Tae-Joo Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8701429/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dishevelled controls apical docking and planar polarization of basal bodies in ciliated epithelial cells. Nature Genetics, 2008, 40, 871-879.	21.4	419
2	Ciliogenesis defects in embryos lacking inturned or fuzzy function are associated with failure of planar cell polarity and Hedgehog signaling. Nature Genetics, 2006, 38, 303-311.	21.4	356
3	Planar Cell Polarity Acts Through Septins to Control Collective Cell Movement and Ciliogenesis. Science, 2010, 329, 1337-1340.	12.6	309
4	Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6544-6549.	7.1	275
5	The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nature Genetics, 2016, 48, 648-656.	21.4	119
6	Identification of novel ciliogenesis factors using a new in vivo model for mucociliary epithelial development. Developmental Biology, 2007, 312, 115-130.	2.0	109
7	Subcellular Localization and Signaling Properties of Dishevelled in Developing Vertebrate Embryos. Current Biology, 2005, 15, 1039-1044.	3.9	98
8	RFX2 is broadly required for ciliogenesis during vertebrate development. Developmental Biology, 2012, 363, 155-165.	2.0	98
9	Whole-Mount Fluorescence Immunocytochemistry on <i>Xenopus</i> Embryos. Cold Spring Harbor Protocols, 2008, 2008, pdb.prot4957.	0.3	51
10	Regulation of ciliary polarity by the APC/C. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 17799-17804.	7.1	49
11	Damage-associated molecular patterns and their pathological relevance in diabetes mellitus. Ageing Research Reviews, 2015, 24, 66-76.	10.9	48
12	KDM1A microenvironment, its oncogenic potential, and therapeutic significance. Epigenetics and Chromatin, 2018, 11, 33.	3.9	44
13	High-Magnification In Vivo Imaging of <i>Xenopus</i> Embryos for Cell and Developmental Biology. Cold Spring Harbor Protocols, 2010, 2010, pdb.prot5427.	0.3	42
14	ITGBL1 modulates integrin activity to promote cartilage formation and protect against arthritis. Science Translational Medicine, 2018, 10, .	12.4	38
15	Notch1 deficiency decreases hepatic lipid accumulation by induction of fatty acid oxidation. Scientific Reports, 2016, 6, 19377.	3.3	25
16	Molecular Cloning and Characterization of a Paramyosin from Clonorchis sinensis. Korean Journal of Parasitology, 2009, 47, 359.	1.3	22
17	Extracellular matrixes and neuroinflammation. BMB Reports, 2020, 53, 491-499.	2.4	22
18	Anti-septic effects of pelargonidin on HMGB1-induced responses in vitro and in vivo. Archives of Pharmacal Research, 2016, 39, 1726-1738.	6.3	21

Tae-Joo Park

#	Article	IF	CITATIONS
19	Peroxiredoxin1, a novel regulator of pronephros development, influences retinoic acid and Wnt signaling by controlling ROS levels. Scientific Reports, 2017, 7, 8874.	3.3	20
20	Crystal structure of SEL1L: Insight into the roles of SLR motifs in ERAD pathway. Scientific Reports, 2016, 6, 20261.	3.3	19
21	Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. Epigenetics and Chromatin, 2018, 11, 72.	3.9	19
22	An enhanced ascorbate peroxidase 2/antibody-binding domain fusion protein (APEX2–ABD) as a recombinant target-specific signal amplifier. Chemical Communications, 2015, 51, 10945-10948.	4.1	18
23	Integrin signaling in cartilage development. Animal Cells and Systems, 2014, 18, 365-371.	2.2	15
24	Precision targeting tumor cells using cancer-specific InDel mutations with CRISPR-Cas9. Proceedings of the United States of America, 2022, 119, .	7.1	15
25	The planar cell polarity effector protein Wdpcp (Fritz) controls epithelial cell cortex dynamics via septins and actomyosin. Biochemical and Biophysical Research Communications, 2015, 456, 562-566.	2.1	14
26	BIX-01294-induced autophagy regulates elongation of primary cilia. Biochemical and Biophysical Research Communications, 2015, 460, 428-433.	2.1	14
27	HRP-conjugated plug-and-playable IgG-binding nanobodies as secondary antibody mimics in immunoassays. Sensors and Actuators B: Chemical, 2020, 320, 128312.	7.8	14
28	Peroxiredoxin5 Controls Vertebrate Ciliogenesis by Modulating Mitochondrial Reactive Oxygen Species. Antioxidants and Redox Signaling, 2019, 30, 1731-1745.	5.4	13
29	Augmented ERAD (ER-associated degradation) activity in chondrocytes is necessary for cartilage development and maintenance. Science Advances, 2022, 8, eabl4222.	10.3	13
30	A thioredoxin fold protein Sh3bgr regulates Enah and is necessary for proper sarcomere formation. Developmental Biology, 2015, 405, 1-9.	2.0	12
31	IFT46 plays crucial roles in craniofacial and cilia development. Biochemical and Biophysical Research Communications, 2016, 477, 419-425.	2.1	11
32	A Recombinant Secondary Antibody Mimic as a Target-specific Signal Amplifier and an Antibody Immobilizer in Immunoassays. Scientific Reports, 2016, 6, 24159.	3.3	11
33	Simple Method To Characterize the Ciliary Proteome of Multiciliated Cells. Journal of Proteome Research, 2020, 19, 391-400.	3.7	11
34	Xenopus gpx3 Mediates Posterior Development by Regulating Cell Death during Embryogenesis. Antioxidants, 2020, 9, 1265.	5.1	6
35	Alpha-tocopherol exerts protective function against the mucotoxicity of particulate matter in amphibian and human goblet cells. Scientific Reports, 2020, 10, 6224.	3.3	5
36	Xenopus: An alternative model system for identifying muco-active agents. PLoS ONE, 2018, 13, e0193310.	2.5	5

Tae-Joo Park

#	Article	IF	CITATIONS
37	Lysine demethylase 3a in craniofacial and neural development during Xenopus embryogenesis. International Journal of Molecular Medicine, 2019, 43, 1105-1113.	4.0	3
38	Spectroscopic characterization of biochemical states of myoglobin in beef in different environments. Journal of Industrial and Engineering Chemistry, 2015, 28, 302-306.	5.8	2
39	Integrin β-like 1 protein (ITGBL1) promotes cell migration by preferentially inhibiting integrin-ECM binding at the trailing edge. Genes and Genomics, 2022, 44, 405.	1.4	1
40	S03-01. Planar cell polarity: Linking developmental regulatory mechanisms to basic cellular machinery during morphogenesis. Mechanisms of Development, 2009, 126, S4.	1.7	0
41	Steps Towards a Modular Theory of Disease. Biophysical Journal, 2012, 102, 9a.	0.5	0
42	A Gap Junction Protein GJA1 is Necessary for Proper Ciliary Formation. Mechanisms of Development, 2017, 145, S101-S102.	1.7	0
43	Physiological Functions of Thiol Peroxidases (Gpx1 and Prdx2) during Xenopus laevis Embryonic Development. Antioxidants, 2021, 10, 1636.	5.1	0