carbon Nanoparticles, Blacks and Soots as Electronâ€Transfer Building Blocks and Conduits. Chemistry - an Asian Journal, 2014, 9, 1226-1241.	3.3	39
129	Clostridium isatidis colonised carbon electrodes: voltammetric evidence for direct solid state redox processes. New Journal of Chemistry, 2000, 24, 179-181.	2.8	38
130	Microwave activation of electrochemical processes: High temperature phenol and triclosan electro-oxidation at carbon and diamond electrodes. Electrochimica Acta, 2007, 53, 1092-1099.	5.2	38
131	Direct reversible voltammetry and electrocatalysis with surface-stabilised Fe2O3 redox states. Electrochemistry Communications, 2008, 10, 1773-1776.	4.7	38
132	Microwaveâ€Assisted Electroanalysis: A Review. Electroanalysis, 2009, 21, 113-123.	2.9	38
133	Utilization of Ternary Europium Complex for Organic Electroluminescent Devices and as a Sensitizer to Improve Electroluminescence of Red-Emitting Iridium Complex. Inorganic Chemistry, 2019, 58, 8316-8331.	4.0	38
134	Laser Activation Voltammetry:Â Selective Removal of Reduced Forms of Methyl Viologen Deposited on Glassy Carbon and Boron-Doped Diamond Electrodes. Analytical Chemistry, 2000, 72, 2362-2370.	6.5	37
135	Microwave enhanced electrochemistry: mass transport effects and steady state voltammetry in the sub-millisecond time domain. Journal of Electroanalytical Chemistry, 2004, 573, 175-182.	3.8	37
136	Simple Cast-Deposited Multi-Walled Carbon Nanotube/Nafionâ,,¢ Thin Film Electrodes for Electrochemical Stripping Analysis. Mikrochimica Acta, 2005, 150, 269-276.	5.0	37
137	Redox Processes in Mesoporous Oxide Membranes:Â Layered TiO2Phytate and TiO2Flavin Adenine Dinucleotide Films. Langmuir, 2005, 21, 9482-9487.	3.5	37
138	Focused microwaves in electrochemical processes. Electrochimica Acta, 2006, 51, 2195-2203.	5.2	37
139	Ion transfer processes at the room temperature ionic liquid aqueous solution interface supported by a hydrophobic carbon nanofibers – silica composite film. Journal of Electroanalytical Chemistry, 2006, 587, 133-139.	3.8	37
140	Sequential Reduction of High Hydride Count Octahedral Rhodium Clusters [Rh6(PR3)6H12][BArF4]2:Â Redox-Switchable Hydrogen Storage. Journal of the American Chemical Society, 2007, 129, 1793-1804.	13.7	37
141	Nanomechanical electron shuttle consisting of a gold nanoparticle embedded within the gap between two gold electrodes. Physical Review B, 2009, 79, .	3.2	37
142	Boronic aciddendrimerreceptor modified nanofibrillar cellulose membranes. Journal of Materials Chemistry, 2010, 20, 588-594.	6.7	37
143	One-step growth of 3–5nm diameter palladium electrocatalyst in a carbon nanoparticle–chitosan host and characterization for formic acid oxidation. Electrochimica Acta, 2010, 55, 6601-6610.	5.2	37
144	Microwave Activation of Electrochemical Processes: Square-Wave Voltammetric Stripping Detection of Cadmiumin the Presence of the Surfactant Triton X. Electroanalysis, 2001, 13, 639-645.	2.9	36

FRANK MARKEN

#	Article	IF	CITATIONS
145	Lead Dioxide Deposition and Electrocatalysis at Highly Boron-Doped Diamond Electrodes in the Presence of Ultrasound. Journal of the Electrochemical Society, 2001, 148, E66.	2.9	36
146	Sol–gel processed ionic liquid – hydrophilic carbon nanoparticles multilayer film electrode prepared by layer-by-layer method. Journal of Electroanalytical Chemistry, 2008, 623, 170-176.	3.8	36
147	Mesoporous platinum hosts for electrodeâ^£liquidâ^£liquid – Triple phase boundary redox systems. Electrochemistry Communications, 2005, 7, 1333-1339.	4.7	35
148	Electrochemical sensors based on metal nanoparticles with biocatalytic activity. Mikrochimica Acta, 2022, 189, 172.	5.0	35
149	Simultaneous electrochemical and quartz crystal microbalance studies of non-conducting microcrystalline particles of trans-Cr(CO)2(dpe)2 and trans-[Cr(CO)2(dpe)2]+ (dpe = Ph2PCH2CH2PPh2) attached to gold electrodes. Journal of Electroanalytical Chemistry, 1996, 404, 227-235.	3.8	34
150	Sonoelectrochemistry at tungsten-supported boron-doped CVD diamond electrodes. Diamond and Related Materials, 1999, 8, 824-829.	3.9	34
151	An Electrochemical Redox Couple Activitated by Microelectrodes for Confined Chemical Patterning of Surfaces. Analytical Chemistry, 2002, 74, 1590-1596.	6.5	34
152	TiO2 phytate films as hosts and conduits for cytochrome c electrochemistry. Bioelectrochemistry, 2005, 66, 41-47.	4.6	34
153	Introducing hydrophilic carbon nanoparticles into hydrophilic sol-gel film electrodes. Journal of Solid State Electrochemistry, 2008, 12, 287-293.	2.5	34
154	Probing carboxylate Gibbs transfer energies via liquid liquid transfer at triple phase boundary electrodes: ion-transfer voltammetry versus COSMO-RS predictions. Physical Chemistry Chemical Physics, 2008, 10, 3925.	2.8	34
155	Three dimensional film electrode prepared from oppositely charged carbon nanoparticles as efficient enzyme host. Electrochemistry Communications, 2010, 12, 737-739.	4.7	34
156	Mechanistic aspects of the sonoelectrochemical degradation of the reactive dye Procion Blue at boron-doped diamond electrodes. Diamond and Related Materials, 2001, 10, 662-666.	3.9	33
157	Electrochemical properties of core-shell TiC–TiO2nanoparticle films immobilized at ITO electrode surfaces. Physical Chemistry Chemical Physics, 2006, 8, 5437-5443.	2.8	33
158	Electrochemical processes at a flowing organic solventâ^£aqueous electrolyte phase boundary. Electrochemistry Communications, 2007, 9, 2105-2110.	4.7	33
159	Voltammetry in the presence of ultrasound: surface and solution processes in the sonovoltammetric reduction of nitrobenzene at glassy carbon and gold electrodes1. Journal of Electroanalytical Chemistry, 1996, 414, 95-105.	3.8	33
160	Sonovoltammetric measurement of the rates of electrode processes with fast coupled homogeneous kinetics: making macroelectrodes behave like microelectrodes. Chemical Communications, 1996, , 1017.	4.1	32
161	Ion transfer processes at 4-(3-phenylpropyl)-pyridine aqueous electrolyte electrode triple phase boundary systems supported by graphite and by mesoporous TiO2. Faraday Discussions, 2005, 129, 219.	3.2	32
162	Microwave activation of the electro-oxidation of glucose in alkaline media. Physical Chemistry Chemical Physics, 2005, 7, 3552.	2.8	32

#	Article	IF	CITATIONS
163	Ion-transfer- and photo-electrochemistry at liquid liquid solid electrode triple phase boundary junctions: perspectives. Physical Chemistry Chemical Physics, 2011, 13, 10036.	2.8	32
164	Electrochemical detection of sulphide: a novel dual flow cell. Sensors and Actuators B: Chemical, 2000, 69, 189-192.	7.8	31
165	Voltammetry of electroactive liquid redox systems: anion insertion and chemical reactions in microdroplets of para -tetrakis(6-methoxyhexyl) phenylenediamine, para - and meta -tetrahexylphenylenediamine. Journal of Solid State Electrochemistry, 2001, 5, 17-22.	2.5	31
166	Electrochemical Investigation of Hemispherical Microdroplets ofN,N-Didodecyl-Nâ€~,Nâ€~-diethylphenylenediamine Immobilized as Regular Arrays on Partially-Blocked Electrodes:  A New Approach to Liquid Liquid Voltammetry. Journal of Physical Chemistry C, 2007, 111, 9992-10002.	3.1	31
167	Growth and Application of Paired Gold Electrode Junctions: Evidence for Nitrosonium Phosphate During Nitric Oxide Oxidation. Electroanalysis, 2008, 20, 2403-2409.	2.9	31
168	Mesoporous Nickel/Nickel Hydroxide Catalyst Using Liquid Crystal Template for Ethanol Oxidation in Alkaline Solution. Journal of the Electrochemical Society, 2015, 162, H453-H459.	2.9	31
169	Unmasking the Latent Passivating Roles of Ni(OH) ₂ on the Performance of Pd–Ni Electrocatalysts for Alkaline Ethanol Fuel Cells. ACS Applied Energy Materials, 2020, 3, 8786-8802.	5.1	31
170	The Use of Sonotrodes for Electroanalysis:Sono-ASV Detection of Lead in Aqueous Solution. Electroanalysis, 1998, 10, 26-32.	2.9	30
171	Low-temperature sonoelectrochemical processes. Journal of Electroanalytical Chemistry, 1999, 477, 71-78.	3.8	30
172	Photochemical and electrochemical behavior of thiophene-S-oxides. Journal of Physical Organic Chemistry, 2000, 13, 648-653.	1.9	30
173	Photoelectrochemically driven processes at the N,N,N′,N′-tetrahexylphenylenediamine microdroplet electrode aqueous electrolyte triple interface. Journal of Solid State Electrochemistry, 2001, 5, 301-305.	2.5	30
174	Sonoelectrochemistry at platinum and boron-doped diamond electrodes: achieving †fast mass transport' for †slow diffusers'. Journal of Electroanalytical Chemistry, 2001, 513, 94-99.	3.8	30
175	Reduction of Tetrachloroaurate(III) at Boron-Doped Diamond Electrodes: Gold Deposition Versus Gold Colloid Formation. Electroanalysis, 2002, 14, 797.	2.9	30
176	Influence of thin film properties on the electrochemical performance of diamond electrodes. Diamond and Related Materials, 2003, 12, 590-595.	3.9	30
177	Nanodiamond Thin Films on Titanium Substrates. Journal of the Electrochemical Society, 2003, 150, E59.	2.9	30
178	Demetallation of methemoglobin in cellulose nanofibril–TiO2 nanoparticle composite membrane electrodes. Electrochemistry Communications, 2007, 9, 1985-1990.	4.7	30
179	pH-induced reversal of ionic diode polarity in 300 nm thin membranes based on a polymer of intrinsic microporosity. Electrochemistry Communications, 2016, 69, 41-45.	4.7	30
180	Ionic Transport in Microhole Fluidic Diodes Based on Asymmetric Ionomer Film Deposits. ChemElectroChem, 2018, 5, 897-901.	3.4	30

FRANK MARKEN

#	Article	IF	CITATIONS
181	Triphasic Nature of Polymers of Intrinsic Microporosity Induces Storage and Catalysis Effects in Hydrogen and Oxygen Reactivity at Electrode Surfaces. ChemElectroChem, 2019, 6, 252-259.	3.4	30
182	Electrochemical Oxidation and Reduction of Cationic Carbonyl Hydride Complexes of Group VI Transition Metals. Inorganic Chemistry, 1995, 34, 1705-1710.	4.0	29
183	Voltammetry of Electroactive Oil Droplets. Part I: Numerical Modelling for Three Mechanistic Models Using the Dual Reciprocity Finite Element Method. Electroanalysis, 2000, 12, 1012-1016.	2.9	29
184	Characterisation of hydrophobic carbon nanofiber–silica composite film electrodes for redox liquid immobilisation. Electrochimica Acta, 2006, 51, 5897-5903.	5.2	29
185	Voltammetric optimisation of TEMPO-mediated oxidations at cellulose fabric. Green Chemistry, 2014, 16, 3322-3327.	9.0	29
186	Success and failure in the incorporation of gold nanoparticles inside ferri/ferrocyanide thermogalvanic cells. Electrochemistry Communications, 2019, 102, 41-45.	4.7	29
187	Mechanistic Aspects of the Electrochemical Reduction of 7,7,8,8-Tetracyanoquinodimethane in the Presence of Mg2+or Ba2+. Journal of Physical Chemistry B, 1998, 102, 6588-6595.	2.6	28
188	Unusually Fast Electron and Anion Transport Processes Observed in the Oxidation of "Electrochemically Open―Microcrystalline [{M(bipy)2}{Mâ€~(bipy)2}(μ-L)](PF6)2Complexes (M, Mâ€~ =	Ru, <u>O</u> ş;) Tj	ETQg0000rg
	Solidâ^'Electrodeâ^'Aqueous Electrolyte Interface. Journal of Physical Chemistry B, 2000, 104, 1977-1983.		
189	Adsorption and redox processes at carbon nanofiber electrodes grown onto a ceramic fiber backbone. Electrochemistry Communications, 2003, 5, 51-55.	4.7	28
190	Liquid–liquid interfacial processes at hydrophobic silica carbon composite electrodes: ion transfer at water–nitrobenzene, water–o-nitrophenyloctylether, and at water–o-nitrophenylphenylether interfaces. Electrochimica Acta, 2005, 50, 2315-2322.	5.2	28
191	Boronic acid-facilitated α-hydroxy-carboxylate anion transfer at liquid/liquid electrode systems: the ElCrev mechanism. Journal of Solid State Electrochemistry, 2009, 13, 1475-1482.	2.5	28
192	Cyclic Voltammetry. , 2010, , 57-106.		28
193	High density heterogenisation of molecular electrocatalysts in a rigid intrinsically microporous polymer host. Electrochemistry Communications, 2014, 46, 26-29.	4.7	28
194	Intrinsically microporous polymer slows down fuel cell catalyst corrosion. Electrochemistry Communications, 2015, 59, 72-76.	4.7	28
195	EPR Studies Associated with the Electrochemical Reduction of C60 and Supramolecular Complexes of C60 in Tolueneâ [~] Acetonitrile Solvent Mixtures. Journal of Physical Chemistry A, 1998, 102, 2641-2649.	2.5	27
196	Sono-emulsion electrosynthesis: electrode-insensitive Kolbe reactions. Chemical Communications, 2001, , 87-88.	4.1	27
197	Abrasive stripping voltammetry of silver and tin at boron-doped diamond electrodes. Diamond and Related Materials, 2002, 11, 646-650.	3.9	27
198	Carbon Nanofiber–Polystyrene Composite Electrodes for Electroanalytical Processes. Electroanalysis, 2007, 19, 1461-1466.	2.9	27

FRANK MARKEN

#	Article	IF	CITATIONS
199	Carbon nanoparticle surface functionalisation: converting negatively charged sulfonate to positively charged sulfonamide. Physical Chemistry Chemical Physics, 2010, 12, 4872.	2.8	27
200	Detection of Chlorophenols in Aqueous Solution via Hydrodynamic Channel Flow Cell Voltammetry Using a Boron-Doped Diamond Electrode. Electroanalysis, 2002, 14, 975.	2.9	26
201	Scaling out of electrolyte free electrosynthesis in a micro-gap flow cell. Lab on A Chip, 2007, 7, 141-143.	6.0	26
202	Twoâ€phase flow electrosynthesis: Comparing <i>N</i> â€octylâ€2â€pyrrolidone–aqueous and acetonitrile–aqueous threeâ€phase boundary reactions. Journal of Physical Organic Chemistry, 2009, 22, 52-58.	1.9	26
203	Cysteine-Cystine Redox Cycling in a Gold–Gold Dual-Plate Generator-Collector Microtrench Sensor. Analytical Chemistry, 2014, 86, 6748-6752.	6.5	26
204	Enhancing activity in a nanostructured BiVO4 photoanode with a coating of microporous Al2O3. Applied Catalysis B: Environmental, 2017, 200, 133-140.	20.2	26
205	Ferrocene-Containing Polycarbosilazanes via the Alkaline-Earth-Catalyzed Dehydrocoupling of Silanes and Amines. Organometallics, 2019, 38, 3629-3648.	2.3	26
206	Electrochemical Characterization of Hydrous Ruthenium Oxide Nanoparticle Decorated Boron-Doped Diamond Electrodes. Electrochemical and Solid-State Letters, 2002, 5, E47.	2.2	25
207	Chromate and Dichromate Electro-Insertion Processes into a N,N,N′,N′-Tetraoctylphenylenediamine Redox Liquid. Electroanalysis, 2002, 14, 172.	2.9	25
208	Microwave Induced Jet Boiling Investigated via Voltammetry at Ringâ^'Disk Microelectrodes. Journal of Physical Chemistry B, 2006, 110, 17589-17594.	2.6	25
209	Carbon nanoparticle stabilised liquid liquid micro-interfaces for electrochemically driven ion-transfer processes. Electrochimica Acta, 2007, 53, 1175-1181.	5.2	25
210	Photoelectrochemical Transients for Chlorine/Hypochlorite Formation at "Roll-On― Nano-WO ₃ Film Electrodes. Journal of Physical Chemistry C, 2013, 117, 7005-7012.	3.1	25
211	Crystal growth of Cu2ZnSnS4 solar cell absorber by chemical vapor transport with I2. Journal of Crystal Growth, 2013, 364, 101-110.	1.5	25
212	A dual-plate ITO–ITO generator–collector microtrench sensor: surface activation, spatial separation and suppression of irreversible oxygen and ascorbate interference. Analyst, The, 2014, 139, 569-575.	3.5	25
213	Selective formation of hydrogen peroxide by oxygen reduction on TiO2 nanotubes in alkaline media. Electrochimica Acta, 2015, 174, 557-562.	5.2	25
214	Amplified electron transfer at poly-ethylene-glycol (PEG) grafted electrodes. Physical Chemistry Chemical Physics, 2015, 17, 11260-11268.	2.8	25
215	Electrocatalytic Carbohydrate Oxidation with 4-Benzoyloxy-TEMPO Heterogenised in a Polymer of Intrinsic Microporosity. Electrochimica Acta, 2015, 160, 195-201.	5.2	25
216	Intrinsically Microporous Polymer Retains Porosity in Vacuum Thermolysis to Electroactive Heterocarbon. Langmuir, 2015, 31, 12300-12306.	3.5	25

#	Article	IF	CITATIONS
217	Ion flow in a zeolitic imidazolate framework results in ionic diode phenomena. Chemical Communications, 2016, 52, 2792-2794.	4.1	25
218	Reaction-based indicator displacement assay (RIA) for the colorimetric and fluorometric detection of hydrogen peroxide. Organic Chemistry Frontiers, 2017, 4, 1058-1062.	4.5	25
219	Polymers of Intrinsic Microporosity in Triphasic Electrochemistry: Perspectives. ChemElectroChem, 2019, 6, 4332-4342.	3.4	25
220	Multiphase Methods in Organic Electrosynthesis. Accounts of Chemical Research, 2019, 52, 3325-3338.	15.6	25
221	Cationic Rectifier Based on a Graphene Oxide-Covered Microhole: Theory and Experiment. Langmuir, 2019, 35, 2055-2065.	3.5	25
222	Fast electrochemical triple-interface processes at boron-doped diamond electrodes. Journal of Solid State Electrochemistry, 2001, 5, 88-93.	2.5	24
223	Microwave activation of electrochemical processes: enhanced PbO2 electrodeposition, stripping and electrocatalysis. Journal of Solid State Electrochemistry, 2001, 5, 313-318.	2.5	24
224	Microwave effects on the electrochemical deposition of copper. New Journal of Chemistry, 2004, 28, 1544.	2.8	24
225	Tuning percolation speed in layer-by-layer assembled polyaniline–nanocellulose composite films. Journal of Solid State Electrochemistry, 2011, 15, 2675-2681.	2.5	24
226	Long-Range Intramolecular Electronic Communication in Bis(ferrocenylethynyl) Complexes Incorporating Conjugated Heterocyclic Spacers: Synthesis, Crystallography, and Electrochemistry. Inorganic Chemistry, 2013, 52, 4898-4908.	4.0	24
227	Hydrothermal Conversion of One-Photon-Fluorescent Poly(4-vinylpyridine) into Two-Photon-Fluorescent Carbon Nanodots. Langmuir, 2014, 30, 11746-11752.	3.5	24
228	One-step preparation of the BiVO4 film photoelectrode. Journal of Solid State Electrochemistry, 2015, 19, 31-35.	2.5	24
229	Electrodes modified with bacteriophages and carbon nanofibres for cysteine detection. Sensors and Actuators B: Chemical, 2019, 287, 78-85.	7.8	24
230	Anodic activity of boron-doped diamond electrodes in bleaching processes: effects of ultrasound and surface states. New Journal of Chemistry, 2003, 27, 698-703.	2.8	23
231	The electrochemical ion-transfer reactivity of porphyrinato metal complexes in 4-(3-phenylpropyl)pyridine water systems. New Journal of Chemistry, 2006, 30, 327.	2.8	23
232	A rotating disc voltammetry study of the 1,8-dihydroxyanthraquinone mediated reduction of colloidal indigo. Journal of Solid State Electrochemistry, 2006, 10, 865-871.	2.5	23
233	A Porous ITO Nanoparticles Modified Electrode for the Redox Liquid Immobilization. Electroanalysis, 2007, 19, 155-160.	2.9	23
234	Adsorption and redox chemistry of cis-RuLL'(SCN)2 with L=4,4′-dicarboxylic acid-2,2′-bipyridine and L'=4,4′-dinonyl-2,2′-bipyridine (Z907) at FTO and TiO2 electrode surfaces. Journal of Solid State Electrochemistry, 2010, 14, 1929-1936.	2.5	23

#	Article	IF	CITATIONS
235	Synthesis and characterization of porous carbon–MoS ₂ nanohybrid materials: electrocatalytic performance towards selected biomolecules. Journal of Materials Chemistry B, 2016, 4, 1448-1457.	5.8	23
236	Sonoelectrochemical production of hydrogen peroxide at polished boron-doped diamond electrodes. Chemical Communications, 1998, , 1961-1962.	4.1	22
237	High-Pressure Sonoelectrochemistry in Aqueous Solution: Soft Cavitation under CO2. Journal of Physical Chemistry A, 1998, 102, 8888-8893.	2.5	22
238	Nanocomposite electrodes made of carbon nanofibers and black wax. Anodic stripping voltammetry of zinc and lead. Analyst, The, 2001, 126, 1878-1881.	3.5	22
239	Low-temperature sonoelectrochemical processes. Journal of Electroanalytical Chemistry, 2001, 506, 170-177.	3.8	22
240	Electrosynthesis of phenyl-2-propanone derivatives from benzyl bromides and acetic anhydride in an unsupported micro-flow cell electrolysis process. Green Chemistry, 2007, 9, 20-22.	9.0	22
241	Electro-deposition and stripping of catalytically active iron metal nanoparticles at boron-doped diamond electrodes. Electrochemistry Communications, 2007, 9, 1127-1133.	4.7	22
242	Anthraquinone catalysis in the glucose-driven reduction of indigo to leuco-indigo. Physical Chemistry Chemical Physics, 2009, 11, 1816.	2.8	22
243	Carbon Nanoparticle Surface Electrochemistry: Highâ€Density Covalent Immobilisation and Poreâ€Reactivity of 9,10â€Anthraquinone. Electroanalysis, 2011, 23, 1320-1324.	2.9	22
244	Polymers of intrinsic microporosity as high temperature templates for the formation of nanofibrous oxides. RSC Advances, 2015, 5, 73323-73326.	3.6	22
245	Ion pair formation between the electrogenerated 2,3-dichloro-5,6-dicyano-1,4-benzoquinone dianion and the sodium ion at platinum surfaces. Journal of Electroanalytical Chemistry, 1998, 451, 193-201.	3.8	21
246	Sulfide accumulation and sensing based on electrochemical processes in microdroplets of N1-[4-(dihexylamino)phenyl]-N1,N4,N4-trihexyl-1,4-phenylenediamine. Chemical Communications, 1999, , 1823-1824.	4.1	21
247	Electrochemistry in the Presence of Mesoporous TiO2 Phytate Nanofilms. Electroanalysis, 2004, 16, 89-96.	2.9	21
248	Optical waveguide spectroscopy study of the transport and binding of cytochrome c in mesoporous titanium dioxide electrodes Journal of Materials Chemistry, 2008, 18, 4304.	6.7	21
249	Electrochemically Active Mercury Nanodroplets Trapped in a Carbon Nanoparticle–Chitosan Matrix. Electroanalysis, 2009, 21, 261-266.	2.9	21
250	Contribution of Individual Histidines to Prion Protein Copper Binding. Biochemistry, 2011, 50, 10781-10791.	2.5	21
251	Polymers of intrinsic microporosity in electrochemistry: Anion uptake and transport effects in thin film electrodes and in free-standing ionic diode membranes. Journal of Electroanalytical Chemistry, 2016, 779, 241-249.	3.8	21
252	Potassium cation induced ionic diode blocking for a polymer of intrinsic microporosity nafion "heterojunction―on a microhole substrate. Electrochimica Acta, 2017, 258, 807-813.	5.2	21

#	Article	IF	CITATIONS
253	Contrasting transient photocurrent characteristics for thin films of vacuum-doped "grey―TiO2 and "grey―Nb2O5. Applied Catalysis B: Environmental, 2018, 237, 339-352.	20.2	21
254	Thermogalvanic and Thermocapacitive Behavior of Superabsorbent Hydrogels for Combined Low-Temperature Thermal Energy Conversion and Harvesting. ACS Applied Energy Materials, 2021, 4, 11204-11214.	5.1	21
255	Novel sandwich cations of platinum with tetramethyl-cyclobutadiene and cyclopentdienyl or hexamethylbenzene ligands. Journal of the Chemical Society Dalton Transactions, 1993, , 1979.	1.1	20
256	Sonovoltammetry of Oxygen at Cuâ€Ni Alloy Electrodes: Activation of Alloy Electrodes and Sonoâ€Ringâ€Disk Voltammetry. Journal of the Electrochemical Society, 1997, 144, 3019-3026.	2.9	20
257	Storing and Releasing Hydrogen with a Redox Switch. Angewandte Chemie - International Edition, 2006, 45, 6005-6008.	13.8	20
258	Binding site control in a layer-by-layer deposited chitosan–carbon nanoparticle film electrode. New Journal of Chemistry, 2008, 32, 1253.	2.8	20
259	Paired gold junction electrodes with submicrometer gap. Journal of Electroanalytical Chemistry, 2009, 632, 206-210.	3.8	20
260	Boron-doped diamond dual-plate microtrench electrode for generator–collector chloride/chlorine sensing. Electrochemistry Communications, 2014, 46, 120-123.	4.7	20
261	Electrolysis in the presence of ultrasound: cell geometries for the application of extreme rates of mass transfer in electrosynthesis. Journal of the Chemical Society Perkin Transactions II, 1997, , 2055-2059.	0.9	19
262	Sonoelectrochemistry of molecular and colloidal redox systems at carbon nanofiber–ceramic composite electrodes. Electrochimica Acta, 2003, 48, 3411-3417.	5.2	19
263	The effects of conductivity and electrochemical doping on the reduction of methemoglobin immobilized in nanoparticulate TiO2 films. Bioelectrochemistry, 2007, 70, 221-227.	4.6	19
264	Ultrathin Carbon Film Electrodes from Vacuum arbonised Cellulose Nanofibril Composite. Electroanalysis, 2010, 22, 619-624.	2.9	19
265	Harnessing applied potential to oxidation in water. Green Chemistry, 2012, 14, 2221.	9.0	19
266	Nano-Litre Proton/Hydrogen Titration in a Dual-Plate Platinum-Platinum Generator-Collector Electrode Micro-Trench. Electrochimica Acta, 2014, 125, 94-100.	5.2	19
267	Microwave-Electrochemical Deposition of a Fe-Co Alloy with Catalytic Ability in Hydrogen Evolution. Electrochimica Acta, 2017, 235, 480-487.	5.2	19
268	The influence of metallic Bi in BiVO4 semiconductor for artificial photosynthesis. Journal of Alloys and Compounds, 2021, 851, 156912.	5.5	19
269	Polymers of Intrinsic Microporosity in the Design of Electrochemical Multicomponent and Multiphase Interfaces. Analytical Chemistry, 2021, 93, 1213-1220.	6.5	19
270	Current Insight into 3D Printing in Solidâ€State Lithiumâ€Ion Batteries: A Perspective. Batteries and Supercaps, 2022, 5, .	4.7	19

#	Article	IF	CITATIONS
271	Homogeneous and heterogeneous catalytic redox processes: solution and solid state voltammetry of lead complexes at carbon electrodes. Journal of Electroanalytical Chemistry, 1997, 424, 25-34.	3.8	18
272	Applications of the channel flow cell for UV-visible spectroelectrochemical studies. Part 2: Transient signals. Electroanalysis, 1997, 9, 284-287.	2.9	18
273	Effects of carbon nanofiber composites on electrode processes involving liquid liquid ion transfer. Journal of Solid State Electrochemistry, 2005, 9, 874-881.	2.5	18
274	Electrochemical determination of plant-derived leuco-indigo after chemical reduction by glucose. Journal of Applied Electrochemistry, 2008, 38, 1683-1690.	2.9	18
275	Growth and characterisation of diffusion junctions between paired gold electrodes: diffusion effects in generator–collector mode. Journal of Solid State Electrochemistry, 2009, 13, 609-617.	2.5	18
276	Cis-bis(isothiocyanato)-bis(2,2′-bipyridyl-4,4′dicarboxylato)-Ru(II) (N719) dark-reactivity when bound to fluorine-doped tin oxide (FTO) or titanium dioxide (TiO2) surfaces. Journal of Electroanalytical Chemistry, 2010, 640, 61-67.	3.8	18
277	Pyrene-anchored boronic acid receptors on carbon nanoparticle supports: fluxionality and pore effects. New Journal of Chemistry, 2013, 37, 1883.	2.8	18
278	Chapter 6. Electrochemistry within metal-organic frameworks. SPR Electrochemistry, 0, , 187-210.	0.7	18
279	Chemoselective Oxidation of Sulfides to Sulfoxides with Urea–Hydrogen Peroxide Complex Catalysed by Diselenide. Synlett, 2015, 27, 80-82.	1.8	18
280	Nitrite/nitrate detection in serum based on dual-plate generator–collector currents in a microtrench. Talanta, 2015, 131, 228-235.	5.5	18
281	Polymer of Intrinsic Microporosity Induces Host-Guest Substrate Selectivity in Heterogeneous 4-Benzoyloxy-TEMPO-Catalysed Alcohol Oxidations. Electrocatalysis, 2016, 7, 70-78.	3.0	18
282	Dicopper(I) Complexes Incorporating Acetylide-Functionalized Pyridinyl-Based Ligands: Synthesis, Structural, and Photovoltaic Studies. Inorganic Chemistry, 2018, 57, 12113-12124.	4.0	18
283	Photoelectrochemistry of immobilised Pt@g-C3N4 mediated by hydrogen and enhanced by a polymer of intrinsic microporosity PIM-1. Electrochemistry Communications, 2019, 103, 1-6.	4.7	18
284	Coupled Redox Reactions, Linkage Isomerization, Hydride Formation, and Acidâ^'Base Relationships in the Decaphenylferrocene System. Organometallics, 1997, 16, 2787-2797.	2.3	17
285	Sonoelectrochemistry at highly boron-doped diamond electrodes: silver oxide deposition and electrocatalysis in the presence of ultrasound. Journal of Solid State Electrochemistry, 2000, 4, 383-389.	2.5	17
286	Adsorption and reactivity of hydrous iron oxide nanoparticles on boron-doped diamond. Electrochemistry Communications, 2002, 4, 820-824.	4.7	17
287	Microwave Activation of Electrochemical Processes at Glassy Carbon and Boron-Doped Diamond Electrodes. Electroanalysis, 2005, 17, 385-391.	2.9	17
288	Microwave-enhanced electrochemical processes in micellar surfactant media. Journal of Solid State Electrochemistry, 2005, 9, 809-815.	2.5	17

#	Article	IF	CITATIONS
289	Microwave enhanced electroanalysis of formulations: processes in micellar media at glassy carbon and at platinum electrodes. Analyst, The, 2005, 130, 1425.	3.5	17
290	Electrochemical Deposition of Praseodymium Oxide on Tin-Doped Indium Oxide as a Thin Sensing Film. Journal of the Electrochemical Society, 2006, 153, C517.	2.9	17
291	Microwave-enhanced electro-deposition and stripping of palladium at boron-doped diamond electrodes. Talanta, 2007, 72, 66-71.	5.5	17
292	Nanofibrillar Celluloseâ€Chitosan Composite Film Electrodes: Competitive Binding of Triclosan, Fe(CN) ₆ ^{3â^'/4â^'} , and SDS Surfactant. Electroanalysis, 2008, 20, 2395-2402.	2.9	17
293	Proton uptake vs. redox driven release from metal–organic-frameworks: Alizarin red S reactivity in UMCM-1. Journal of Electroanalytical Chemistry, 2013, 689, 168-175.	3.8	17
294	Direct electrochemistry of adsorbed proteins and bioelectrocatalysis at film electrode prepared from oppositely charged carbon nanoparticles. Electrochimica Acta, 2013, 89, 132-138.	5.2	17
295	Effects of g-C ₃ N ₄ Heterogenization into Intrinsically Microporous Polymers on the Photocatalytic Generation of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2022, 14, 19938-19948.	8.0	17
296	Ultrasound-assisted electrochemical reduction of emulsions in aqueous media. Chemical Communications, 1997, , 995-996.	4.1	16
297	Voltammetry at Boron-Doped Diamond Electrodes in Liquid Ammonia: Solvent Window Effects and Diamond Surface Modification. Electrochemical and Solid-State Letters, 1999, 3, 224.	2.2	16
298	Complex Electron Transfer Kinetic Data from Convolution Analysis of Cyclic Voltammograms. Theory and Application to Diamond Electrodes. Electroanalysis, 1999, 11, 1149-1154.	2.9	16
299	Low-temperature sonoelectrochemical processes. Journal of Electroanalytical Chemistry, 2001, 507, 144-151.	3.8	16
300	Microphase voltammetry of diluted and undiluted redox liquids deposited on sol–gel ceramic carbon electrodes. Electrochimica Acta, 2005, 50, 1711-1717.	5.2	16
301	Layer-by-layer deposition of open-pore mesoporous TiO2-Nafion® film electrodes. Journal of Solid State Electrochemistry, 2007, 11, 1109-1117.	2.5	16
302	Bioelectrocatalytic dioxygen reduction at hybrid silicate–polyallylamine film with encapsulated laccase. Journal of Electroanalytical Chemistry, 2008, 612, 1-8.	3.8	16
303	Solvent-Dependent Changes in Molecular Reorientation Dynamics: The Role of Solventâ^'Solvent Interactions. Journal of Physical Chemistry A, 2010, 114, 4957-4962.	2.5	16
304	Dual-microdisk electrodes in transient generator–collector mode: Experiment and theory. Journal of Electroanalytical Chemistry, 2011, 655, 147-153.	3.8	16
305	Hydrogen Peroxide Detection in Wet Air with a Prussian Blue Based Solid Salt Bridged Three Electrode System. Analytical Chemistry, 2013, 85, 2574-2577.	6.5	16
306	Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber. Bioconjugate Chemistry, 2016, 27, 2900-2910.	3.6	16

#	Article	IF	CITATIONS
307	Fuel cell anode catalyst performance can be stabilized with a molecularly rigid film of polymers of intrinsic microporosity (PIM). RSC Advances, 2016, 6, 9315-9319.	3.6	16
308	Highly conductive nano-silver textile for sensing hydrogen peroxide. Journal of Electroanalytical Chemistry, 2017, 799, 473-480.	3.8	16
309	Electrochemical and Kinetic Insights into Molecular Water Oxidation Catalysts Derived from Cp*lr(pyridineâ€alkoxide) Complexes. ChemCatChem, 2018, 10, 4280-4291.	3.7	16
310	A hematite photoelectrode grown on porous and conductive SnO2 ceramics for solar-driven water splitting. International Journal of Hydrogen Energy, 2019, 44, 19667-19675.	7.1	16
311	An AC-driven desalination/salination system based on a Nafion cationic rectifier. Desalination, 2020, 480, 114351.	8.2	16
312	Utilization of a Pt(<scp>ii</scp>) di-yne chromophore incorporating a 2,2′-bipyridine-5,5′-diyl spacer as a chelate to synthesize a green and red emitting d–f–d heterotrinuclear complex. Dalton Transactions, 2021, 50, 1465-1477.	3.3	16
313	Graphene oxide and starch gel as a hybrid binder for environmentally friendly high-performance supercapacitors. Communications Chemistry, 2021, 4, .	4.5	16
314	Oraganic sonoelectrochemistry. Reduction of fluorescein in the presence of 20 kHz power ultrasound: an EC? reaction. Journal of the Chemical Society Perkin Transactions II, 1995, , 1981.	0.9	15
315	Ultrasound in photoelectrochemistry: A new approach to the enhancement of the efficiency of semiconductor electrode processes. Ultrasonics Sonochemistry, 1997, 4, 223-228.	8.2	15
316	Sonoelectrochemically Enhanced Electrocatalytic Processes: The Pb(IV) Catalyzed Cleavage of 1,2-cis-Cyclopentanediol at Graphite and Glassy Carbon Electrodes. Electroanalysis, 1998, 10, 1188-1192.	2.9	15
317	Liquid Liquid Ion-Transfer Processes at the Dioctylphosphoric Acid (N,N-didodecyl-Nâ€~,Nâ€~-diethylphenylenediamine) Water (Electrolyte) Interface at Graphite and Mesoporous TiO2Substrates. Analytical Chemistry, 2004, 76, 5364-5369.	6.5	15
318	Chemical and electro-chemical applications of in situ microwave heating. Annual Reports on the Progress of Chemistry Section C, 2008, 104, 124.	4.4	15
319	Microwave-Enhanced Electrochemistry in Locally Superheated Aqueousâ^'Glycerol Electrolyte Media. Journal of Physical Chemistry C, 2009, 113, 3046-3049.	3.1	15
320	Microwave-enhanced electroanalytical processes: generator–collector voltammetry at paired gold electrode junctions. Analyst, The, 2009, 134, 887.	3.5	15
321	Liquid liquid biphasic electrochemistry in ultra-turrax dispersed acetonitrile aqueous electrolyte systems. Electrochimica Acta, 2010, 55, 8808-8814.	5.2	15
322	Dual band electrodes in generator–collector mode: Simultaneous measurement of two species. Journal of Electroanalytical Chemistry, 2013, 703, 38-44.	3.8	15
323	Photoelectrocatalytic properties of BiVO4 prepared with different alcohol solvents. International Journal of Hydrogen Energy, 2016, 41, 17380-17389.	7.1	15
324	Cellulose ionics: switching ionic diode responses by surface charge in reconstituted cellulose films. Analyst, The, 2017, 142, 3707-3714.	3.5	15

#	Article	IF	CITATIONS
325	Microscale Ionic Diodes: An Overview. Electroanalysis, 2021, 33, 1398-1418.	2.9	15
326	Electrochemically driven reversible solid state metal exchange processes in polynuclear copper complexes. Journal of Solid State Electrochemistry, 2003, 7, 141-146.	2.5	14
327	Electrodeposition of Lead at Boron-Doped Diamond Film Electrodes: Effect of Temperature. Electroanalysis, 2003, 15, 1011-1016.	2.9	14
328	Hydrophobic silica sol–gel films for biphasic electrodes and porotrodes. Analyst, The, 2004, 129, 1181-1185.	3.5	14
329	Assembly of thin mesoporous titania films and their effects on the voltammetry of weakly adsorbing redox systems. Journal of Electroanalytical Chemistry, 2005, 579, 267-275.	3.8	14
330	Microwave Activation of Processes in Mesopores: The Thiourea Electrooxidation at Mesoporous Platinum. Electroanalysis, 2006, 18, 793-800.	2.9	14
331	Rocking disc electro-deposition of CuIn alloys, selenisation, and pinhole effect minimisation in CISe solar absorber layers. Electrochimica Acta, 2012, 79, 141-147.	5.2	14
332	Electrochemical determination of selected neurotransmitters at electrodes modified with oppositely charged carbon nanoparticles. Analytical Methods, 2014, 6, 7532-7539.	2.7	14
333	Molecularly Rigid Microporous Polyamine Captures and Stabilizes Conducting Platinum Nanoparticle Networks. ACS Applied Materials & Interfaces, 2016, 8, 22425-22430.	8.0	14
334	A Modular Bioplatform Based on a Versatile Supramolecular Multienzyme Complex Directly Attached to Graphene. ACS Applied Materials & Interfaces, 2016, 8, 21077-21088.	8.0	14
335	Vacuum-annealing induces sub-surface redox-states in surfactant-structured α-Fe2O3 photoanodes prepared by ink-jet printing. Applied Catalysis B: Environmental, 2017, 211, 289-295.	20.2	14
336	One-step preparation of microporous Pd@cPIM composite catalyst film for triphasic electrocatalysis. Electrochemistry Communications, 2018, 86, 17-20.	4.7	14
337	A BiVO4 photoanode grown on porous and conductive SnO2 ceramics for water splitting driven by solar energy. Ceramics International, 2020, 46, 9040-9049.	4.8	14
338	The immobilisation and reactivity of Fe(CN)63â~'/4â~' in an intrinsically microporous polyamine (PIM-EA-TB). Journal of Solid State Electrochemistry, 2020, 24, 2797-2806.	2.5	14
339	Characterization of titanocene(III) complexes of β-diketonates by electrochemical, spectroscopic and crystallographic methods: stabilization of oxidized and reduced β-diketonate radicals by acetyl and titanocene derivatization, respectively. Inorganica Chimica Acta, 1995, 235, 117-126.	2.4	13
340	Voltammetry in the presence of ultrasound: surface and solution processes in the sonovoltammetric reduction of nitrobenzene at glassy carbon and gold electrodes. Journal of Electroanalytical Chemistry, 1996, 414, 95-105.	3.8	13
341	A novel approach for the quantitative kinetic study of reactions at solid/liquid interfaces in the presence of power ultrasound. Ultrasonics Sonochemistry, 1997, 4, 1-7.	8.2	13
342	Deposition and characterisation of a porous Sn(IV) semiconductor nanofilm on boron-doped diamond. Journal of Solid State Electrochemistry, 2002, 6, 183-187.	2.5	13

#	Article	IF	CITATIONS
343	Nanodiamond Thin Film Electrodes: Metal Electro-Deposition and Stripping Processes. Electroanalysis, 2003, 15, 169-174.	2.9	13
344	Mesoporous TiO2carboxymethyl- $\hat{1}^3$ -cyclodextrate multi-layer host films: effects on adsorption and electrochemistry of 1,1â \in^2 -ferrocenedimethanol. Analyst, The, 2005, 130, 358-363.	3.5	13
345	Capillary electrophoresis with microwave-enhanced electrochemical detection. Analyst, The, 2006, 131, 1210.	3.5	13
346	A New Method of Studying Ion Transfer at Liquid Liquid Phase Boundaries Using a Carbon Nanotube Paste Electrode with a Redox Active Binder. Journal of Physical Chemistry C, 2007, 111, 18353-18360.	3.1	13
347	Electron hopping rate measurements in ITO junctions: Charge diffusion in a layer-by-layer deposited ruthenium(II)-bis(benzimidazolyI)pyridine-phosphonate–TiO2 film. Journal of Electroanalytical Chemistry, 2011, 657, 196-201.	3.8	13
348	Surface State Trapping and Mobility Revealed by Junction Electrochemistry of Nano-Cr2O3. Australian Journal of Chemistry, 2012, 65, 65.	0.9	13
349	Redox reactivity at silver microparticle—glassy carbon contacts under a coating of polymer of intrinsic microporosity (PIM). Journal of Solid State Electrochemistry, 2017, 21, 2141-2146.	2.5	13
350	Switching Anionic and Cationic Semipermeability in Partially Hydrolyzed Polyacrylonitrile: A pH-Tunable Ionic Rectifier. ACS Applied Materials & Interfaces, 2020, 12, 3214-3224.	8.0	13
351	Di- and tri-metal compounds prepared from the alkylidyne molybdenum complexes [Mo(î—¼CR)(CO)2(ÎC5H5)] (R = C6H4OMe-2, C6H4NMe2-4 or C6H3Me2-2,6) and [MoFe(μ-CC6H4Me-4)(CO)6(ÎC5H5)]. Journal of Organometallic Chemistry, 1989, 363, 311-323.	1.8	12
352	Sonoelectrochemistry in Highly Resistive Media:Mass Transport Effects. Electroanalysis, 1998, 10, 562-566.	2.9	12
353	Assembly, conductivity, and chemical reactivity of sub-monolayer gold nanoparticle junction arrays. Sensors and Actuators B: Chemical, 2008, 129, 947-952.	7.8	12
354	Liquid–liquid ion transport junctions based on paired gold electrodes in generator–collector mode. Electrophoresis, 2009, 30, 3361-3365.	2.4	12
355	Effects of microwave radiation on electrodeposition processes at tin-doped indium oxide (ITO) electrodes. Electrochimica Acta, 2009, 54, 6680-6685.	5.2	12
356	Microwire Chronoamperometric Determination of Concentration, Diffusivity, and Salinity for Simultaneous Oxygen and Proton Reduction. Electroanalysis, 2015, 27, 1829-1835.	2.9	12
357	High-Utilisation Nanoplatinum Catalyst (Pt@cPIM) Obtained via Vacuum Carbonisation in a Molecularly Rigid Polymer of Intrinsic Microporosity. Electrocatalysis, 2017, 8, 132-143.	3.0	12
358	Processes associated with ionic current rectification at a 2D-titanate nanosheet deposit on a microhole poly(ethylene terephthalate) substrate. Journal of Solid State Electrochemistry, 2019, 23, 1237-1248.	2.5	12
359	Covalently Linked Polyoxometalate–Polypyrrole Hybrids: Electropolymer Materials with Dual-Mode Enhanced Capacitive Energy Storage. Macromolecules, 2020, 53, 11120-11129.	4.8	12
360	Indirect photo-electrochemical detection of carbohydrates with Pt@g-C3N4 immobilised into a polymer of intrinsic microporosity (PIM-1) and attached to a palladium hydrogen capture membrane. Bioelectrochemistry, 2020, 134, 107499.	4.6	12

#	Article	IF	CITATIONS
361	Novel features associated with the electrochemically driven bis(η5-pentaphenylcyclopentadienyl)iron(II)–iron(III) redox transformation at an electrode–microcrystal–solvent (electrolyte) interface. Inorganica Chimica Acta, 1999, 291, 21-31.	2.4	11
362	Surface Modification of Chemical Vapor Deposited Diamond Induced by Power Ultrasound:â€,An X-Ray Photoelectron Spectroscopy Study. Electrochemical and Solid-State Letters, 2001, 4, E29.	2.2	11
363	Characterisation of biphasic electrodes based on the liquid N,N-didodecyl-N′N′-diethylphenylenediamine redox system immobilised on porous hydrophobic silicates and immersed in aqueous media. Journal of Electroanalytical Chemistry, 2005, 582, 202-208.	3.8	11
364	Triple Phase Boundary Photovoltammetry: Resolving Rhodamine B Reactivity in 4â€(3â€Phenylpropyl)â€Pyridine Microdroplets. ChemPhysChem, 2010, 11, 2862-2870.	2.1	11
365	Nanostructured electrodes for biocompatible CMOS integrated circuits. Sensors and Actuators B: Chemical, 2010, 147, 697-706.	7.8	11
366	Cellulose Nanowhiskers in Electrochemical Applications. ACS Symposium Series, 2012, , 75-106.	0.5	11
367	Goldâ€gold junction electrodes:the disconnection method. Chemical Record, 2012, 12, 143-148.	5.8	11
368	Dioctylamineâ€Sulfonamideâ€Modified Carbon Nanoparticles as High Surface Area Substrates for Coenzyme Q10Lipid Electrochemistry. Electroanalysis, 2012, 24, 1003-1010.	2.9	11
369	A gold–gold oil microtrench electrode for liquid–liquid anion transfer voltammetry. Electrophoresis, 2013, 34, 1979-1984.	2.4	11
370	New Multi-Ferrocenyl- and Multi-Ferricenyl- Materials via Coordination-Driven Self-Assembly and via Charge-Driven Electro-Crystallization. Inorganic Chemistry, 2013, 52, 12012-12022.	4.0	11
371	Carbon nanoparticulate films as effective scaffolds for mediatorless bioelectrocatalytic hydrogen oxidation. Electrochimica Acta, 2013, 111, 434-440.	5.2	11
372	Oil Water Interfacial Phosphate Transfer Facilitated by Boronic Acid: Observation of Unusually Fast Oil Water Lateral Charge Transport. ChemElectroChem, 2014, 1, 1640-1646.	3.4	11
373	ITOâ€ITO Dualâ€Plate Microgap Electrodes: E and EC′ Generator ollector Processes. Electroanalysis, 2015, 27, 1035-1042.	2.9	11
374	Freeâ€Standing Phytantriol Q ²²⁴ Cubicâ€Phase Films: Resistivity Monitoring and Switching. ChemElectroChem, 2017, 4, 1172-1180.	3.4	11
375	Ionic Diode Characteristics at a Polymer of Intrinsic Microporosity (PIM) Nafion "Heterojunction― Deposit on a Microhole Poly(ethyleneâ€ŧerephthalate) Substrate. Electroanalysis, 2017, 29, 2217-2223.	2.9	11
376	Carbonization of polymers of intrinsic microporosity to microporous heterocarbon: Capacitive pH measurements. Applied Materials Today, 2017, 9, 136-144.	4.3	11
377	Bacteriophage M13 Aggregation on a Microhole Poly(ethylene terephthalate) Substrate Produces an Anionic Current Rectifier: Sensitivity toward Anionic versus Cationic Guests. ACS Applied Bio Materials, 2020, 3, 512-521.	4.6	11
378	Crosslinked xylose-based polyester as a bio-derived and degradable solid polymer electrolyte for Li ⁺ -ion conduction. Journal of Materials Chemistry A, 2022, 10, 6796-6808.	10.3	11

#	Article	IF	CITATIONS
379	Voltammetric, Specular Reflectance Infrared, and X-ray Electron Probe Characterization of Redox and Isomerization Processes Associated with the [Mn(CO)2(η3-P2P')Br]+/0 (P2P' = {Ph2P(CH2)2}2PPh), [Mn(CO)2(η3-P3P')Br]+/0 (P3P' = {Ph2PCH2}3P), and [{Mn(CO)2(η2-dpe)Br}2(μ-dpe)]2+/0 (dpe =) Tj ET	Qq ^{2.9} 0.7	784314 rgBT
380	Mechanistic Aspects of the Electrocatalytic Oxidative Cleavage of 1,2-Diols by Electrogenerated Pb(IV). Journal of Physical Chemistry B, 1998, 102, 1186-1192.	2.6	10
381	Electro-deposition of thin cellulose films at boron-doped diamond substrates. Electrochemistry Communications, 2007, 9, 42-48.	4.7	10
382	SnO2–poly(diallyldimethylammonium chloride) films: Electrochemical evidence for heme protein absorption, denaturation, and demetallation. Journal of Electroanalytical Chemistry, 2007, 610, 28-36.	3.8	10
383	Fabrication of shuttle-junctions for nanomechanical transfer of electrons. Nanotechnology, 2009, 20, 485202.	2.6	10
384	Ultrasound Mobilization of Liquid/Liquid/Solid Triple-Phase Boundary Redox Systems. Journal of Physical Chemistry C, 2009, 113, 15629-15633.	3.1	10
385	Microwave-electrochemical formation of colloidal zinc oxide at fluorine doped tin oxide electrodes. Electrochimica Acta, 2010, 55, 7909-7915.	5.2	10
386	Ion Transport Across Liquid Liquid Interfacial Boundaries Monitored at Generator ollector Electrodes. Electroanalysis, 2010, 22, 2889-2896.	2.9	10
387	Discharge cavitation during microwave electrochemistry at micrometre-sized electrodes. Chemical Communications, 2010, 46, 812-814.	4.1	10
388	N,N-Butyl-decamethylferrocenyl-amine reactivity at liquid liquid interfaces: electrochemically driven anion transfer vs. pH driven proton transfer. New Journal of Chemistry, 2010, 34, 1261.	2.8	10
389	Liquid liquid electrochemical bicarbonate and carbonate capture facilitated by boronic acids. Chemical Communications, 2011, 47, 12002.	4.1	10
390	Salt matrix voltammetry: Microphase redox processes at ammonium chloride gold gas triple phase boundaries. Electrochemistry Communications, 2011, 13, 154-157.	4.7	10
391	Liquid–liquid electro-organo-synthetic processes in a carbon nanofibre membrane microreactor: Triple phase boundary effects in the absence of intentionally added electrolyte. Electrochimica Acta, 2011, 56, 6764-6770.	5.2	10
392	Mechanistic aspects of aldehyde and imine electro-reduction in a liquid–liquid carbon nanofiber membrane microreactor. Tetrahedron Letters, 2012, 53, 3357-3360.	1.4	10
393	Pulse electroanalysis at gold–gold micro-trench electrodes: Chemical signal filtering. Faraday Discussions, 2013, 164, 349.	3.2	10
394	Generator–collector electroanalysis at tin-doped indium oxide–epoxy–tin-doped indium oxide junction electrodes. Electrochimica Acta, 2013, 101, 196-200.	5.2	10
395	Interdigitated ring electrodes: Theory and experiment. Journal of Electroanalytical Chemistry, 2013, 709, 57-64.	3.8	10
396	Interfacial Electron-Shuttling Processes across KolliphorEL Monolayer Grafted Electrodes. ACS Applied Materials & Interfaces, 2015, 7, 15458-15465.	8.0	10

#	Article	IF	CITATIONS
397	Cationic diodes by hot-pressing of Fumasep FKS-30 ionomer film onto a microhole in polyethylene terephthalate (PET). Journal of Electroanalytical Chemistry, 2018, 815, 114-122.	3.8	10
398	Electroanalysis in 2Dâ€TiO ₂ Nanosheet Hosts: Electrolyte and Selectivity Effects in Ferroceneboronic Acid – Saccharide Binding. Electroanalysis, 2018, 30, 1303-1310.	2.9	10
399	CRP-binding bacteriophage as a new element of layer-by-layer assembly carbon nanofiber modified electrodes. Bioelectrochemistry, 2020, 136, 107629.	4.6	10
400	Voltammetric detection of vitamin B1 (thiamine) in neutral solution at a glassy carbon electrode <i>via in situ</i> pH modulation. Analyst, The, 2020, 145, 1903-1909.	3.5	10
401	Polymers of intrinsic microporosity (PIMs) in sensing and in electroanalysis. Current Opinion in Chemical Engineering, 2022, 35, 100765.	7.8	10
402	Boron-doped diamond electrodes in organic media: Electrochemical activation and selectivity effects. Journal of Electroanalytical Chemistry, 2007, 606, 150-158.	3.8	9
403	Electrocatalytic Determination of Sulfite at Immobilized Microdroplet Liquid Liquid Interfaces: The EIC′ Mechanism. Electroanalysis, 2008, 20, 469-475.	2.9	9
404	dsDNA modified carbon nanofiber—solidified paste electrodes: probing Ni(II)—dsDNA interactions. Mikrochimica Acta, 2010, 170, 155-164.	5.0	9
405	Electrode processes at gas salt Pd nanoparticle glassy carbon electrode contacts: salt effects on the oxidation of formic acid vapor and the oxidation of hydrogen. New Journal of Chemistry, 2011, 35, 1855.	2.8	9
406	Hydrothermal core–shell carbon nanoparticle films: thinning the shell leads to dramatic pH response. Physical Chemistry Chemical Physics, 2012, 14, 15860.	2.8	9
407	Voltammetric probing of pH at carbon nanofiber–Nafionâ,,¢â€"carbon nanofiber membrane electrode assemblies. Electrochimica Acta, 2012, 62, 97-102.	5.2	9
408	Surface-dopylated carbon nanoparticles sense gas-induced pH changes. Sensors and Actuators B: Chemical, 2012, 161, 184-190.	7.8	9
409	Spectroelectrochemical Investigation of TPPMn(III/II)â€Driven Liquid Liquid Electrode Triple Phase Boundary Anion Transfer into 4â€(3â€Phenylpropyl)â€Pyridine: ClO ₄ ^{â^'} , CO ₃ H ^{â^'} , Cl ^{â^'} , and F ^{â^'} . Electroanalysis, 2012, 24, 246-253.	2.9	9
410	Cavity transport effects in generator–collector electrochemical analysis of nitrobenzene. Physical Chemistry Chemical Physics, 2014, 16, 18966-18973.	2.8	9
411	New di-ferrocenyl-ethynylpyridinyl triphenylphosphine copper halide complexes and related di-ferricenyl electro-crystallized materials. Dalton Transactions, 2014, 43, 9497-9507.	3.3	9
412	Hydrodynamic Voltammetry at a Rocking Disc Electrode: Theory versus Experiment. Electrochimica Acta, 2016, 188, 837-844.	5.2	9
413	Linking the Cu(II/I) potential to the onset of dynamic phenomena at corroding copper microelectrodes immersed in aqueous 0.5†M NaCl. Electrochimica Acta, 2018, 260, 348-357.	5.2	9
414	Charge Transfer Hybrids of Graphene Oxide and the Intrinsically Microporous Polymer PIM-1. ACS Applied Materials & Interfaces, 2019, 11, 31191-31199.	8.0	9

#	Article	IF	CITATIONS
415	Polymer of Intrinsic Microporosity (PIMâ€7) Coating Affects Triphasic Palladium Electrocatalysis. ChemElectroChem, 2019, 6, 4307-4317.	3.4	9
416	Rectification effects of Nafion-backed micropore-voltammograms by difference in migrational modes. Electrochimica Acta, 2020, 358, 136839.	5.2	9
417	Semiconductor photoelectroanalysis and photobioelectroanalysis: A perspective. TrAC - Trends in Analytical Chemistry, 2021, 135, 116154.	11.4	9
418	Stability of Mercury Film Electrodes under the Influence of High Frequency (500kHz) Ultrasound. Journal of Applied Electrochemistry, 2001, 31, 475-480.	2.9	8
419	Voltammetric Measurements at the Surface of Cotton:Â Absorption and Catalase Reactivity of a Dinuclear Manganese Complex. Langmuir, 2007, 23, 2239-2246.	3.5	8
420	High-yield acetonitrile water triple phase boundary electrolysis at platinised Teflon electrodes. Electrochimica Acta, 2009, 54, 6908-6912.	5.2	8
421	Synthesis, Characterization, and Electrochemistry of a Series of Iron(II) Complexes Containing Self-Assembled 1,5-Diaza-3,7-diphosphabicyclo[3.3.1]nonane Ligands. Inorganic Chemistry, 2009, 48, 9924-9935.	4.0	8
422	CulnSe2 precursor films electro-deposited directly onto MoSe2. Journal of Electroanalytical Chemistry, 2010, 645, 16-21.	3.8	8
423	Coupled triple phase boundary processes: Liquid–liquid generator–collector electrodes. Electrochemistry Communications, 2010, 12, 455-458.	4.7	8
424	Facile cation electro-insertion into layer-by-layer assembled iron phytate films. Electrochemistry Communications, 2010, 12, 1722-1726.	4.7	8
425	Enhanced TiO2 surface electrochemistry with carbonised layer-by-layer cellulose-PDDA composite films. Physical Chemistry Chemical Physics, 2011, 13, 9857.	2.8	8
426	Coil-by-coil assembly of poly[acrylamide-co-3-(methacryl-amido)-phenylboronic acid] with polydiallyldimethyl-ammonium to give alizarin red S responsive films. Journal of Materials Chemistry, 2012, 22, 18999.	6.7	8
427	Suppressed photoelectrochemistry at carbon-surface-modified mesoporous TiO2 films. Electrochimica Acta, 2012, 73, 31-35.	5.2	8
428	Detection and Characterization of Liquid Solid and Liquid Liquid Solid Interfacial Gradients of Water Nanodroplets in Wet <i>N</i> -Octyl-2-Pyrrolidone. Langmuir, 2014, 30, 9951-9961.	3.5	8
429	Mass transport and modulation effects in rocking dual-semi-disc electrode voltammetry. Journal of Electroanalytical Chemistry, 2014, 722-723, 78-82.	3.8	8
430	Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor. Sensors, 2016, 16, 2128.	3.8	8
431	Platinum Nanoparticle Inclusion into a Carbonized Polymer of Intrinsic Microporosity: Electrochemical Characteristics of a Catalyst for Electroless Hydrogen Peroxide Production. Nanomaterials, 2018, 8, 542.	4.1	8
432	Carbon Nanofibers Provide a Cationic Rectifier Material: Specific Electrolyte Effects, Bipolar Reactivity, and Prospect for Desalination. ChemElectroChem, 2019, 6, 3145-3153.	3.4	8

FRANK MARKEN

#	Article	IF	CITATIONS
433	Indirect Formic Acid Fuel Cell Based on a Palladium or Palladiumâ€Alloy Film Separating the Fuel Reaction and Electricity Generation. ChemElectroChem, 2021, 8, 378-385.	3.4	8
434	Synthesis of the dimetal compounds [FeW{î¼-PPh2 · CH · CH2 C(C6H4Me-4)}(CO)5(ŀ5-C5Me5)] and [FeMo{î¼-PPh2 · CH · CH2 · C(C6H4Me-4)}(CO)5(ŀ5-C5H5)]; molecular structure of the iron-tungsten compound. Polyhedron, 1987, 6, 2067-2071.	2.2	7
435	Electron induced modification of the surface electrochemical properties of diamond electrodes. Chemical Communications, 1999, , 1697-1698.	4.1	7
436	Microwave activation in ionic liquids induces high temperature–high speed electrochemical processes. Chemical Communications, 2004, , 2816-2817.	4.1	7
437	Layer-by-layer deposition of praseodymium oxide on tin-doped indium oxide (ITO) surface. Sensors and Actuators B: Chemical, 2007, 123, 400-406.	7.8	7
438	Underpotential surface reduction of mesoporous CeO2 nanoparticle films. Journal of Solid State Electrochemistry, 2008, 12, 1541-1548.	2.5	7
439	Probing Second Harmonic Components of pHâ€Sensitive Redox Processes in a Mesoporous TiO ₂ â€Nafion Film Electrode with Fourierâ€Transformed Largeâ€Amplitude Sinusoidally Modulated Voltammetry. Electroanalysis, 2009, 21, 41-47.	2.9	7
440	Voltammetric Antioxidant Analysis in Mineral Oil Samples Immobilized into Boronâ€Doped Diamond Micropore Array Electrodes. Electroanalysis, 2009, 21, 1341-1347.	2.9	7
441	Liquid Liquid Electrode Triple-Phase Boundary Photovoltammetry of Pentoxyresorufin in 4-(3-Phenylpropyl)pyridine. Langmuir, 2011, 27, 6471-6477.	3.5	7
442	Redox Reactivity of Methylene Blue Bound in Pores of UMCM-1 Metal-Organic Frameworks. Molecular Crystals and Liquid Crystals, 2012, 554, 12-21.	0.9	7
443	"Indirect Modification―of Glassy Carbon with Gold Nanoparticles Using Nonconducting Support Materials. Electroanalysis, 2013, 25, 975-982.	2.9	7
444	One-step electroless growth of nano-fibrous platinum catalyst from "paint-on―PtCl62- solution in poly-(ethylene-glycol). Electrochimica Acta, 2014, 137, 484-488.	5.2	7
445	Residual Porosity of 3Dâ€LAMâ€Printed Stainless‣teel Electrodes Allows Galvanic Exchange Platinisation. ChemElectroChem, 2016, 3, 1020-1025.	3.4	7
446	Hydrodynamic Rocking Disc Electrode Study of the TEMPOâ€mediated Catalytic Oxidation of Primary Alcohols. Electroanalysis, 2016, 28, 2093-2103.	2.9	7
447	Reagentless Electrochemiluminescence from a Nanoparticulate Polymer of Intrinsic Microporosity (PIMâ€1) Immobilized onto Tinâ€Doped Indium Oxide. ChemElectroChem, 2016, 3, 2160-2164.	3.4	7
448	In situ microwave-enhanced electrochemical reactions at stainless steel: Nano-iron for aqueous pollutant degradation. Electrochemistry Communications, 2016, 62, 48-51.	4.7	7
449	Ionic Diodes Based on Regenerated α ellulose Films Deposited Asymmetrically onto a Microhole. ChemistrySelect, 2017, 2, 871-875.	1.5	7
450	Role of dissolved oxygen in nitroarene reduction by a heterogeneous silver textile catalyst in water. New Journal of Chemistry, 2020, 44, 17780-17790.	2.8	7

#	Article	IF	CITATIONS
451	Hematite photoelectrodes grown on porous CuO–Sb2O5–SnO2 ceramics for photoelectrochemical water splitting. Solar Energy Materials and Solar Cells, 2021, 221, 110886.	6.2	7
452	Ionic Diode and Molecular Pump Phenomena Associated with Caffeic Acid Accumulated into an Intrinsically Microporous Polyamine (PIMâ€EAâ€TB). ChemElectroChem, 2021, 8, 2044-2051.	3.4	7
453	Non-enzymatic electrochemical cholesterol sensor based on strong host-guest interactions with a polymer of intrinsic microporosity (PIM) with DFT study. Analytical and Bioanalytical Chemistry, 2021, 413, 6523-6533.	3.7	7
454	Electroanalysis at Salt – Cotton – Electrode Interfaces: Preconcentration Effects Lead to Nanoâ€Molar Hg ²⁺ Sensitivity. Electroanalysis, 2011, 23, 2149-2155.	2.9	6
455	Inter-particle charge transfer in TiO2-phytate films: Generator–collector gold–gold junction transients. Journal of Electroanalytical Chemistry, 2012, 686, 32-37.	3.8	6
456	Chitosanâ€Based Hydrothermal Nanocarbon: Coreâ€Shell Characteristics and Composite Electrodes. Electroanalysis, 2012, 24, 1703-1708.	2.9	6
457	"Hydrothermal wrapping―with poly(4-vinylpyridine) introduces functionality: pH-sensitive core–shell carbon nanomaterials. Journal of Materials Chemistry A, 2013, 1, 4559.	10.3	6
458	Boronâ€Doped Diamond Dualâ€Plate Deepâ€Microtrench Device for Generatorâ€Collector Sulfide Sensing. Electroanalysis, 2015, 27, 2645-2653.	2.9	6
459	Ferroceneâ€Boronic Acid–Fructose Binding Based on Dualâ€Plate Generator–Collector Voltammetry and Squareâ€Wave Voltammetry. ChemElectroChem, 2015, 2, 867-871.	3.4	6
460	An investigation of electrochemical contact processes for silver-wire glassy carbon and silver-coated cotton textile glassy carbon. New Journal of Chemistry, 2016, 40, 2814-2822.	2.8	6
461	Electrothermal Annealing of Catalytic Platinum Microwire Electrodes: Towards Membraneâ€Free pHâ€7 Glucose Microâ€Fuel Cells. Electroanalysis, 2017, 29, 38-44.	2.9	6
462	Electrochemically Driven Câ^'H Hydrogen Abstraction Processes with the Tetrachloroâ€Phthalimidoâ€Nâ€Oxyl (Cl ₄ PINO) Catalyst. Electroanalysis, 2018, 30, 1706-1713.	2.9	6
463	Sizeâ€Selective Photoelectrochemical Reactions in Microporous Environments: Clark Probe Investigation of Pt@g ₃ N ₄ Embedded into Intrinsically Microporous Polymer (PIMâ€1). ChemElectroChem, 2021, 8, 3499-3505.	3.4	6
464	Solvent-controlled O ₂ diffusion enables air-tolerant solar hydrogen generation. Energy and Environmental Science, 2021, 14, 5523-5529.	30.8	6
465	Ionic diode desalination: Combining cationic Nafionâ"¢ and anionic Sustainionâ"¢ rectifiers. Micro and Nano Engineering, 2022, 16, 100157.	2.9	6
466	Crystal structure of twinned (η5-C5(CH3)4CF3) (η5-C5(CH3)5)Ru. Structural Chemistry, 1994, 5, 177-181.	2.0	5
467	Quartz crystal microbalance monitoring of density changes in mesoporous TiO2 phytate films during redox and ion exchange processes. Electrochemistry Communications, 2003, 5, 286-291.	4.7	5
468	Voltammetric study of absorption and reactivity of metal complexes in cotton immersed in aqueous buffer solutions. Journal of Electroanalytical Chemistry, 2007, 601, 211-219.	3.8	5

#	Article-layer assembly of Ru3+ and % MathType!Translator!2!1!AMS LaTeX.tdl!TeX – AMS-LaTeX! %	IF	CITATIONS
469	MathType:MTEF12111+- % feaaeaart1evOaqatCvAufeBSjuy2L2yd9g2L6vyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbltLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x %	2.5	5
470	Reactivity of methemoglobin immobilized on TiO2 nanoparticle films. Bioelectrochemistry, 2008, 72, 1-2.	4.6	5
471	Rocking disc electro-deposition of copper films on Mo/MoSe2 substrates. Thin Solid Films, 2011, 519, 7458-7463.	1.8	5
472	Paper supports in electrocatalysis: Weak contact catalysis with seed-mediated grown gold nanoparticle deposits. Electrochemistry Communications, 2011, 13, 68-71.	4.7	5
473	DEMS-monitoring liquid gas interfacial ammonia oxidation at carbon nanofibre membranes. RSC Advances, 2012, 2, 4886.	3.6	5
474	Mesoporous Silica Sputterâ€Coated onto ITO: Electrochemical Processes, Ion Permeability, and Gold Deposition Through NanoPores. Electroanalysis, 2012, 24, 1296-1305.	2.9	5
475	Square Wave Electroanalysis at Generator–Collector Gold–Gold Double Hemisphere Junctions. Electroanalysis, 2012, 24, 1726-1731.	2.9	5
476	Imparting pH- and small molecule selectivity to nano-Pd catalysts via hydrothermal wrapping with chitosan. Electrochimica Acta, 2013, 110, 663-669.	5.2	5
477	Nanostructured heated gold electrodes for DNA hybridization detection using enzyme labels. Sensors and Actuators B: Chemical, 2016, 233, 502-509.	7.8	5
478	Dual-Plate Gold-Gold Microtrench Electrodes for Generator-Collector Voltammetry without Supporting Electrolyte. Electrochimica Acta, 2017, 224, 487-495.	5.2	5
479	Voltammetric Chloride Sensing Based on Trace-Level Mercury Impregnation Into Amine-Functionalized Carbon Nanoparticle Films. IEEE Sensors Journal, 2017, 17, 5437-5443.	4.7	5
480	pH effects on molecular hydrogen storage in porous organic cages deposited onto platinum electrodes. Journal of Electroanalytical Chemistry, 2018, 819, 46-50.	3.8	5
481	Residual Energy Harvesting from Light Transients Using Hematite as an Intrinsic Photocapacitor in a Symmetrical Cell. ACS Applied Energy Materials, 2018, 1, 38-42.	5.1	5
482	Surface modified carbon nanomats provide cationic and anionic rectifier membranes in aqueous electrolyte media. Electrochimica Acta, 2020, 354, 136750.	5.2	5
483	Photoelectroanalytical Oxygen Detection with Titanate Nanosheet – Platinum Hybrids Immobilised into a Polymer of Intrinsic Microporosity (PIMâ€1). Electroanalysis, 2020, 32, 2756-2763.	2.9	5
484	Photo-Chlorine Production with Hydrothermally Grown and Vacuum-Annealed Nanocrystalline Rutile. Electrocatalysis, 2021, 12, 65-77.	3.0	5
485	Effective electroosmotic transport of water in an intrinsically microporous polyamine (PIM-EA-TB). Electrochemistry Communications, 2021, 130, 107110.	4.7	5
486	Foam Synthesis of Nickel/Nickel (II) Hydroxide Nanoflakes Using Double Templates of Surfactant Liquid Crystal and Hydrogen Bubbles: A High-Performance Catalyst for Methanol Electrooxidation in Alkaline Solution. Nanomaterials, 2022, 12, 879.	4.1	5

#	Article	IF	CITATIONS
487	Electrifying interfaces. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2004, 362, 2611-2633.	3.4	4
488	Electrochemically promoted Friedel–Crafts acylation of aromatic compounds. Tetrahedron Letters, 2008, 49, 2625-2627.	1.4	4
489	Aqueous-organic biphasic redox-chemistry of high-hydride content rhodium clusters: Towards immobilisation of redox-switchable H2 binding materials on a surface. Journal of Organometallic Chemistry, 2009, 694, 2808-2813.	1.8	4
490	Effects of Electrolyte Concentration on the Rotational Dynamics of Resorufin. Journal of Physical Chemistry A, 2010, 114, 12875-12880.	2.5	4
491	Hydrophobicity effects in iron polypyridyl complex electrocatalysis within Nafion thin-film electrodes. Physical Chemistry Chemical Physics, 2016, 18, 23365-23373.	2.8	4
492	Theory of unsupported, steady-state, Nernstian, three-ion, twin-electrode, voltammetry: the special case of dual concentration polarization. Journal of Solid State Electrochemistry, 2016, 20, 3083-3095.	2.5	4
493	Photoanodes on titanium substrates: one-step deposited BiVO4 versus two-step nano-V2O5 films impregnated with Bi3+. Journal of Solid State Electrochemistry, 2016, 20, 273-283.	2.5	4
494	Nano- and micro-gap electrochemical transducers: Novel benchtop fabrication techniques and electrical migration effects. Current Opinion in Electrochemistry, 2018, 7, 15-21.	4.8	4
495	Biphasic Voltammetry and Spectroelectrochemistry in Polymer of Intrinsic Microporosity—4-(3-Phenylpropyl)-Pyridine Organogel/Aqueous Electrolyte Systems: Reactivity of MnPc Versus MnTPP. Electrocatalysis, 2019, 10, 295-304.	3.0	4
496	Atomic scale surface modification of TiO ₂ 3D nano-arrays: plasma enhanced atomic layer deposition of NiO for photocatalysis. Materials Advances, 2021, 2, 273-279.	5.4	4
497	Catechin or quercetin guests in an intrinsically microporous polyamine (PIM-EA-TB) host: accumulation, reactivity, and release. RSC Advances, 2021, 11, 27432-27442.	3.6	4
498	Nanostructuring Electrode Surfaces and Hydrogels for Enhanced Thermocapacitance. ACS Applied Nano Materials, 2022, 5, 438-445.	5.0	4
499	Voltammetric monitoring of photochemical reactions: Photo-induced electron transfer top-chloronitrobenzene. Electroanalysis, 1996, 8, 515-518.	2.9	3
500	Electrochemical and related processes at surface conductive diamond–solution interfaces. Physica Status Solidi A, 2003, 199, 49-55.	1.7	3
501	Cyclic Voltammetry. , 2005, , 51-97.		3
502	Active catalysts of sonoelectrochemically prepared iron metal nanoparticles for the electroreduction of chloroacetates. Physics Procedia, 2010, 3, 105-109.	1.2	3
503	UV/Vis/NIR Spectroelectrochemistry. , 2010, , 179-200.		3
504	Simplest Prussian-blue deposition from ferric ferricyanide solution by a reducing Ag spot put onto an ITO substrate. Journal of Solid State Electrochemistry, 2012, 16, 3723-3724.	2.5	3

#	Article	IF	CITATIONS
505	Formation of low density hydrous iron oxide via conformal transformation of MIL-53(Fe). Chemical Communications, 2013, 49, 10593.	4.1	3
506	Reprint of proton uptake vs. redox driven release from metal–organic-frameworks: Alizarin red S reactivity in UMCM-1. Journal of Electroanalytical Chemistry, 2013, 710, 2-9.	3.8	3
507	Feedbackâ€amplified electrochemical dualâ€plate boronâ€doped diamond microtrench detector for flow injection analysis. Electrophoresis, 2015, 36, 1866-1871.	2.4	3
508	Generatorâ€collector Voltammetry at Dualâ€plate Goldâ€gold Microtrench Electrodes as Diagnostic Tool in Ionic Liquids. Electroanalysis, 2016, 28, 1068-1076.	2.9	3
509	Estimation of Energy Levels of Self-assembled Ferrocenyls and Investigation of Charge-driven Electro-crystallization of Ferricenyl Materials. Energy Procedia, 2016, 100, 149-154.	1.8	3
510	Extraction of hydrophobic analytes from organic solution into a titanate 2D-nanosheet host: Electroanalytical perspectives. Analytica Chimica Acta: X, 2019, 1, 100001.	1.0	3
511	Effects of dissolved gases on partial anodic passivation phenomena at copper microelectrodes immersed in aqueous NaCl. Journal of Electroanalytical Chemistry, 2020, 872, 113589.	3.8	3
512	Direct and indirect light energy harvesting with films of ambiently deposited ZnO nanoparticles. Applied Surface Science, 2020, 527, 146927.	6.1	3
513	Chapter 4. Electrochemistry within nanogaps. SPR Electrochemistry, 0, , 132-154.	0.7	3
514	The chemistry of thiophene S-oxides1 and related compounds. Arkivoc, 2008, 2009, 96-113.	0.5	3
515	Hydrogen Peroxide Versus Hydrogen Generation at Bipolar Pd/Au Nano-catalysts Grown into an Intrinsically Microporous Polyamine (PIM-EA-TB). Electrocatalysis, 2021, 12, 771-784.	3.0	3
516	Polymer indicator displacement assay: electrochemical glucose monitoring based on boronic acid receptors and graphene foam competitively binding with poly-nordihydroguaiaretic acid. Analyst, The, 2022, 147, 661-670.	3.5	3
517	Selfâ€Assembled Regenerated Cellulose Spacer Film in Thin Film and Generatorâ€Collector Electrodes. Electroanalysis, 2013, 25, 1773-1779.	2.9	2
518	Ionâ€Transfer Voltammetry at Carbon Nanofibre Membranes Produced by 500 °C Graphitisation/Graphenisation of Electrospun Polyâ€Acrylonitrile. Electroanalysis, 2014, 26, 69-75.	2.9	2
519	Liquid Liquid Interfacial Photoelectrochemistry of Chromoionophore I Immobilised in 4â€(3â€Phenylpropyl)Pyridine Microdroplets. ChemElectroChem, 2014, 1, 400-406.	3.4	2
520	Solid-solid EC' TEMPO-electrocatalytic conversion of diphenylcarbinol to benzophenone. Journal of Solid State Electrochemistry, 2015, 19, 1277-1283.	2.5	2
521	Confining Nanopore Bipolar Electrochemical Processes to Give Pattern in Space and Time. ChemElectroChem, 2017, 4, 2137-2139.	3.4	2
522	Voltammetric characteristics of hydrous Fe(III) oxide embedded into Nafion and immobilised onto a screen-printed carbon electrode: binding of arsenate versus phosphate. Journal of Solid State Electrochemistry, 2018, 22, 3059-3067.	2.5	2

#	Article	IF	CITATIONS
523	Voltammetric characterisation of diferrocenylborinic acid in organic solution and in aqueous media when immobilised into a titanate nanosheet film. Dalton Transactions, 2019, 48, 11200-11207.	3.3	2
524	Linking the Cu(II/I) and the Ni(IV/II) Potentials to Subsequent Passive Film Breakdown for a Cuâ^'Ni Alloy in Aqueous 0.5â€M NaCl. ChemElectroChem, 2020, 7, 195-200.	3.4	2
525	TiO ₂ nanocrystal rods on titanium microwires: growth, vacuum annealing, and photoelectrochemical oxygen evolution. New Journal of Chemistry, 2022, 46, 8385-8392.	2.8	2
526	Decamethylferrocene Redox Chemistry and Gold Nanowire Electrodeposition at Salt Crystal Electrode Nonpolar Organic Solvent Contacts. Organometallics, 2012, 31, 2616-2620.	2.3	1
527	Microwave Activation of Electrochemical Processes in Ionic Liquid Impregnated Ionomer Spheres. Electroanalysis, 2012, 24, 997-1002.	2.9	1
528	Nano-TiO2-flavin adenine dinucleotide film redox processes in contact to humidified gas salt electrolyte. Bioelectrochemistry, 2012, 86, 54-59.	4.6	1
529	"Roll-on―nano-CIGSe film electrodes in photo-hydrogenation. Journal of Photochemistry and Photobiology A: Chemistry, 2014, 276, 65-70.	3.9	1
530	Hydrodynamic Microgap Voltammetry under Couette Flow Conditions: Electrochemistry at a Rotating Drum in Viscous Poly(ethylene glycol). ChemPhysChem, 2015, 16, 2789-2796.	2.1	1
531	Pico-electrochemistry in humidity-equilibrated electrolyte films on nano-cotton: Three- and four-point probe voltammetry and impedance. Sensors and Actuators B: Chemical, 2015, 210, 762-767.	7.8	1
532	Sub-stoichiometric functionally graded titania fibres for water-splitting applications. Journal of Semiconductors, 2015, 36, 063001.	3.7	1
533	Galvanic exchange platinization reveals laser-inscribed pattern in 3D-LAM-printed steel. Journal of Solid State Electrochemistry, 2018, 22, 1755-1762.	2.5	1
534	Generator–collector electrochemical sensor configurations based on track-Etch membrane separated platinum leaves. Sensors and Actuators B: Chemical, 2018, 255, 2904-2909.	7.8	1
535	In Situ Ultrasonic Dispersion in Multiphase Electrolysis Systems. Electrochemical Society Interface, 2018, 27, 59-62.	0.4	1
536	A happy couple. Nature Catalysis, 2018, 1, 484-485.	34.4	1
537	Indirect (hydrogen-driven) electrodeposition of porous silver onto a palladium membrane. Journal of Solid State Electrochemistry, 2020, 24, 2789-2796.	2.5	1
538	Electrochemically Induced Mesomorphism Switching in a Chlorpromazine Hydrochloride Lyotropic Liquid Crystal. ACS Omega, 2021, 6, 4630-4640.	3.5	1
539	Screening Anti-Oxidant Activity at Oil Microdroplet Triple Phase Boundary Electrodes. , 2009, , .		0
540	Highly Sensitive Junction Electrodes with Self-Assembled Regenerated Cellulose Thin Films. ECS Meeting Abstracts, 2013, , .	0.0	0

#	Article	IF	CITATIONS
541	Oil Water Interfacial Phosphate Transfer Facilitated by Boronic Acid: Observation of Unusually Fast Oil Water Lateral Charge Transport. ChemElectroChem, 2014, 1, 1587-1587.	3.4	о
542	Special Issue in Honour of Professor Stephen Fletcher. Journal of Solid State Electrochemistry, 2014, 18, 3215-3215.	2.5	0
543	Carbon Microsphere – Polystyrene Composite Electrode for Threeâ€Phase Boundary Oil Analysis: Quinizarin in Methyllaurate. Electroanalysis, 2015, 27, 1043-1049.	2.9	0
544	Bacteriophages-Carbon Nanofibre Modified Electrodes for Biosensing Applications. Proceedings (mdpi), 2017, 1, .	0.2	0
545	Voltammetric monitoring of a solid-liquid phase transition in N,N,N′,N′-tetraoctyl-2,6-diamino-9,10-anthraquinone (TODAQ). Journal of Solid State Electrochemistry, 2020, 24, 11-16.	2.5	0
546	Future challenges in electrochemistry: linking membrane-based solar energy conversion mechanisms to water harvesting. Journal of Solid State Electrochemistry, 2020, 24, 2137-2140.	2.5	0
547	Electroanalysis with a single microbead of phosphate binding resin (FerrIXâ"¢) mounted in epoxy film. Journal of Solid State Electrochemistry, 0, , 1.	2.5	ο
548	Electrodeposition of tin onto a silver textile electrode for Barbier-type electro-organic synthesis of homoallylic alcohols. Surfaces and Interfaces, 2021, 24, 101085.	3.0	0
549	UV/Vis/NIR Spectroelectrochemistry. , 2005, , 167-189.		ο
550	Electrochemical Microflow Systems. , 2014, , 516-522.		0
551	Solvent-Controlled O2 Diffusion Enables Air-Tolerant Solar Hydrogen Generation. , 0, , .		ο
552	CHAPTER 8. Boron in Electroanalysis. Monographs in Supramolecular Chemistry, 0, , 236-255.	0.2	0
553	The Use of Sonotrodes for Electroanalysis:Sono-ASV Detection of Lead in Aqueous Solution. Electroanalysis, 1998, 10, 26-32.	2.9	0
554	Sonoelectrochemistry in Highly Resistive Media:Mass Transport Effects. Electroanalysis, 1998, 10, 562-566.	2.9	0
555	Complex Electron Transfer Kinetic Data from Convolution Analysis of Cyclic Voltammograms. Theory and Application to Diamond Electrodes. Electroanalysis, 1999, 11, 1149-1154	2.9	0